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1. INTRODUCTION 

 The generation of high-energy charged particles from 
plasmas is an issue of long history in plasma physics. In 
1970s, authors have found, from their computer simulation 
on two-stream instability [1-5], that electron phase-space 
distribution function could display a hole structure when 
self-consistent field is set up within plasmas. Such a hole 
structure reflects the population of some lower energy 
electrons being suppressed while that of some higher energy 
electrons being elevated, and hence is a signal of the 
generation of high-energy charged particles, or of particle 
acceleration. It is also described by some authors with 
``negative temperature'' conception [6]. Some authors have 
noticed that a temperature profile, which is time-space 
varying, is more appropriate than a constant temperature to 
describe plasmas [7]. All of these earlier works have clearly 
indicated that plasma is a effective matrix for generating 
high-energy charged particles. 

 On the other hand, at the end of 1970s, Tajima and Dawson 
definitely proposed a notion: plasma-based particle acceleration 
[8]. This notion stresses that plasma density wave could play a 
role of traditional accelerator. Because the plasma density wave 
is closely related with self-consistent electrostatic field within 
plasmas, this stimulates a lot of investigations on how to set up 
large-amplitude electrostatic wave within plasmas via various 
stimulus [9-31]. Two familiar conceptions, laser wakefield [13] 
and plasma wakefield [12,14], are typical examples of such an 
large-amplitude electrostatic wave. In 1980s, authors have set 
up basic 1-D theories on these two conceptions [12-14]. Then, 
during following several decades, a lot of investigations have 
been addressed to various wakefield-related problems [15-31]. 
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 Despite so many related investigations on so-called 
wakefield, however, there exists still a basic question, 
whether or not does a realistic 3-D electrostatic plasma wave 
exist? Some authors have found, from PIC simulation, that 
the driven plasma density wave is accompanied by a similar 
magnetic energy density wave [32]. Because earlier 1-D 
theories [12-14] cannot include magnetic fields effect [12-
14], this implies, to some extent, that we should set up a 
stricter theory on wakefields of various stimulus rather than 
simply treat them as electrostatic structures. Moverover, 
even though we ignore this basic question, we should be 
aware of that the stimulus to excite these wakefields usually 
do not correspond to zero self-consistent magnetic field. For 
example, laser pulse, (the stimulus driving laser wakefield,) 
has a laser magnetic field and hence is a ``magnetized'' 
stimulus. Because in realistic situation an electron beam (the 
stimulus of plasma wakefield) is usually stored in magnetic 
apparatus such as storage-ring, it is also often a magnetized 
electron beam. These ``magnetized'' stimulus also force us to 
carefully treat their wakefields. Some authors have noticed 
that these wakefields are electromagnetic and set up a related 
nonlinear theory based on fluid approximation [27,39]. Also, 
some effort have been paid to experimentally probe the 
magnetic fields structure of wakefields [33]. But the stress of 
their approximated fluid theory [27] is not focused on 
magnetic structure of every wake and hence does not predict 
those latter results found from PIC simulation [32, 37, 38]. 

 Indeed, those earlier investigations displaying phase 
space holes [1-6] have revealed that electromagnetic self-
consistent field could also lead to high-energy charged 
particles. Moreover, high-energy particles generated from 
magnetic reconnection [32,34-36] also suggest that particle 
acceleration should not merely be related with electrostatic 
structure within plasmas. Therefore, even the wakefield is 
electromagnetic, particle acceleration is still available. The 
particle acceleration, or the generation of high-energy 
particles, from electromagnetic wakefield is a part of the 
purpose of next work. Strictly speaking, for a realistic 
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``magnetized'' stimulus, if its wake is ``automatically'' taken 
as an electrostatic one, the strength of such an electrostatic 
wake might be greatly over-evaluated and hence the related 
estimation on some aspects of acceleration quality might be 
very optimistic. 

 As the first step of the whole investigation, this work is 

focused on 3-D nonlinear plasma electrostatic wave. 

Collective motion mode of numerous charged particles is a 

traditional subject in plasma physics. People have realized 

that it is of more practical value to study these collective 

motion modes on 3-D model. For instance, many theories 

have been devoted to 3-D nonlinear plasma electromagnetic 

wave [40-45]. However, the access of most of these theories 

[40-45] are mainly focused on the exact functional 

relationships among various physical quantities. For 

example, two equations of radial and axial components of 

electron momentum, p  and p , are presented in ref. [45] 

but these two equations, as well as p  and 
 
p , are both 

independent of transverse coordinates r  and . Similar 

approximation in which all related physical quantities are 

independent of r  and  is also widely adopted in a few of 

related theories [46-52]. Only in few theories [53, 54], 

transverse dynamics is really studied because the dependence 

of related physical quantities on the radial coordinates r  is 

taken into account. Likewise, even though recently there are 

some works [55-62] addressing to 3-D electrostatic structure, 

authors still do not seriously taken into account the 

dependence of related physical quantities on the transverse 

coordinates r  and , and hence transverse dynamics of 3-D 

electrostatic structure is still not yet really studied. In short, 

when dealing with a 3-D question, we need not only to treat 

all vectors as having three components but also to view 

every component as depending on both transverse and axial 

coordinates. A true three-dimensional system should 

consider spatial variations in three orthogonal directions; for 

example, r , z , and . In most of above-mentioned works, 

the importance of the latter requirement, i.e. to view every 

component as depending on both transverse and axial 

coordinates, seems to be not fully appreciated. 

 For a nonlinear wave which is periodic along its 
longitudinal direction, whether or not its transverse shape 
could warrant this longitudinal periodicity seems to be not 
noticed by researchers. Here, our following detailed 
investigations reveals that such a longitudinal periodicity has 
a severe constraint on transverse shape. In other words, a 3-
D nonlinear electrostatic plasma wave cannot have arbitrary 
transverse shape. Instead, only few allowed transverse 
shapes could ensure the longitudinal periodicity. The paper 
is organized as follows: Our theory is presented in details in 
section II. Section III is for related numerical experiments. 
We summarize the importance of this newly revealed 
property of 3-D nonlinear electrostatic plasma wave to 
plasma-based acceleration in section IV. 

2 THEORY 

2.1. Starting model Equations 

 It is well known that plasma is a system of charged 
particles, which are interacting through their self-consistent 

fields. Such a classic particles system, according to statistic 
mechanics and classic mechanics [63-69], could be strictly 
described by Liouville theorem and Hamilton's equations 

 
dt f r t( ), p t( ), t( ) = 0;  (1) 

dt r t( ) =
H

p t( )
= t( );dt p t( ) =

H

r t( )
;  (2) 

 They will lead to well-known Vlasov equation (VE). 
Maybe someone will find that according to Klimontovich-
Dupree method [67], a functional 

N X,V , t( )
i

X xi t( )( ) V dt xi t( )( )  (3) 

in which X  and V  are independent of t , meets VE and 

hence conclude that the VE is defined over X,V , t( ) -space. 

However, Klimontovich-Dupree method could also be 

extended to following functional 

N x t( ),dt x t( ), t( )
i

x t( ) xi t( )( ) dt x t( ) dt xi t( )( )  (4) 

 One can find that it also meets a VE defined over 

x t( ), t( ), t( ) -space. Therefore, for generality, we take VE 

as being defined over x t( ), t( ), t( ) -space. 

 This fundamental fact reminds us that the VE is for an 

element whose trajectory in phase space is r t( ), p t( ) . 

Strict expression of VE should outstand time-dependence of 

 
r t( )  and 

 
t( )  

 

0 = t f r t( ), t( ), t( ) + dt r t( )
r t( )

f r t( ), t( ), t( )  

 

+dt t( )
t( )

f r t( ), t( ), t( )  (5) 

 In contrast, Maxwell equations (MEs) are for fields of 

physical quantities and are defined over 4-D 
 

R, t( ) -space. In 

term of fluid mechanics, VE and its fluid derivations are 

expressed by Lagrangian variables while MEs are by 

Eulerian variables. According to any fluid mechanics 

textbook [69], components of the Lagrangian variables 

x t( ), t( )  are not independent mutually and hence 
dx t( )

dt
 is 

not always = 0 . In contrast, components of the Eulerian 

variables X, t( )  are independent mutually and hence there 

always exists 
dX

dt
= 0 . 

 According to strict theoretical results [70], one can 

derived an equation for fluid velocity u  from Eq.(5). 

 

0 = t

u r t( ), t( )
1 | u |2 r t( ), t( )

+ u r t( ), t( )*
r t( )

u r t( ), t( )
1 | u |2 r t( ), t( )

 

 
+E r t( ), t( ) + u r t( ), t( ) B r t( ), t( ),  (6) 
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which is very alike to the Eulerian equation in fluid 

mechanics [69]. Note that it is expressed by Lagrangian 

variables 
 
r t( ), t( ) . In addition, MEs are expressed by 

Eulerian variables 
 

R, t( ) = X,Y ,Z, t( ) , where  R  and t  are 

independent variables 

t E = nu + B;  (7) 

E = n + ZNi ;  (8) 

 
E = t B;  (9) 

 B = 0.  (10) 

 Ni  is ion density and n  is electron density. 

2.2. How to Uniformly Express Starting Model Equations 

 Obviously, to solve Eqs. (6-10), we should express all of 

them uniformly by Lagrangian variables or Eulerian 

variables. From the formula connecting Lagrangian variables 

x0 ( ),( )  and Eulerian variables X, t( )  (see Pg.35 of ref. 

[68]. Here, we loyally use the original symbol for 

Lagrangian variable in [68] x0 ( ) , which is just our symbol 

for Lagrangian variable x ( ) , from Eq.(11) to Eq.(18) ) 

t, x0 ( ) X
0
d

'
u x0 ( ),

'

( )  (11) 

one can obtain (see Pg.35 of ref. [68]) 

X =
d

dX
+

dx0 ( )
dX x0( ) = 1+

0
d

'

x0( )u x0 ( ),
'

( )
1

x0( );  (12) 

t =
d

dt
+

dx0 ( )
dt x0( ) =

u x0 ( ),( ) 1+
0
d

'

x0( )u x0 ( ),
'

( )
1

x0( ) .

 (13) 

 Note that the formula (11) implies implicitly a relation 

d x0 ( ) u x0 ( ),( )
0
d

'
d x0 ( ) x0( )u x0 ( ),

'

( )   

ord x0 ( ) 1+
0
d

'

x0( )u x0 ( ),
'

( )
1

u x0 ( ),( ),  (14) 

which has been applied when deducing the formula (13). 
Therefore, we have 

+ u x0 ( ),( ) x0( )  

=
u x0 ( ),( )

1+
0
d

'

x0( )u x0 ( ),
'

( )
x0( ) +

u x0 ( ),( )
2 +

0
d

'

x0( )u x0 ( ),
'

( )
1+

0
d

'

x0( )u x0 ( ),
'

( )
x0( )

 

= t d x0 ( ) 2 +
0
d

'

x0( )u x0 ( ),
'

( ) x0( )  

= t d x0 ( ) 2 +
0
d

'

x0( )u x0 ( ),
'

( )
1+

0
d

'

x0( )u x0 ( ),
'

( ) X .
 (15) 

and thus 

Force x0 ( ),( )  

= + u x0 ( ),( ) x0( ) Q x0 ( ),( )  

=
t d x0 ( ) 2 +

0
d

'

x0( )u x0 ( ),
'

( )
1+

0
d

'

x0( )u x0 ( ),
'

( ) X .
 

Q x0 ( ),( ).  (16) 

 When d x0 ( ) = 0 , we will have 

tQ X, t( ) = Force X, t( ).  (17) 

 Here, we should note that above formula connecting 

Lagrangian variables and Eulerian variables are for 1-D case. 

In more complicated 3-D case, it should be a component of 

u , 
 
u , that connects R  and r0 ( )  

 

t,r0 ( ) R
0
d

'
u r0 ( ),

'

( ).  (18) 

 Here, the subindex 
 

 means being parallel to the 

trajectory. Another component of u , u , will have 

contribution to Lorentz force if B 0 . 

 As stressed in fluid mechanics [69], the Eulerian 

equation, 
 t u + (u )u = Force , is for a specified fluid 

element whose trajectory is x t( ), y t( ), z t( )( )  (because the 

variation of any physical quantity in this element is 

represented by Q x t + t( ), y t + t( ), z t + t( ), t + t( ) ) 

Q x t( ), y t( ), z t( ), t( ) . When writing 

 

dux

dt
=

ux

t
+

ux

x

dx

dt
+

ux

y

dy

dt
+

ux

z

dz

dt
=

ux

t
+ u( )ux ;  

duy

dt
=

uy

t
+

uy

x

dx

dt
+

uy

y

dy

dt
+

uy

z

dz

dt
=

uy

t
+ u( )uy;  (19) 

 

duz

dt
=

uz

t
+

uz

x

dx

dt
+

uz

y

dy

dt
+

uz

z

dz

dt
=

uz

t
+ u( )uz .  

 we have indeed taken for granted that ux,y,z  are expressed 

by Lagrangian variables x t( ), y t( ), z t( ), t( )  and meet a relation 

ux,y,z x t( ), y t( ), z t( ), t( ) = dt x, y, z.  (20) 

 Namely, ux,y,z x t( ), y t( ), z t( ), t( )  is the velocity of a 

specified fluid element. Now, to solve Eqs.(6-10), we must 

look for an equation for u X,Y ,Z, t( ) . 
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2.3. Alternative Consideration Based on Integral 
Equation 

 In last subsection, we have repeated a strict procedure of 
``translating'' any equation expressed by Lagrangian 
variables to that by Eulerian variables [68]. Actually, this 
``translation'' procedure can be illustrated in a more intuitive 
way. Maybe the integral form is easier for us to understand 
Eq.(6) 

 

p r t( ), t( ) =
0

t
F r t

'

( ), t
'( )dt

'
+ p r 0( ),0( ).  (21) 

where the work done by  F  can be expressed as the 

summation of two terms 

 
0

t
F x + u

'
, t +

'

( )d ' = Q(x + u t, t + t) Q(x, t)  

= Q(x + u t, t + t) Q(x, t + t)[ ]+ Q(x, t + t) Q(x, t)[ ]  (22) 

 By Taylor expanding 
 
p  and  F  around time-independent 

space coordinate R  

 

p r t( ), t( ) =
i=0

1

i!
r t( ) R

i

R
i

i p R, t( );  (23) 

 

F r t
'

( ), t
'( ) =

i=0

1

i!
r t

'

( ) R
i

R
i

i F R, t
'

( ),  (24) 

we obtain 

i=0

1

i!
r t( ) R

i

R
i

i p R, t( )

=
0

t

i=0

1

i!
r t

'

( ) R
i

R
i

i F R, t
'

( )dt
'
+ p r 0( ),0( ).

 (25) 

 Making dt  on this equation 

dt
i=0

1

i!
r t( ) R

i

R
i

i p R, t( )

=
i=0

1

i!
r t( ) R

i

R
i

i F R, t( ),
 (26) 

we obtain 

 
i=0

1

i!
r t( ) R

i

R
i

i F R, t( )
i=0

1

i!
r t( ) R

i
dt

R
i

i p R, t( )  

 

=
i=0

1

i 1( )!
r t( ) R

i 1
dt r t( ) R

R
i

i p R, t( )  

 

= .dt r t( ) R
i=0

1

i 1( )!
r t( ) R

i 1

R
i

i p R, t( )  

 
= dt r t( ) R

R
p r t( ), t( )  

= 0.  (27) 

 

 

 Here, we have used a fact that the Taylor expansion 

 

i=0

1

i 1( )!
r t( ) R

i 1

R
i

i p R, t( )  is just 
 

R
p r t( ), t( ) , 

which is obviously = 0  

 
i=0

1

i 1( )!
r t( ) R

i 1

R
i

i p R, t( ) =
R

p r t( ), t( ) = 0.28  (28) 

 Finally, Eq.(27) means 

 

0 =
i=0

1

i!
r t( ) R

i

R
i

i F R, t( )
i=0

1

i!
r t( ) R

i
dt

R
i

i p R, t( )  

=
i=0

1

i!
r t( ) R

i

R
i

i F R, t( ) dt p R, t( ) .  (29) 

 Because Eq.(29) is valid for any trajectory 
 
r t( ) , 

therefore, there should be 

0 = F R, t( ) dt p R, t( ) = F R, t( ) t p R, t( )  (30) 

2.4. Uniformly Expressed Equations 

 Thus, equations to be solved can be uniformly expressed 

by Eulerian variables X,Y ,Z, t( )  

 

0 = t

u

1 | u |2
+ E + u B;  (31) 

 t E = nu + B;  (32) 

E = n + ZNi ;  (33) 

 
E = t B;  (34) 

 B = 0.35  (35) 

 In previous paragraph, in order to discriminate between 

Lagrangian variables and Eulerian ones, we have denoted 

them with lowercase letters x, y, z  and uppercase letters 

X,Y ,Z  respectively. In following paragraph, we only need 

to deal with Eulerian variables. For simplicity in symbols, 

we use lowercase letters x, y, z  to denote the Eulerian 

variables in following paragraph. Namely, in following 

paragraph, lowercase letters x, y, z  are no longer to denote 

functions of t  and instead independent of t . 

2.5. Electrostatic Wave in Real Space 

 We are interested in Eqs.(31-35) at  B = 0  case. In 

particular, we wish to find solutions which is static in a 

moving frame of a constant velocity 
1

 

= z t; p =
u

1 u[ ]
2

;u z, t,r,( ) = u ,r,( ),  (36) 
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where r  and  stand for transverse coordinate and z  for 

axial coordinate in the cylindric frame. Sometime the term 

``electrostatic'' is understood loosely as referring to a time-

independent B = B r, z,( ) 0 . However, such a time-

independent B = B r, z,( ) 0 , which is ``time-dependent'' 

relative to the 
1

-frame, does not favor the presence of a 

plasma electrostatic wave whose E  is static relative to the 

1
-frame. Unless such a time-dependent B  is also z --

independent, otherwise, such a running wave form 

E = E r, z t,( )  will not appear. This could be verified by 

strictly analyzing Eqs.(31-35). For transverse 

inhomogeneous static B = B r,( ) 0 , we could find that 

there are three corresponding static quantities: E , n  and u  

which meet E + u B = 0 , E = n N  (  is a constant 

coefficient ) and B = nu . An equation of p  B  could be 

derived in a same way of deriving Eq.(50) (see below). 

Then, because B  is -independent, we could obtain an 

equation of p  which depends on B . But we could find that 

because such a B = B r,( ) 0  does not couple with p , it 

will not affect periodicity requirement 
1

r
, which will be 

presented below. Namely, a severe constraint on transverse 

shape for warranting longitudinal periodicity still holds in 

B = B r,( ) 0  case. Detailed investigations on such a 

B = B r,( ) 0  case will be presented in other works. 

 In the 3-D case, we introduce two functions  and  to 

denote the ratio between velocity components along different 

directions 

ur = uz ; pr = pz ,  (37) 

u = uz ; p = pz ,  (38) 

and Eqs.(31-35) yield following formulas 

Ez = t pz = pz ;  (39) 

Er = pr = pz( ) = pz + ( ) pz ,  (40) 

E = p = pz( ) = pz + ( ) pz  (41) 

t B = 0 = Er rEz = pz + ( ) pz rEz  

= 2( ) pz + pz + ( ) pz r pz .  (42) 

t Br = 0 =
1

r
Ez E =

1

r
Ez pz + ( ) pz  

=
1

r
pz 2( ) pz pz ( ) pz  (43) 

t Bz = 0 =
1

r r rE( ) Er  

=
1

r

r r pz + ( ) pz + pz + ( ) pz

pz + ( ) pz

 

=
1

r

r r pz pz +

r r + pz

+
r r( ) pz + r ( ) r pz + pz

( ) pz ( ) pz

 (44) 

 Because of Eqs.(42,43), we could rewrite Eq.(44) as 

0  

=

r 2( ) pz + r pz + r ( ) pz

r 2( ) pz r pz r ( ) pz

+ r r( ) pz + r ( ) r pz + pz ( ) pz ( ) pz

+ r r + pz

 

=

r 2( ) pz r 2( ) pz + r r( ) pz

+r ( ) r pz + pz ( ) pz ( ) pz

+ r ( ) r ( ) + r r + pz

, (45) 

in which all second-order derivative terms of pz  disappear. 

Likewise, Eqs.(33,34) can be written as 

ZNi n[ ]  

=
1

r
rEz +

1

r r rEr[ ]+
1

r
E  

= pz + r pz + ( ) pz +
1

r
pz + ( ) pz  

+
1

r
pz + ( ) pz  

= pz + r pz +
r

pz +

r +
r

+
1

r
pz + ( ) r pz +

1

r
( ) pz

 

+ r +
r

+
1

r
pz .  (46) 

B[ ] |z = 0 = t Ez nuz = Ez nuz ;  (47) 

B[ ] |r = 0 = t Er nur = Er nur ;  (48) 

B[ ] | = 0 = t E nu = E nu ;  (49) 
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 From Eqs.(39-49), we can obtain 

pz = nuz  

=

pz + r pz +
r

pz +

r +
r

+
1

r
pz +

( ) r pz +
1

r
( ) pz

+ r +
r

+
1

r
pz

 

pz

1+ 1+
2

+
2( ) pz

2
 

=

1+
2

+
2( ) pz +

r +
r

+ +

1

r
+

pz

+

r +
r

+
1

r
+

2 + 2
pz +

( ) r pz +
1

r
( ) pz

 

pz

1+ 1+
2

+
2( ) pz

2
.  (50) 

 Likewise, two similar equations for pr = pz  and 

p = p  exist 

n uz = pz( ) = pz + 2 pz + pz ;  (51) 

n uz = pz( ) = pz + 2 pz + pz ,  (52) 

and hence there are 

2 pz + pz = 0;  (53) 

2 pz + pz = 0,  (54) 

which yields 

=
C1 r,( )

pz
2 or = 0;  (55) 

=
C2 r,( )

pz
2 or = 0;  (56) 

where C1,2 r( )  are two binary functions of r  and . 

 Obviously, if pz  is a periodic function of , the 

equation of pz  should be able to be transformed into a first 

integral. Because  and  appear in Eq.(50), if  (and ) 

meets the former case =
C1 r,( )

pz
2  (and =

C2 r,( )
pz

2 ), 

Eq.(50) will be very complicated and cannot warrant a first 

integral of pz , which implies pz  being a periodic function 

of , existing. Therefore, for finding periodic solutions of 

Eq.(50), we only need to consider the latter case 

,( ) = 0,0( )  in which = r,( ) , as well as 

= r,( ) , is a binary function of r  and . Thus, we 

rewrite Eq.(50) as 

1
1+

2
+

2( ) pz

1+ 1+
2

+
2( ) pz

2
pz  

= r +
r

+
1

r
pz ZNi

pz

1+ 1+
2

+
2( ) pz

2
. (57) 

 It is well-known that such a general form 

f2 y( )y
''

+ f1 y( )y
'
+ f0 y( ) = 0  (58) 

which contains a linear term of y
'
, cannot correspond to a 

first integral unless f1 y( ) = 0 . Therefore, a periodic solution 

of pz  implies  and  meeting 

r +
r

+
r

= 0.  (59) 

 Moreover, in the latter case ,( ) = 0,0( ) , Eq.(46) 

will lead to r r( ) + ( ) pz = 0  or 

r +
r r

= 0.  (60) 

 From Eqs.(59,60), we could find that if pz  is a periodic 

solution,  must meet 

r +
1

r

2

+ 2
1

r r +
1

r
+

1

r2 = 0.  (61) 

 Likewise,  meets a same equation 

r +
1

r

2

+ 2
1

r r +
1

r
+

1

r2 = 0.  (62) 

 Note that Eq.(61) only contains linear terms of  and 

hence the well-known method of separation of variables is 

applicable. After obtaining  from Eq.(61), we can obtain 

 through Eq.(59) and hence we have (where D  is a 

constant and  meets 3( ) + 2 k2 = 0 ) 

=
1

r
D cos k( ); =

1

r k
D sin k( )  (63) 
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 Likewise, after obtaining  from Eq.(62), we could 

obtain  through Eq.(60) and hence we have 

=
1

r
D sin k( ); =

1

r k
D cos k( )  (64) 

 Obviously, one could directly verify that if these two sets 

of solutions are equivalent, one of  and  must be 0 . 

Moreover, from Eqs.(59,60) and Eqs.(61,62), we can have 

other two sets of possible solutions 

=
1

r
D sin k( ); =

1

r k
D cos k( ),  (65) 

=
1

r
D cos k( ); =

1

r k
D sin k( ).  (66) 

 We can also directly verify that if these two sets of 

solutions are equivalent, one of  and  must be 0 . 

Therefore, the solutions of  and  must be 

=
1

r
D; = 0.  (67) 

or = 0; =
1

r
D.  (68) 

 The former solution implies transverse isotropy (i.e., -

independence) and the latter implies rotating around z -axis. 

 Thus, we finally obtain an equation 

1
1+

2
+

2( ) pz

1+ 1+
2

+
2( ) pz

2
pz

= ZNi

pz

1+ 1+
2

+
2( ) pz

2
,

 (69) 

which corresponds to a first integral of following general 
form 

pz( )
2

+ f0 r, , pz( ) = G r,( ),  (70) 

where G r,( )  is a binary function of r  and , and f0  

stands for well-known Sagdeev potential. 

 After solving a periodic solution of pz , we can calculate 

a periodic density profile according to following formula 

n = ZNi 1+
2

+
2( ) pz  

= ZNi +
1+

2
+

2( ) pz

1+ 1+
2

+
2( ) pz

2 1+
2

+
2( ) pz

ZNi  

=
1+ 1+

2
+

2( ) pz
2

1+ 1+
2

+
2( ) pz

2 1+
2

+
2( ) pz

ZNi .  (71) 

 Note that the condition n 0  will lead to a constraint on 

pz  

1+ 1+
2

+
2( ) pz

2 1+
2

+
2( ) pz > 0,  (72) 

orpz <
1

2 1+
2

+
2( )

2
1+

2
+

2( )
<

1
2 1

if > 1.  (73) 

 More important, for the case of ,( ) =
D

r
,0 , because 

of r = 0( ) = , Eqs.(67,68) will yield on-axis density 

n3D r = 0,( ) = 0 , which differs greatly from its counterpart 

in the 1-D case, n1D ( ) =
1

1 u
ZNi . This result also holds 

for the case of ,( ) = 0,
D

r
. This implies that 3-D effect 

can result in more drastic density variation. 

 Two functions in Eq.(71), f0 r, , pz( )  and G r,( ) , read 

f0 r, , pz( ) =
2

c

1+ 1+
2

+
2( ) pz

2

1

2

1+
2

+
2( )

c

ln

1+ 1+
2

+
2( ) pz

2

1+
2

+
2( )

c

1+ 1+
2

+
2( ) pz

2

+
1+

2
+

2( )
c

1+
2

+
2( ) pz

+
1

2

1+
2

+
2( )

c

ln
cpz 1

cpz +1

ZNi  (74) 

G r,( ) = f0 r, , pz = 0( ) + pz( )
2

|pz =0 ,  (75) 

wherec = 2 1+
2

+
2( )

2
1+

2
+

2( ) > 0if > 1.  (76) 

 We can qualitatively understand the behavior of pz  as 

the motion of a particle in a ``Sagdeev potential well'' 

f0 r, , pz( ) . Obviously, at different r  position, such a 

``Sagdeev potential well'' has different shapes, which might 

mean different r  position corresponding different 

longitudinal behavior. This is the origin for the non-

separability reported previously. 

 If pz |uz =1/  is normally calculated according to Eq.(71), 

there will be a meanful solution 0 < pz |uz =1/ < . This  
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implies that a normal procedure will allow uz > 1/  

appearing. However, Eq.(73) indicates that uz =
1

 will 

correspond to n < 0 . Therefore, even though the normal 

procedure could yield 0 < pz |uz =1/ < , we must set a 

constraint on pz |uz =1/  in order to agree with the n 0  

constraint or the constraint Eq.(73) 

pz |uz =1/ =
1

2
pz |

uz = 1/( )
+ pz |

uz = 1/( )+
= 0;  (77) 

where  

pz |
uz = 1/( )

= G f uz =1/( )  

 and pz |
uz = 1/( )+

= G f uz =1/( ) .  

This constraint Eq.(77) implies that pz =1/ 2 1  

corresponds to a sharp peak in the n  curve. 

2.6. Phase Space Structures 

 Some authors have found, from low-dimension Vlasov-

Maxwell simulation, that phase space profile of a charged 

particle system agree with real space shape of the self-

consistent fields [71]. According to the method presented in 

ref. [70], the phase space profile can be calculated from 

solved E, B( ) : 

f = fmono +
i 1

bi u( ) | |2 1( )
i

;  (78) 

 

fmono = fd 3

i

bi u( ) | |2 1( )
i

d 3 u( ).

 (79) 

 The equation of bi  can be obtained by comparing terms 

in VE 

tbi + u bi + bi 1

bi u +
1

1+ | p |2 u( )
3 bi 1 B

u

| u |
= 0.  (80) 

 This equation illustrates why there exists an agreement 

between phase space profile and real space shape. Strict 

analysis indicates that the function coefficient set bi ; i 1{ }  

meeting 

 

b2i 1 =
1

u ci ;andb2i = ci  (81) 

where the constant set ci ; i 1{ }  is independent of space-

time coordinates, is a strict solution of VE in B = 0  case. 

 

 

3. NUMERICAL RESULTS AND DISCUSSION 

 Fig. (1) illustrates the effect of the transverse shape factor 

 on the density profile. Here, length is in unit of μm . 

Comparing Fig. (1a-c), we could find that when  drops 

more quickly with respect to r  rising, the radial variation in 

n  is milder. For example, for =
1

r
, n  varies from 0.9  to 

1.35  over a range 0 < r < 0.25 . In contrast, for =
4

r
, n  

varies from 0.94  to 1.08  over a same range. 

 As shown in Fig. (1), n  displays gentle longitudinal 

variation at low- r  region. For higher r , longitudinal 

variation in n  becomes more drastic. In Fig. (2), the Fourier 

spectra of n r, ,( ) , or n r, ,( )cos k( )d , at different r  

also suggest the absence of separable form 

func1(r, )* func2( ) . Namely, if n  is of a separable form, 

the Fourier spectra at different r  should be a common shape 

in different magnitudes. Obviously, these presented spectra 

do not have a common shape. 

 Moreover, G r,( )  defined in Eq.(75) reflects the 

boundary condition of a 3-D wave. Usually, a physical 

boundary condition corresponds to a driver of finite radial 

extension (i.e., when r  is , the driving force or 

pz |pz =0  is 0 ). Because of this physical boundary condition 

and the fact that there is 0  when r , a 3-D wave 

will have ur r 0( ) = 0  and uz r 0( ) = 0  and hence be 

bound in the radial direction. 

 Fig. (3) indicates that phase space structures display as 

same periodicity as real space shapes or E -profile. These 

phase space holes (see Fig. 3) also suggest that building 

electrons of an electrostatic plasma wave do not have a 

monotonic energy distribution, i.e., the number of building 

electrons of higher energy is not always less than that of 

lower energy. Therefore, to some extent, these phase space 

holes are a signature of some electrons being accelerated. 

 In conclusion, we have demonstrated strictly that because 

the B = 0  condition yield severe constraints on E  in any 3-

D electrostatic question, a 3-D nonlinear electrostatic plasma 

wave cannot have arbitrary transverse shape. Only for few 

allowed transverse shapes, E  could be periodic along its 

longitudinal direction. Periodic longitudinal shape could be 

analytically described by a first integral depending on the 

radial coordinate r  (see Eq.(71) and Eqs.(74,75)) and must 

meet the n 0  constraint. Namely, in 1-D case, periodic 

longitudinal motion can be described by a first integral, 

whereas in 3-D case, such a first integral includes two 

``parameters'' r  and . 

 Above results are important for us to interpret related 

experiments or phenomena in term of nonlinear electrostatic 

waves. For instance, for plasma-based particles acceleration, 

people often use various stimulus to excite nonlinear plasma  
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(a) 

(b) 

(c) 

Fig. (1). Examples of contours of (n / Ni ) , where (a, b, c) are for = 1/ r,2 / r, 4 / r( )  and = 0  respectively. All other parameters are same 

for (a, b, c). 
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electrostatic waves, which will act as ``accelerator'' [16-23]. 

However, above results indicate that due to 3-D effect, 

usually such a wave cannot be obtained. For a nonlinear 

electrostatic wave, its longitudinal periodicity requires its 

transverse shape to be of some specified forms instead of 

arbitrary forms. Therefore, we should not automatically 

believe those excited ``accelerators'' as periodic structure (or 

wave). For fully interpreting plasma-based particles 

acceleration, we should take into account those aperiodic 

``accelerators''. Moreover, because of the charge 

quasineutrality condition of neutral plasmas, people often 

mis-believe that the self-consistent fields should be 

associated with periodic profile of charge density. Namely, 

charge density must be > 0  at some regions and < 0  at 

other regions. Therefore, when studying many issues about 

neutral plasmas (which demand the knowledge of the self-

consistent fields), authors are accustomed to focus their 

attention to electrostatic plasma wave or periodic self-

consistent electrostatic fields. To some extent, people's 

intense interest in periodic self-consistent fields might be 

motivated by this charge quasineutrality condition. However, 

strictly speaking, this charge quasineutrality condition could 

also permit aperiodic charge density profile (for instance, 

along z -direction, charge density profile alternatively takes 

on peaks and valleys, but the ``height'' (or ``depth'') of those 

peaks (or valleys) increase with respect to z -value.) and 

hence does not definitely imply periodicity. Our above 

theory indeed reminds authors that nonlinear dynamics 

equations of charged particles system, i.e., Eqs.(31-35), have 

a more severe requirement on periodic, electrostatic self-

consistent fields. 

4. SUMMARY 

 By strictly analyzing a universal equation set of charged 

particle system, i.e., Vlasov-Maxwell equations, we found 

that the longitudinal periodicity of an electrostatic plasma 

wave has a severe constraint on the transverse shape of a 3-D 

electrostatic structure. Or, one could say in other words, the 

longitudinal periodic structure (LPS), if exists, should 

correspond to number-limited transverse shapes (TS). In 

addition, the phase space structure of such a 3-D electrostatic 

structure can be expressed as a power series of ( u) . The 

expansion coefficients can be clearly calculated through a set 

of fluid equations [70] and a strict solution of those 

expansion coefficients is presented in this work. 

 The significance of the newly revealed property: the 

longitudinal periodicity of a plasma electrostatic wave has 

severe requirements on its transverse shape, is obvious. 

Nonlinear plasma electrostatic wave is taken as a new-

Fig. (2). Examples of Fourior spectrum at different r , where = 2 / r , = 0 , and (a, b, c) are for r = 0.01,0.11,0.21( )  respectively. All 

other parameters are same for (a, b, c). 
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generation advanced accelerator and hence has received 

intensive investigations over past 30 years. However, as 

commented previously, in many related works, authors do 

not strictly take into account the dependence of related 

physical quantities on the transverse coordinates r,( )  and 

hence corresponding theories are not really addressed to 3-D 

physics questions. This makes related researchers being 

unware of that this new-generation accelerator has severe 

constraint on its transverse shape. Such a severe constraint 

on the transverse shape is a very realistic problem for the 

new-generation accelerator because of its potential, 

complicated effect on the quality of acceleration. Therefore, 

how to deal with this realistic problem is an urgent task for 

related researchers. 

 Indeed, to merely attribute the plasma-based acceleration 
to periodic electrostatic structure (or plasma electrostatic 
wave) is not an overall understanding this phenomenon. 
Aperiodic electrostatic structure could also lead to high-
velocity particles or corresponding phase space peaks. 
Moreover, electromagnetic 3-D wakefield could also 
correspond to various coherent phase space structures which 
manifest particle acceleration. Namely, to overall understand 
plasma-based acceleration, we should not merely confine 
ourselves to the electrostatic plasma wave. 
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