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Abstract:  This article presents an analytic investigation to calculate the width of the shock in pair plasma .  A solitary elec-

tromagnetic wave is propagated obliquely in the plasma where the wave direction is characterized by a propagation angle 

from direction of a background (constant) magnetic field .  Based on Sagdeev method ,  the shock wave is determined by os-

cillation of pseudo--particle in pseudo--potential well .  It is shown that for any fixed value of the propagation angle ,  the 

width of the shock becomes an explicit function of Alfe'vn Mach number of plasma .  Graphs of the width of the shock ver-

sus Mach number represent a rapid montonous decreasing functions . 
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1. INTRODUCTION 

 Ordinary plasmas consist of electrons and posit-
ive  ions ,  and the mass difference between negative -  and  

 positive-charged particles essentially causes temporal   and 
spatial varieties of collective plasma phenomena .  Pair plas-
mas ,  i . e .  plasmas consisting of equal mass and absolute 
charge ions of   opposite charge polarity ,  have been investi-
gated experimentally [1-3]  and theoretically [4] .  Also ,  they 
have recently attracted considerable interest among plasma  

 researchers .   Such plasmas exist for instance ,  in the form of 
electron--positron (e-p) or electron--positron-  ion (e--p--i) 
plasmas ,  in pulsar magnetospheres ,  e .  g . [5],  in active galac-
tic nuclei   (AGN) [6, 7] and other mediums .  The physics of 
pair plasmas was turned into an even   more exciting field of 
investigation when it descended from   its astrophysical 
heights to the terrestrial laboratory .  For example ,  pair plas-
mas are also of relevance in inertial confinement fusion 
schemes using ultra-intense lasers [3, 8] . 

 On the other hand ,  research in plasma physics devotes 
much attention to   nonlinear phenomena .  There are two dif-
ferent approaches to study of nonlinear phenomena .  The 
first ,  which is one of the known approaches and widely em-
ployed to investigate the asymptotic behavior of nonlinear 
excitations ,  is the so-called reductive perturbation technique 
[9-13].  The second is Sagdeev (pseudo)-potential approach 
which is extremely suitable for studying the large amplitude 
solitary   waves in plasmas .  One can derive all the one soliton 
results of perturbation methods   and can compare it with the 
exact results obtained by the pseudo--potential method 
[14].  Indeed ,  Sagdeev potential is one particular notion that 
has become immensely important in soliton and shock re-
searches . 
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In this work ,  Sagdeev potential method is applied as well 
for study of some aspects of the shock wave in pair plasma 
whose background is a constant magnetic field with a propa-
gating electromagnetic field .  The electromagnetic field is 
considered in the case of oblique propagation (of large am-
plitude) with respect to the constant magnetic field .  The pair 
plasma is described by the Sagdeev potential and electro-
magnetic wave has the only dynamical component which 
(after normalization) plays role of a pseudo--particle .  In the 
case of solitary waves ,  the pseudo--particle moves (a recip-
rocating motion) in the potential well and because of energy 
conservation ,  produces a soliton or shock .  If there is a (little)  
 energy dissipation ,  the pseudo--particle will be trapped in the 
well and it oscillates about a minimum point of the 
well .  If ,  we define Width of the Shock (WS) as the length of 
the one perfect oscillation ,  then it can be computed by anal-
ogy with Harmonic oscillator motion .  We will present this 
analytic computation here ,  and we will see the WS can be 
expressed as a function Alfe'vn Mach number M . 

 It must be noted that this possibility (i .e .  expressing WS 
as continues function) is because of the analytical form of 
the Sagdeev potential .  There is not such possibility when the 
analytic form is not available .  But ,  we can still compute nu-
merically WS in each point (a point-like diagram and not as 
a continues curve) which has been presented in our previous 
work [15]1.  The manuscript is organized as follows :  Basic 
equations will be introduced in the next section .  The main 
goal of the work (WS as continues function of Mach num-
ber) is achieved in section 3 .  The remarks and results are 
summarized in concluding section .  

 2. BASIC EQUATIONS AND PSEUDO--POTENTIAL 

 Consider a cold pair (electron-positron) plasma   which in-
cludes a background constant magnetic field2.  It is assumed 

                                                 
1 In this reference ,  WS is called as shock wavelength. 
2 Such plasmas has been studied in a number of works ,  e .g . [16] and   our conventions 
and frame with the basic equations of this section are extracted from the reference.  
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that waves propagate along the x-axis of a reference   frame 
and the static magnetic field is in the x-z plane ,  i . e.   

B
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n refers to the number densities of the   positrons 

( j = i) and of the electrons 
 

j = e( ) .  The vectorial quantity 
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well’s equations  

   

e
x

E

x
+

B

t
= 0 , (3) 

   
e

x

B

x
=

1

c
2

E

t
+ μ

0
e(n

i
v

i
n

e
v

e
)  (4) 

   
0

E
x

x
= e(n

i
n

e
).  (5) 

 It is a common choice to consider the total electric and 

magnetic fields as 
   
E = (0, E

y
,0) and 

   
B = (B

x0
,0, B

z
)  thus ,  the 

magnetic component 
 
B

z
 can be considered as the only vari-

able component in description of the plasma dynamics . 

 The nonlinear stationary structures allow the change of 

variable ,  namely 
 

= x Mt where  M is the Mach num-

ber .  In that context ,  the motion equation (resulted from the 
above equations) for the normalized magnetic field 
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where 
  

(b) is the Sagdeev(pseudo)-potential and b defined 

as pseudo-particle .  By the first integration of (6)  we will 
have the   first energy integral  
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 where the Sagdeev potential is given by 
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 To find out the WS later ,  we must calculate   two follow-
ing derivatives by (8) ,  that is  
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2.1. Solitary Waves Solution and Mach   Number Allowed 
Values 

  It is easily to show that the values assigned   by the Mach 
number should be confined to the interval  where the positive 
(negative) sign corresponds to the positive (negative) soli-
ton3. 

 Inequality (11) ensures the existence of the positive soli-
ton ,  if a negative soliton exists ,  but the inverse is not 

true .  Indeed ,  there is a critical angle 
  c

= 30
° so that for 

<
c

 ,  we will have both of type solitons ,  but for >
c

there is only positive soliton .  

  
1< M

2 2(1± sin ).  (11) 

3. WS AS FUNCTION OF M 

 Energy integral (7) can be interpreted as energy condition  

 for a virtual particle of unit mass in a conservative   field .  In 
fact ,  in the case of solitary waves pseudo-particle motion is 
restricted to the potential well which is an allowed part of the 
potential curve .  The potential curves corresponding to 
Sagdeev potential (8) ,  are shown in Figs. (1-3) (right) for 

some spicific values of   M
2 and  .  A quick view on these 

figures   reveals that pseudo--particle enters   the well from the 
left and the it goes   to right side of the well .  Due to the ener-
gy   conservation ,  in a first point at which potential vanish-
es ,  it must   be stopped and then returned to the entrance 
point .  Thus ,  it makes single transition between two points 
and this is nothing but a soliton or shock wave ,  which is 

                                                 
3 The inequality (11) comes from the condition for existence of the (positive and nega-
tive) solitons. 
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propagated in the medium as a   potential disturbance .  But in 
the case of small dissipation   of energy (17),  the pseudo--
particle will never return to the   entrance point and is trapped 
inside the potential well and will  oscillate about a minimum 
point bm. Each oscillation produces a   shock wave ,  and hence 
we have a shock train .  This situation is analogous to  

 Harmonic oscillation of a real particle which   can also be 
deduced by comparison between Eq. (6) and the familiar 
motion equation  

  
m
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2
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dt
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dx
.  
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 Furthermore ,  for a real particle in a potential well ,  the 
angular frequency of periodic motion (around a minimum 
point 

m
x ) is given by the relation , 
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 A little dimensional   analysis clears that in our plasma 
system the analogous   quantity to the angular frequency  

,  is the   wave number 
 
k

s
whose inverse is in proportion to 

WS which after here is denoted by 
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 whit 
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 Therefore ,  analogous formula (to Eq. 12) also holds for the 
shock wave number which by above correspondences can be 
written as  
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 Now ,  we are prepared to calculate 
 s

 by the latter equa-

tion with the Sagdeev potential (8) .  But ,  first of all ,  we must 
obtain minimum point bm and this is done by vanishing the 
first derivative (9) ,  leading to the following cubic equation in 
b 
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Fig. (1).  Left :  Plot of the 
 s

 versus  M  Right :  (pseudo) potential curves versus b for   M
2 =1.2 ,  1.4 as = 0

° . 

 

 

Fig. (2).  Left :  Plots of the 
 s

versus  M corresponding to the ± soliton ,  + (red) and - (blue).  Right :  Potential curves versus  b  for  

M
2 =1.3,  1.43 as  = 10

° . 
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where 
0

 is a fixed value of the propagation angle  .  In 

general ,  Eq. (14) can't be solved exactly ,  but fortunately ,  we  

 know from theory of cubic equations ,  if one of cubic roots is 
known ,  other roots of the cubic equation can be ob-
tained .  Then ,  knowing the one extremum (maximum) of 

  
(b) at the point b = sin

0

4 Eq. (14) is reduced to the fol-

lowing quadratic equation  
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where one must note that the expressions under the radical 
sign in the latter equation is always   positive and hence ,    
Eq. (15) has always two real roots which are minimum 
points corresponding to the ± solitons .  To obtain the wave 
number (13) ,  we substitute (16) into the second derivative 
(10) and thus we will   have ,  not a very simple relation equa-
tion : 
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 Having the above wave number ,  we can obtain 
 s

as 
function of Mach number by  
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where we consider Eqs. (17) and (18) for the following fixed 

values 
0

= 0
°
,10

°
,  90

° . 

                                                 
4 Note that the necessary condition for soliton type solution is (sin ) = (sin ) = 0  

  For  = 0
°
,   Eq. (17) and inequality (11) become5 
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substituting this equation into Eq. (18) ,  we get  
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 Fig. (1) (left) shows the function (20) versus Mach num-
ber ,  it represents a monotonic decreasing function which 
could be explained based on potential curves (Fig. 1-right) : 

 Fig. (1) (right) shows depth of the potential well increas-
es as the Mach number increases .  On the other hand ,  the 
deeper wells get shorter length in the round trip of pseudo--

particle and this is nothing but the shorter width 
s

 (Fig. 1-

left). 
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 ,   Eq. (17) becomes  
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which the signs ±  are corresponding to ± solitons .  Similar 
to the previous case ,  the functions 

s
become  
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 which inequality (11) imposes that 

                                                 
5 In this case ,  each of both ± solitons exist ,  but with the same (squared) wave numbers 

(19). 
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1< M
2 2.346 or 1< M 1.531 postivesoliton

1< M
2 1.645 or 1< M 1.286 negativesoliton.

 (23) 

 The two functions (22) are plotted in Fig. (2) (left) which 
again represent decreasing functions ,  but there are two main 
differences between them : 

 First ,  in the limit   M 1 ,  the negative soliton (blue) plot 
tends to a finite value while the positive one (red) is un-
bounded .  The   reason for this can be explained in what fol-
lows : 

 Fig. (2) (right) shows when the Mach number decreases 
the well potential (corresponding to the positive soliton) 
tends to the horizontal axis (b) (contrary to the negative soli-

tons) and this in turn causes the length of the round trip (
 s

) 

to grow unbounded . 

 Second ,  the graph corresponding to negative soliton is 
damped faster than to the positive one .  This is expected ac-
cording to physics ,  because according to (Fig. 2-right) ,  the 
potential well corresponding to negative soliton is deeper 
than the positive one and as a result ,  produced shock by the 

negative soliton has shorter 
s
. 

 In the case = 90
°
,  Eq. (17) and inequality (11) read6
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which is graphed in Fig. (3) (left) .  The physical reason for 
decreasing 

 s
is the same as two investigated previous cases . 

 At the end of this section ,  we note that ,  the plots with 

0
c

= 30
°

 
are qualitatively similar to plot for 

 = 10
°
,   namely there are two 

s
functions corresponding to 

                                                 
6 In this case ,  there is only a single positive soliton. 

both ±  solitons .  Also ,  the plot with 
 

>
c

are qualitatively 

similar to plot for  = 90
° ,  namely there is only one 

s
func-

tion corresponding to positive solitons .  These plots differ 
with each other quantitatively and this is what will be dis-
cussed in below . 

4. PLOTS CHANGES VERSUS ANGLE CHANGES 

 So far ,  we showed that ,  for a fixed value of propagation 

angle 
 0

 ,  the width of the shocks are functions of  M .  The 

graphs of functions were monotonic descending ones so that 
each graph has its own slope (decreasing rate) .  For a better 
comparison ,  it is appropriate to consider the change in 
graphs versus the angle changes .  The comparison between 
decreasing rates is more viewable when the graphs are pre-
sented all in one illustration .  This is done in (Fig. 4) for posi-
tive (left) and negative (right) solitons .  In the case of positive 

solitons ,  the corresponding 
s
 decreases more slowly whit 

increasing angle .  Geometrically ,  it means that the graph with 
large amounts of propagation angle has larger slope at any 
point .  This situation is reversed in the case of negative soli-
tons as shown in the Fig. (4) (right) . 

CONCLUSION 

 We focus on width of the shock 
 s

 in a pair plasma with 

a background constant magnetic field .  An electromagnetic 
wave is propagated in the pair plasma with propagation an-
gle measured from the background field .  The large ampli-

tude solitary waves propagate in plasma which is described 
by Sagdeev (pseudo)-potential .  The only dynamical variable 
is normalized magnetic component of the wave which is 
considered as pseudo-particle .  Shock wave (in the medium) 
is produced by oscillations of pseudo--particle (in potential 

well) .  For a given value of propagation angle 
 0

 ,  width of 

the shock 
s
is a function of the Mach number $M$ which is 

bounded below by unity and bounded above by the value 
depending on the propagation angle .  All of the functions 

 

Fig. (3).  Left :  Plot of the 
 s

function versus M  .  Right:(pseudo) potential curves versus b for M
2 =1.2 ,  1.4 as  = 90

° . 

1.0 1.2 1.4 1.6 1.8 2.0
M

10

20

30

40

50
Λs

M 2 � 1.4M 2 � 1.2

0.9 1.0 1.1 1.2 1.3 1.4
b

�0.008

�0.006

�0.004

�0.002

0.002

0.004

Ψ�b�



204    The Open Plasma Physics Journal, 2014, Volume 7 Malekolkalami and Mohammadi 

plots (
 s

versus the Mach number) have a main and common 

feature which is monotonic rapidly decreasing charac-

ter .  There are also other features about 
s
plots ,  said in be-

low : 

 1 -  For 
0

<
c
and the limiting case   M 1 ,  width of the 

shock corresponding to positive soliton is unbounded while 
the negative one is bounded . 

 2- Since ,  width of the shock 
 s

is the length of a perfect 
sweep of pseudo--particle (in the potential well) and poten-
tial wells corresponding to the negative solitons are deeper 
than the positive one ,  therefore ,  generated shock by the posi-
tive solitons has a greater width . 

 3 -  In the case of positive (negative) solitons ,  width of the 

shock corresponding to smaller (larger) values of 
 0

 ,  is de-

creased more rapidly . 
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Fig. (4).  Comparison between the decreasing rate for 
 s

 plots as propagation angle changes ,  positive solitons (left) and negative solitons 

(right). 
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