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Abstract:

Background:

In natural conditions, tropical plants are adapted to different ecological niches that can be associated to soil microorganisms which
play a key role in nutrient cycling like Arbuscular mycorrhiza (AM), phosphate solubilizing bacteria (PSB) and/or nitrogen fixing
rhizobia.

Methods:

We  report  a  survey  of  the  presence  in  a  Trachypogon  savanna  located  at  Estación  Experimental  La  Iguana  (EELI)  in  Central
Venezuela, of some beneficial plant-microorganism associations. In this savanna, plants present a high AM symbiosis affinity. The
high mycorrhization and the presence of potential PSB suggest a synergic effect in plant P-uptake.

Results:

After screening the rhizospheres of 25 plant species from the zone, we could isolate a high proportion of potential PSB in relation to
the total bacteria number from the rhizospheres of Centrosema venosum and Galactia jussiaeana.

Conclusion:

Therefore,  the  presence  of  potential  PSB in  the  rhizosphere  of  those  species  constitutes  an  important  finding to  discover  novel
biofertilizers for crop plants.
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1. INTRODUCTION

In Venezuela, savanna ecosystems occupy 260.000 km2 (about 29% of the territory), located on dystrophic and well
drained soils dominated by grasses such as Trachypogon plumosus Ness, locally known as Trachypogon savannas [1].
The dominant grass, Trachypogon, is characterized by its low productivity, digestibility and palatability values, so the
genus seems to be well adapted to acid and nutrient-depleted soils, particularly in nitrogen and phosphorus [2 - 5].

Savanna soils are frequently burnt as a common agriculture practice, and this kind of management have contributed
to accelerate carbon and nitrogen losses in the soil [6, 7]. Moreover, under increasing acidity, that characterizes the
well-developed savanna soils, soil exchangeable aluminum (Al+3) tends to increase to toxic levels with a concomitant
deficiency in available  forms of  phosphorus [8, 9]. Therefore,  when  savanna ecosystems are transformed in intensive
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agricultural  lands,  large  amount  of  soluble  and  expensive  P-fertilizers  must  be  quenched  by  the  high  P-sorption
capacities of savanna soils.

In  natural  conditions,  most  of  the  tropical  plants  are  adapted  to  different  ecological  niches  associated  to  soil
microorganisms such as Arbuscular mycorrhiza-AM [10,11], phosphate solubilizing bacteria (PSB) [12] and symbiotic
nitrogen fixing bacteria, as rhizobia [13], which can play a key role in nutrient cycling and in the protection of the plant
to environmental stress.

The  diversity  and  abundance  of  microorganisms,  plant  and  pedofauna  influence  the  diverse  functions  of  the
ecosystems such as soil nutrient cycling (nitrogen, phosphorus and carbon). The interaction between the specific host
and the composition of the microbial communities might be affected by the root exudates [14], so the rhizosphere can
be considered as an important domain to attract beneficial microorganisms nevertheless the exact role of the organisms
are not yet fully understood [15].

Some soil microorganisms have a great potential to contribute to amend soil fertility problems and consequently
they might be considered as promising biofertilizers [16]. Thus, the potential use of biofertilizers in tropical savannas
with low nutritional levels are starting to be currently assayed in Venezuelan savannas as a convenient technique to
improve plant nutrition and reduce the application of high commercial fertilizer doses [17 - 20].

In this contribution, we report a survey of the presence of some beneficial plant-microorganism associations in a
typical Trachypogon savanna located in Central Venezuela, with particular emphasis on the populations of Arbuscular
mycorrhiza, symbiotic N-fixing bacteria and free-living microorganisms that stimulate plant growth through phosphate
solubilization.  This  preliminary  report  on  beneficial  microorganisms  will  be  the  basis  to  follow  up  more  detailed
research on specific treatments of savanna´s soils with potential native biofertilizers.

2. MATERIALS AND METHODS

2.1. Study Site

The study was carried out at Estación Experimental La Iguana (EELI), located in Guárico State in Northeastern
Venezuela (8°25’N and 65°24’W). EELI is under the influence area of the Orinoco River watershed and corresponds to
representative savannas of the Venezuelan Central Plains. These savannas are dominated by T. plumosus (Poaceae) with
the presence of isolated trees and shrubs such as Curatella americana (Dellineaceae), Copernicia tectorum (Palmae),
Byrsonima crassifolia (Malpigheaceae) and Bowdichia virgilioides (Papiloneaceae). The climate is markedly tropical
isothermic, with a mean annual precipitation of 1342 mm, most of which falls during the rainy season (May to August),
and a mean annual temperature of 27.9°C. EELI has different edaphic substrates in age and genesis [21].

2.2. Soil Characterization

In order to characterize the soil of the experimental site, in an area of 3 ha, samples from the surface (0-14 cm) and
subsoil (14-28 cm) were collected in the month of July (middle of the rainy season). Within each depth, one composite
mixed sample was taken from at  least  6 cores (15 cm depth of sampling,  and 9.5 of internal diameter)  collected at
random and then sieved through 2-mm mesh. After drying, duplicate samples were analyzed for soil pH (measured in a
ratio 1:1 soil: water), organic carbon content [22], total nitrogen (micro Kjeldahl method) according to Anderson and
Ingram [23]. Available phosphorus was extracted according to Olsen [24] and phosphorus in the extracts determined
using the Murphy and Riley method [25]; exchangeable bases were determined by atomic absorption.

2.3. Experimental Design

At the experimental site at EELI, an area of 260 m x77 m was located; within it three 65 m equidistant transects
were delimitated (Fig. 1). In the transects, at both sides, seven quadrats of 1 m2 were set up, 10 m apart from each other.
At the middle of the rainy season (July), sampling was undertaken in the quadrats by collecting all the different plant
species and the accompanying soil around the root (rhizospheric soil) inside the 21 chosen plots.

2.4. Sampling of Rhizospheric Soils and Root Systems

Rhizospheric soils and roots from each plant species located in the 21 plots were collected from the root zone (0-20
cm) by previously removing plant debris from the surface of the soil. Triplicate samples (1 g) of this rhizospheric soil
located at 1 cm from the roots were used to isolate phosphate-solubilizing bacteria according to Varma [26]. Therefore,
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microorganisms  were  characterized  by  sampling  the  rhizospheric  soil  of  each  one  of  the  plant  species  collected
following Barillot et al. [27]. Plant species were collected and preserved for later identification following Blackwelder
[28].

Fig. (1). Scheme of the experimental plot with transects and quadrats sampled.

2.5. AM Staining and Quantification

The whole radical system was extracted to avoid mechanical damage or losses of fine roots. Roots were preserved in
a mixture containing 10 mL of formaldehyde, 5 mL of acetic acid, 50 mL of alcohol (95-96%) and 35 mL of distilled
water. In order to be stained, roots were firstly, clarified in 10% KOH, washed with tap water, submerged in HCl 1N for
15-20 min, and then finally heated to dye with trypan blue 0.05% for 20 min [29]. AM colonization was quantified
using the grid intersect method and expressed as percentage of colonized root length [30]. In the case of the roots of
legumes, rhizobial nodules were carefully removed, counted and kept in silicagel vials [31].

2.6. Identification and Frequency of Plant Species

All the plant samples collected in the experimental area were identified by using the corresponding taxonomy keys
and compared with  the  collections  already deposited  at  the  Botanical  Garden Herbarium,  Caracas,  Venezuela.  The
frequency of the different species and their families were established by the following formula:

Frequency (f): 

ji the number of quadrats where the species appear

k total number of quadrats

2.7. Determinations of AM Infective Potential

AM propagules  in  the  native  soil  were  quantified  using  the  most  probable  number  (MPN)  method  [32,  33].  A
composite mixed sample of, at least, 5 subsamples were collected at random from the experimental area to obtain five
kg of EELL soil (0-20 cm); it was sieved (< 1 cm) and steam sterilized for 1 h on 3 consecutive days. Ten-fold serial
dilutions (1x up to a 10-9 dilution) of sterile/non-sterile soil were placed, by quintuplicates, in 250 g pots. A surface
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sterilized seed of Sorghum vulgare (Poaceae) was planted at a 2 cm depth in each pot and allowed to grow for 40 days.
Sorghum roots were separated, washed and preserved as previously described for rhizospheric sampling to apply the
trypan blue staining method [29] to observe and register the presence or absence of AM structures [32, 33]. Data are
expressed as the number of infective AM propagules in 100 g of dry soil; confidence limits were assigned according to
Fisher and Yates [34].

2.8. AM Root Colonization and Glomeromycota Spores Number

The roots of each one of the plant species collected at the experimental site were dyed [29] and the root colonization
was quantified using the grid intersect method [30]. In the case of the plants detected with a higher frequency (>0.50)
and with a higher percent of infected root length (>50%) Glomeromycota fungal spores were counted. For technical
reasons the spore number associated with each plant species was assessed by wet sieving and decanting [35] in only one
rhizospheric soil sample and expressed as the number of viable AM spores per g of dry soil.

2.9. Isolation of Phosphate Solubilizing Bacteria (PSB)

The presence of calcium phosphate (CaHPO4) solubilizing bacteria in the rhizospheric soils was determined in Petri
dishes by using the method of serial dilutions from 1 g of rhizospheric soil on two selective media; YED (0.5% yeast
extract, 1% glucose, 0.2% calcium phosphate and 2% agar), according to Thomas et al. [36], and PS (sucrose 0.5%,
0.05% magnesium sulphate,  0.05% potassium chloride,  0.1% potassium nitrate,  calcium phosphate  0.3% and 1.5%
agar), according to Wenzel et al. [37], in both media 30 mg/L of cycloheximide was added in order to minimize the
growth of other contaminant microbial groups, such as yeasts and fungi.

The plates were incubated between 4 and 15 days up to the emergence of a clear halo around the colony in the case
of YED, whereas in the PS medium, a change of color from blue to yellow indicates the acidification and solubilization
of  phosphates.  The  total  number  of  colony  forming  units  was  quantified  per  gram  of  rhizospheric  soil  (cfu/g
rhizospheric soil), and the proportion of phosphate solubilizers, with respect to the total number of bacterial colonies
present was calculated.

3. RESULTS

3.1. General Soil Characteristics and Plant Community of the Experimental Area

3.1.1. Soil Characteristics

The main physical and chemical characteristics of the soil in the experimental area are presented in Table 1. The soil
is a Typic Plinthustuls, sand loamy, kaolinitic, isohyperthemic, with low natural fertility and organic matter, and acidic
pH (4.15-4.60).

Table 1. Main physical and chemical characteristics of the soil in the experimental area.

Soil Depth pH Inorg. N P K Ca Mg Na Exchan. Al CEC Organic Matter Texture
(cm) (mg.kg-1) (cmol+.kg-1) %
0-14 4.60 20.4 7.43 44.0 61.6 28.4 15.0 0.39 3.92 1.33 sL
14-28 4.15 16.3 4.86 30.8 57.2 37.2 20.0 0.56 4.22 1.23 sL

sL= sandy Loam; Inorg. N= inorganic N; Exchan. Al = exchangeable Al; CEC= Cation Exchange Capacity

3.1.2. Identification and Frequency of Plant Species

Dominant species in the experimental area (e.g. with a presence above 75%) are: Trachypogon sp., Fimbristylis sp.,
Hyptis  sp.,  Rynchospora  barbata,  Mimosa  pudica,  Cassia  cultrifolia.  In  the  sampling,  25  species  distributed  in  10
families were found (Table 2) where the Poaceae, Ciperaceae and Leguminosae are the most abundant families.

3.1.3. AM Infective Potential in Savanna Soils

The  number  of  AM  infective  propagules  in  the  serial  dilutions  assay  was  of  4571  in  100  g  of  soil  (intervals
2141-9765  at  95% confidence).  This  represents  the  presence  of  AM propagules  like  spores,  Glomeromycota  fungi
mycelium and AM colonized rootlets that potentially can colonize new roots in soil.
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Table 2. Frequency of native plant species in the experimental area.

Species F
Trachypogon sp. 1.000
Fimbristylis sp. 0.905

Hyptis sp. 0.810
Rynchospora barbata 0.810

Mimosa pudica 0.810
Cassia cultrifolia 0.762
Hyptis suaveolens 0.762

Rynchospora cephalotes 0.762
Borreria sp. 0.762
Panicum sp. 0.762
Paspalum sp. 0.714

Polygala glochidiata 0.619
Diodia teres 0.619

Aeschynomene sp. 0.619
Desmodium sp. 0.524

Indigosfera pascuorum 0.476
Annona sp. 0.381

Egletes florida 0.381
Sida sp. 0.381

Stylosanthes sp. 0.238
Galactia jussiaeana 0.190
Ruellia geminiflora 0.095
Phaseolus vulgaris 0.048

Centrosema venosum 0.048

3.1.4. Arbuscular Mycorrhizae Colonization (AM)

The levels of  arbuscular mycorrhizae root  colonization found allowed us to establish two categories among the
species:  a  group  with  a  high  percentage  of  AM  colonization  (≥  50%)  (Table  3)  and  another  with  an  intermediate
percentage (30-50%) (Table 4). The Fabaceous-leguminous Desmodium sp. shows the highest colonization percentage
followed by Hyptis suaveolens of the Lamiaceae family, whereas the leguminous Phaseolus vulgaris also shows a high
mycorrhizal colonization percentage (Table 3).

Table 3. Plant species of the experimental area with a % AM root colonization of ≥ 50%.

Species With % AM Root Colonization ≥ 50%. % AM Root Colonization
Desmodium sp. 79.0

Hyptis suaveolens 76.8
Phaseolus vulgaris 70.0
Trachypogon sp. 68.0

Hyptis sp. 63.3
Ruellia geminiflora 61.0

Annona sp. 60.0
Rynchospora cephalotes 60.0

Polygala glochidiata 57.9
Diodia teres 57.1
Stylosanthes 55.7
Borreria sp. 55.9

Indigosfera pascuorum 54.7
Galactia jussiaeana 54.0

Egletes florida 53.4
Paspalum sp. 53.3

Rynchospora barbata 51.0
Centrosema venosum 51.0



128   The Open Plant Science Journal , 2017, Volume 10 Mora et al.

Within the Poaceae,  Trachypogon  sp.  presents  the higher  degree of  colonization (68%).  In  the second category
(30-50% root colonization), dominate the legumes Cassia cultrifolia and Mimosa pudica (Table 4).

Table 4. Plant species of the experimental area with a % AM root colonization of 30-50%.

Species With Intermediate % AM Root Colonization (30-50%) % AM Root Colonization
Cassia cultrifolia 49.3
Mimosa pudica 48.8
Fimbristylis sp. 47.0

Panicum sp. 35.8
Sida sp. 32.0

Aeschynomene sp. 32.0

3.1.5. Rhizobial Symbiosis

Legumes represented a high proportion of the plant species collected in the experimental area (43.5%); most of
them were individuals of Cassia cultrifolia and Mimosa pudica. In total 10 leguminous species were collected, from
which,  50%  showed  the  presence  of  nodules  located  in  the  lateral  roots.  Nodulated  species  were:  Indigosfera
pascuorum and Stylosanthes sp. with the highest number of nodules followed by Cassia cultrifolia and Desmodium
intortuo and Mimosa pudica. 50% of the legumes collected presented double symbiosis, Arbuscular mycorrhiza and
rhizobia (Fig. 2).

3.1.6. Evaluation of Glomeromycota Fungi Spores Number Present in the Rhizosphere of Native Plants

Quantification of Glomeromycota spore number in the rhizospheric soil (soil around the root) was performed only
in the plant species, which were detected in a higher frequency (> 0.50) and with % AM root colonization higher than
50%. The number of spores ranged from 100 to 1700 per 100 g soil (Fig. 3).

Fig. (2). Percentage of AM root colonization and nodulation within leguminous.

3.1.7. Phosphate Solubilizing Bacteria (PSB)

The isolation of  PSB was done in  a  total  of  25 rhizospheres  corresponding to  the  most  important  plant  species
present  in  the  experimental  area.  From those rhizospheres,  8  were positive  with  the presence of  potential  PSB and
correspond  to  the  following  species:  Centrosema  venosum,  Galactia  jussiaeana,  Fimbristylis  sp.,  Mimosa  pudica,
Ruellia  geminiflora,  Aeschynomene  sp.,  Trachypogon  sp.  and  Indigosphera  pascuorum.  When  analysing  the  total
amount of colony forming units per Petri dish with respect to the PSB we found that Centrosema venosum and Galactia
jussiaeana present a high proportion of PSB (75% and 43%, respectively).
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4. DISCUSSION

4.1. N-Fixation and Rhizobium-Legume Symbiosis

African  and  South  American  savannas  are  characterized  by  their  great  diversity  of  herbaceous  and  woody
leguminous  species  and  the  proportion  of  leguminous  tends  to  increase  under  moderate  and  over  grazing  [6].  In
Orinoco´s savannas, few studies have done to document nitrogen fixation by native legumes under natural conditions,
although evidence through natural  abundance of  15N and relative  abundance of  ureids  suggest  N-fixation for  a  few
species [38, 39].

In the experimental area at ELLI the legumes represented almost half of the plant species collected that account for
a good N-fixing plant presence; most of them were individuals of Cassia cultrifolia and Mimosa pudica. In total, ten
leguminous were  collected,  from which,  50% showed the  presence of  nodules;  Aristeguieta  [40]  reported also  that
Poaceae  and  Leguminosae  were  the  more  abundant  families  in  a  savanna  located  in  Central,  Venezuela  with  a
proportion of 27 and 26%, respectively. Thus, nitrogen fixation by different mechanisms existing in savannas appears as
an  option  to  supply  N  to  this  ecosystem  [6,7,41,42].  Consequently,  under  natural  conditions  the  studied  savanna
presents a microbial community which might be metabolically adapted to different mechanisms able to profit from the
scarce sources of N and P [2,3,15,43].

Although,  50%  of  the  legumes  presented  nodules  and  AM  (Fig.  2),  the  lower  nodulation  reported,  may  be  a
consequence of the acidity and low fertility of the ultisols since rhizobia do not growth efficiently in acid soils [6,7],
whereas, on the contrary, mycorrhiza are more adapted to those environments [11, 43 - 45]. Moreover, nodulation was
lower, even though sampling was performed at the peak of the rainy season (July), it is well established that nodulation
and nodule numbers in savannas are favoured during the wet season [13,46].

Fig. (3). AM root colonization and glomeromycota spore number in rhizosperic soil's of the native species.

4.2. P-Uptake and Mycorrhizal Associations

Concerning the parameters related to mycorrhizal association, AM associations are relevant in this savanna soil,
since the native plants present a high symbiosis affinity. Moreover, as expected, a good AM colonization was found in
an important number of collected plants. As low fertility is reported for this soil by classical standard chemical methods
[47, 48], the presence of phosphate solubilizer organisms and rhizobia are considered as good fertility indicators, which,
in turn, can be considered an indication of “good soil quality”. In addition, the number of Glomeromycota fungi spores
(100-1700 in 100 g soil) reported for the experimental area can be considered high for soils under natural conditions. In
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fact,  López-Gutiérrez et  al.  [3]  reported values between 80 and 290 spores in 100 g soil  in a  nearby area,  whereas
Lovera and Cuenca [49] presented 120 spores in 100 g soil during the dry season in a natural savanna located in Gran
Sabana, Venezuela. Similar low results (0-196 in 100 g soil) have been presented by Collins et al. [50] in an evaluation
of AM in soybean and maize, and by Douds et al. [51] for cropping systems (wheat, soybean and maize) under different
tillage managements. However, a higher value was also reported (1000 spores in 100 g dry soil) by Howeler et al. [52]
for introduced Brachiaria decumbens. In conclusion, although under controlled conditions spore populations are high,
the results presented in this survey indicate also a good establishment of Glomeromycota fungal populations in savanna
under acid conditions.

In some cases, a good correlation has been reported between the number of spores of Glomeromycota fungi in the
rhizosphere and the percentage of colonized root length [52 - 54]. In the experiments here presented such association
was found only in the case of the Trachypogon sp., which showed a high % CRL and also an important spore number
(Fig.  3  and  Table  3),  no  doubt  those  traits  account  for  the  remarkable  adaptation  of  this  species  in  the  unfertile
Orinoco’s savannas [2,3,5]. The density of spores depends on climatic conditions, on the physiology of the plant and the
phosphorus availability at the moment of collection [55, 56].

The number of AM infective propagules measured was of 4571 in 100 g of dry soil (intervals 2141 – 9765 at 95%
confidence).  These  values  were  six  times  higher  than  those  reported  for  other  natural  savannas  located  near  the
experimental area [57]; however they are similar to the values presented by Toro and Sieverding [58] in Colombian
savannas under management, which favor AM potentiality, those results suggest that the studied savanna has enough
AM propagules to colonize native plant species. In addition, the presence of potential PSB and high root colonization
by AM in this savanna soil suggest that a synergic effect might work in the plant uptake of phosphorus, as previously
reported  by  Barea  et  al.  [59].  If  that  constitutes  an  important  nutritional  mechanism  of  biological  origin  in  this
dystrophic soil [5, 60, 61], it deserves further research. Moreover, we have found that the rhizosphere of Centrosema
venosum  and  Galactia  jussiaeana  presents  a  high  proportion  of  PSB,  specifically  for  Burkholderia  cepacia,  which
constitutes an important material to look for potential biofertilizers; an information that is presented in a forthcoming
publication [62].

Fig. (4). Percentage of colony forming unit (cfu) of solubilizing bacteria respect to total bacterial counts (cfu ToB) in rhizopheric soil
of field plants.
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CONCLUSION

In a descriptive study of the soil microbial community in a typical Trachypogon savanna located in Central Llanos,
Venezuela,  we  have  found  that  AM associations  are  relevant  in  this  savanna  soil,  since  plants  present  a  high  AM
symbiosis affinity. The isolation of PSB was performed in a total of 25 rhizospheres of the plant species present in the
experimental area. From those rhizospheres, 8 were positive to the presence of potential PSB. When analyzing the total
amount of bacteria colony forming units respect the PSB we found that the rhizosphere of Centrosema venosum and
Galactia jussiaeana present a high proportion of PSB, therefore the presence of PSB in the rhizosphere of those species
constitutes an important material to look for potential biofertilizers.
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