
 The Open Software Engineering Journal, 2009, 3, 15-34 15

 1874-107X/09 2009 Bentham Open

Open Access

Survey of Software Inspection Research

Sami Kollanus* and Jussi Koskinen*

Department of Computer Science and Information Systems, P.O. Box 35 (Agora), FI-40014 University of Jyväskylä,

Finland

Abstract: There is a great need to assure and improve the reliability and quality of software. Software inspections were

introduced over 30 years ago as an answer for this need and they have inspired a lot of research covering many different

kinds of aspects. There is a need for an up-to-date survey revealing the current state and the overall evolution of the most

prominent research on the area. This paper presents a comprehensive survey focusing on the most relevant 16 interna-

tional high-impact scientific publication series. There are 153 articles included in the survey covering both technical and

management aspects. The main results include a description of the research trends during 1980-2008 and a description of

the main results of the included studies. The description is organized based on a taxonomy of the inspection research as

having emerged based on the survey. At general level the surveyed research provides clear evidence that inspections gen-

erally benefit software development and quality assurance. There are several proposed theoretical variations for the in-

spection process but also many empirical studies. Although the conducted research is relatively scattered, proper science-

based understanding about some of the most studied issues has been achieved. Our main conclusion is that conducting

empirical research needs to be continued in order to validate the effects of the different kinds of proposed theoretical con-

structs in practice. Empirical studies are needed especially in order to better understand the proper implementation and the

actual impacts of applying inspections in different kinds of industrial and organizational settings.

Keywords: Software inspections, software reviews, software quality assurance, literature survey.

1. INTRODUCTION

There is a great need to assure and improve the reliability
and quality of software. It is claimed, for example, that 50-
60% of the effort involved in producing large software sys-
tems is devoted to quality assessment activities [1]. The per-
centage may even be significantly higher for life-critical
software systems. Quality assurance activities include testing
but also other techniques may be used. Most importantly,
software inspections enable early quality assurance prior to
testing.

Software inspections were originally introduced already
over 30 years ago by Fagan [2]. Inspection is a widely ac-
knowledged technique within the software engineering re-
search community. Several empirical studies have reported
great savings or improved effectiveness when using inspec-
tions [3-5] to support quality assurance in the studied spe-
cific research settings. The progress in effectively imple-
menting and using the different kinds of developed inspec-
tion techniques has, however, been relatively slow in prac-
tice.

Due to these reasons, it is important to review how the
research field has evolved and what the main advances have
been. There are also other significant related surveys on in-
spections [6-8], but they are partly out-dated or having limi-
tations in their scope.

*Address correspondence to these authors at the Department of Computer
Science and Information Systems, P.O. Box 35 (Agora), FI-40014 Univer-
sity of Jyväskylä, Finland; E-mails: sami.kollanus@jyu.fi, koskinen@jyu.fi

This paper presents the results of our survey of the soft-
ware inspection research published during 1980-2008. The
survey has comprehensively included 16 high-impact publi-
cation series on the general software engineering field, and
includes a total of 153 relevant articles.

This paper is organized as follows. Section 2 briefly in-

troduces the original inspection process as a background for
the treatment of the research field. The applied research
method is described in detail in section 3. Section 4 outlines
the general main results and the identified trends concerning
software inspection studies. That section also presents an
emergent taxonomy of the surveyed research. Sections 5-7
investigate the individual classes of the taxonomy; namely
technical view, management view, and other main topics.
These sections give more detailed information about the
most prominent branches of research and advancements re-
lated to each subclass. Section 8 presents some discussion
regarding the future of research on the field and section 9

summarizes the main conclusions of the survey. Full biblio-
graphic information of all of the articles included in the sur-
vey is provided in the reference list. Finally, Appendix 1
provides a complete classified citation list to the surveyed
articles.

2. SOFTWARE INSPECTIONS

Software inspections are used to increase the quality of
software, documents, and other artifacts produced during
software development. The original Fagan’s inspection proc-
ess [9] is relatively straight-forward and consists of the fol-

16 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

lowing phases as presented in Fig. (1): Planning, overview,
preparation, actual inspection, rework, and follow-up.

Planning means checking defined entry criteria and tak-
ing care of the practical arrangements like resources and the
location of the inspection meeting. Overview is a short meet-
ing for training the participants. Tasks and roles are assigned
in the meeting. The overview meeting is not a compulsory
part of the original process. The next phase is preparation
for the actual inspection meeting. Participants study and
learn individually the materials being inspected based on
their assigned roles. One of the key ideas in the inspection is
to assign different roles to the participants based on their
expertise. Fagan’s inspection team includes four different
roles: Moderator, designer, coder, and tester [2]. The mod-
erator leads the team and takes care of the practical arrange-
ments. The other roles represent the viewpoint of their exper-
tise in the process.

According to Fagan, defects are primarily found during
the actual inspection meeting, which focuses on going
through the materials with checklists and registering (log-
ging) the found defects. Many other researchers do not agree
with Fagan in this defect finding issue. Instead, they consis-
tently state that most of the defects are actually found al-
ready during the preparation phase. After the meeting the
author(s) rework the found defects. If necessary, another
round of inspection can be arranged after the rework. Fi-
nally, the moderator or the entire inspection team verifies the
changes as part of the follow-up phase.

The inspection process described here is the basis for
most of the inspection research discussed in this paper. Later
variations of the process have been relatively small. Some
authors, as stated, for example, in several handbooks includ-
ing [10-12], prefer to use slightly different terms for phases
or roles. However, the basics of the inspection process have
remained consistent over time.

3. RESEARCH METHOD

This section gives a description of the applied research
method and our research process. Brereton et al. [13] suggest
conducting systematic literature reviews (including surveys)
in the general context of software engineering. The system-
atic nature of the research process is generally important for
transparency and for being able to be aware of the potential
risks biasing the research setting. The risks are reduced, for
example, by following the general normative guidelines, as
suggested in [13] in form of a process model for reviews.

We feel that that model is one of the best for supporting
the organization of literature reviews and surveys. The
strong side of that model is that is provides a very detailed
process model for conducting research. However, it also has

some limitations; its use is rather elaborate and also report-
ing the surveys according to the model may take much space
as journal articles. In case of writing a survey whose research
questions are on a rather general level, all the details are nei-
ther relevant. The main intended focus area of that model has
been evidence-based research, which is widely applied, for
example, in medical research. The model consists of three
main phases: Plan review, conduct review, and document
review. These main phases in turn have multiple subphases.

Since we are not focusing on evidence-based research,
but our goal is to create a broader description of the research
field, we will apply that model here only as a general organ-
izing framework for conducting our literature survey. We do
not claim that this survey would be an exercise of strictly
following all the details of the model. The guidelines of the
model had to be somewhat adapted to our context. The adap-
tation has mainly meant giving relatively more emphasis and
details to the research activities which are relevant in this
context and giving less emphasis to those which are less
relevant.

Plan Review

This main phase incorporates most importantly specifica-
tion of the research questions, and developing and validating
a review protocol.

Specify Research Questions

The first subtask was to specify the research questions.
We basically wanted to gather information about how much

and what kind of research in general has been conducted

over an extended time period in order to reveal the state and

evolution of the research field. Reporting of those issues

consequently requires also developing or using some kind of

a taxonomy of the surveyed research. By gathering the in-

formation on trends also a view of the general body of

knowledge on the area. The elaboration and specification

phase of our research questions has been rather straightfor-

ward. The final research questions in their general form were

as follows. 1) What kinds of trends can be identified during

the studied time period in the inspection research? 2) How
the research conducted in this area can be classified? 3)

What is the general scientific body of knowledge of the

prominent studies in the area of software inspections? These

questions were later specified a bit further as described in the

oncoming subsections.

Develop Review Protocol

The review protocol guides conducting the research in a
systematic fashion. There were two team members; the
authors of this paper, participating to the survey. They each

Fig. (1). Fagan’s inspection process.

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 17

had their own role and they cross-read each other’s outcomes
as an internal quality check. The main reviewer developed
the initial protocol. We will here tell about our design
choices. The made decisions were also followed unless
stated otherwise in the following text. We first decided to
focus on software inspections and software reviews. We de-
cided to select only high impact publication series to the sur-
vey in order to focus on prominent research and to keep the
amount of the analyzed materials under control. We decided
that regarding the publication forums which will finally be
selected all the relevant articles will be included. Full cover-
age in this sense supports formation of a comprehensive
view of a large portion of the relevant research. Abstracts of
all of the articles to be included were decided to be read fully
through and the actual article contents at the level which was
needed in order to answer the set research questions reliably.
It was also decided that the solved research problem, applied
research method, and main results of all the articles to be
included in the survey, would be recorded.

Validate Review Protocol

The validation of the protocol is an internal task of the
research team. The review protocol is instrumental in gradu-
ally increasing the systematic nature of the survey and aim-
ing at quality control. In our case the significance of the sys-
tematic process has been acknowledged, it has been aimed
at, and use of the protocol has afterwards proven to be mean-
ingful for reaching the recommended objectives.

Conduct Review

This main phase includes many activities. The first and
the most important one is identifying the relevant research.
The other activities are selecting primary studies, assessing
study quality, extracting required data, and synthesizing the
data.

Identify Relevant Research

Due to the relatively great potential extent of the survey
this was the most elaborate and in that sense central sub-
phase. The initial core of the articles to be covered was based
on our earlier expertise on the area [14-17]. Next we system-
atically studied the references of those articles and listed the
journals in which the cited articles had been published. It
soon became obvious that there was too much potential ma-
terial to be included in the survey, if we did not somehow
limit the number of the included sources or their intended
scope.

There are currently over 360 scientific journals in the
general area of computer science (i.e. computing) which
have an impact factor and have been acknowledged by ISI
Web of Knowledge [18]. There are over 80 journals which
have been classified in ISI as software engineering journals.
However, despite the great amount of these kinds of jour-
nals, there are not many journals which are dedicated to the
core of software engineering as defined e.g. in SWEBOK
[19] and which are relevant for software inspections.

On the other hand, there are hundreds of annual scientific
conferences in the general area of computer science [20, 21].
DBLP [21] lists over 1100 conferences. There are also doz-

ens of conferences dealing specifically with the various as-
pects of software engineering.

Due to these reasons, we decided to conduct; as sug-
gested in [13], a systematic pre-review to get a general im-
pression of the volume of the conducted research and pub-
lished relevant articles. The processes of conducting the pre-
review and the actual review were very similar. The pre-
review gradually focused on the 15 main software engineer-
ing journals on the basis of having relatively high impact
factors as determined by [18]. The conferences to be consid-
ered were selected by going systematically through the con-
ference list of DBLP [21]. There were about 120 conferences
(i.e. about 10% of the DBLP conferences) which had some
identified software engineering connections. We further
noted that about 95% of these are such that they are accessi-
ble via the most important electronic article archives: IEEE
Xplore [22] or ACM Digital Library [23].

Next we determined the article inclusion criteria to be
used in the pre-review (and potentially and also actually)
also in the oncoming more detailed actual review. Most of
the authors of the inspection-related articles use the term
inspection, but some favor the more general term review,
even if they actually discuss about the same kind of process.
Therefore, it was decided to cover also all the papers, which
are related to peer reviews. Since the term inspection is
clearly dominant in the research area, we will consistently
use it in this article.

The covered time period had to be long enough to reveal
the existing research trends. After Fagan’s [2] original publi-
cation on inspections, more continuous research on the area
has not emerged before the 1980’s. Therefore the year 1980
seemed to be a good starting point, covering practically all of
the conducted research.

The pre-review for the conference articles was conducted
by using the search terms "software inspection" and "soft-
ware review" for the IEEE Xplore and the ACM Digital Li-
brary. The selection criteria were the appearance of either
one of these terms in the title and the range of the years
1980-2008.

Potential journals were scrutinized in detail. Their tables
of contents have been checked through completely for the
selected time period. Additionally, the search engines of the
respective publishers have been used as a double check.
Therefore, the reliability of the representativeness of the sur-
vey regarding its intended scope has been at least as good as
by using search engines alone. The way the relevance of the
individual articles was ensured was that all those papers,
which focused mainly on either software inspections or
software reviews and had produced new scientific results,
which are relevant in this context, were included.

The pre-reviews revealed 122 relevant journal articles
and 107 relevant conference articles. Since the pre-review
required going through about 120 conferences but only 15
journals, and yet there were more relevant journal articles, it
became clear that these journals are more relevant sources in
this sense. Journals typically have a significantly greater
impact on the research community. It is also quite common
that an extended or enhanced version of an important article
published earlier in some conference proceedings will later

18 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

appear in a journal. For these cases it suffices to cover the
later journal version in the survey to form a representative
view of the covered research themes.

Due to the reasons presented above, we finally decided to
focus on the identified main journals due to the otherwise too
great amount of potentially included studies. Nevertheless
we decided to include also ICSE (i.e. the annual Interna-
tional Conference on Software Engineering) since it is the
most influential of the general software engineering confer-
ences, accessible via both the IEEE Xplore and the ACM
Digital Library, and containing a notable amount of inspec-
tion-related articles. Based on the described process, we fi-
nally had the list of publication series later to be presented in
Table 1 for our actual survey. The process of the actual sur-
vey was basically the same as in the case of the pre-review,
but it delved deeper into the details of the articles on the se-
lected forums.

Select Primary Studies

We went through all the selected publication series dur-
ing the selected time period. First we used the available bib-

liographic information of the articles, their titles and ab-
stracts, to identify and list the relevant ones. Then full ver-

sions of the initially selected articles were purchased and
read. Abstracts of all of the included articles were read
through fully. Generally abstracts sufficed as a basis for se-
lecting the primary studies, since our research questions
were general in their nature. The article contents as such
have been read through at varying levels of details depend-
ing on the specific needs. About half of the articles were
such that they were read through practically completely.

The main essence of each reviewed article was first
summarized into one sentence. Additionally a summary of

some of the articles was written. Some extraneous informa-
tion was also gathered which was not used further. For ex-
ample, empirical studies were studied rather thoroughly.
Those articles which were best validated were studied fur-
ther. It was, for example, checked whether their validation
was based on views or functions of experts or students. Dur-
ing this phase we also finally determined the perimeters of
the survey and excluded some of the papers from the pre-
liminary article list. The related decisions were made unani-
mously by the members of the research team.

 The made selections are characterized and representative
examples of the excluded articles are given as follows. Some
of the articles clearly did not focus on inspections although
they partly discussed them among other issues. For example,
Shull et al. [24] discuss different reading techniques, which
have been regularly used also in inspection research, but the
focus is on program comprehension. Another similar exam-
ple is the paper by Chillarege et al. [25] which studies defect
classification. These kinds of studies clearly support inspec-
tion research to some degree. However, if we had included
these papers in our survey, we should have included also all
the literature representing techniques which could in princi-
ple be applied to inspections. That would have made the sur-
vey too elaborate, unfocused and large to be published as a
journal article. Additionally, several articles (e.g. [26]) dis-
cuss quality improvement on a general level, but they do not
cover software inspections on a detailed level.

Assess Study Quality

Assessing the quality of the primary studies can be used
as an additional criterion for their exclusion. We focused
exclusively on the articles published in high-impact publica-
tion series. Therefore, e.g. journal versions of the articles
were favored instead of the conference article versions, if

Table 1. The Number of the Inspection Related Papers in the Selected Publication Series During 1980-2008

Publication Series Publisher Studied Years N

IEEE Transactions on Software Engineering (TSE) IEEE 1980-2008 30

International Conference on Software Engineering (ICSE) ACM 1981-2008 26

IEEE Software IEEE 1984-2008 19

Journal of Systems and Software Elsevier 1980-2008 19

Empirical Software Engineering Springer 1996-2008 18

Information and Software Technology Elsevier 1987-2008 11

Software Testing, Verification and Reliability Wiley 1991-2008 9

Communications of the ACM ACM 1980-2008 5

Software Quality Journal Springer 1992-2008 4

IET Software IET 1988-2008 3

Software Process: Improvement and Practice Wiley 1995-2008 3

ACM Transactions on Software Engineering and Methodology (TOSEM) ACM 1992-2008 2

Software: Practice and Experience Wiley 1980-2008 2

Annals of Software Engineering Springer 1995-2002 1

International Journal of Software Engineering and Knowledge Engineering World Scientific 1991-2008 1

ACM Computing Surveys ACM 1980-2008 0

Total 153

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 19

there were both. Another example is different versions of the
same articles in several journals or magazines. For example,
TSE (IEEE Transactions on Software Engineering) and
IEEE Software published special issues on software inspec-
tions in 2003. They included basically the same inspection
articles but in different forms. The papers in TSE are written
in a more scientific and detailed style whereas the papers in
IEEE Software are directed to practising professionals and
therefore typically contain less details and background in-
formation. We discarded these kinds of "duplicates" and in-
cluded only the TSE articles in the survey.

Extract Required Data

The materials were gone through in an internally uniform
way. The needed data was extracted during the process of
reading through the articles. Their essential characteristics
have been recorded according to the review protocol. The
most important research results from each study were col-
lected and written down. Specific data extraction forms
could in principle have been used in this subphase. They are
useful in decreasing the potential for bias due to variations in
research process and the nature of the analyzed papers. As
stated earlier, in our case the research questions were on a
rather general level, which largely eliminated the potential of
bias in this sense. However, we acknowledge that additional
checks by multiple persons of the extracted data concerning
the registered results of the individual studies could some-
what have further increased the reliability of the study in that
regard.

Synthesize Data

After the previous phases, we created an emergent taxon-
omy classifying the articles based on their research question.
That was necessary in order to manage the complexity and
also to answer one of our three research questions. The clas-
sification did not follow any previously defined model, since
we wanted it to reflect the actual status of the research and
themes appearing in the articles. The next main level section
will give more details about this issue. The synthetic activi-
ties included also identification of the trends in the inspec-
tion research over the studied time period, which will also be
discussed in more detail in the next main level section.

Conduct Review

This last main phase simply consists of documenting the
research process, along with writing and validating the actual
research report based on the gathered data and the process
followed in the earlier phases. We have published our initial
review report in the form of a working paper. This paper is
an enhanced version of it. This main section has described
the central decisions made during the research process. The
paper has aimed at covering the essential aspects of the re-
search process and the results reached related to the set re-
search questions. The following main sections will describe
the actual findings. Finally, the validation of the final re-
search report is in essence a task of the external reviewers on
the intended publication forum.

4. GENERAL RESULTS OF THE LITERATURE
ANALYSIS

This section introduces the most important research
trends, which were identified in the surveyed inspection re-

search during the covered time period. The first subsection
describes the extent of the research in different publication
series and during different time periods. The second subsec-
tion is focused on different topics in inspection research.

We describe how the research is broken down into differ-
ent classes and how the trends have changed during the stud-
ied period. The third subsection presents some important
general observations.

Research Volume

Table 1 presents the number of relevant papers found in
each of the selected publication series. The studied time pe-
riod for each publication series is also shown since some of
the journals have not been published through the whole time
period. The publication series are presented in descending
order of the number of the identified relevant papers. The
total number of the included articles was 153. The four most
relevant publication series, TSE, ICSE, IEEE Software, and
Journal of Systems and Software, accounted for over half of
the articles.

It should be noted that the name of the studied IEE's
journal has been changed several times. It was initially Soft-
ware Engineering Journal (during 1988-1996), then IEE
Proceedings – Software Engineering (during 1997), IEE
Proceedings - Software (during 1998-2006), and finally it
has been renamed as IET Software (since the beginning of
2007). Annals of Software Engineering has not been pub-
lished after 2002.

The number of inspection related publications has con-
tinuously grown till the recent years. There were very few
papers published before the 1990’s. Also in the beginning of
the 1990’s research activity was low. Research on the area
started to increase as late as the mid 1990’s. This growth can
be seen in Figs. (2) and (3). Fig. (2) presents the total annual
number of the published articles included in the survey. Fig.
(3) presents the number of articles as divided into 5-year
phases, besides the first bar, which presents also the early
years of the studied time period. The figures show that after
long continuous growth trend a remarkable decrease in the
inspection research activity has occurred during the last four
years.

Many of the studied publication series have not appeared
through the whole surveyed period (i.e. 1980-2008). How-

Fig. (2). The total number of annual inspection related papers in the
reviewed publication series.

1

0

1 1 1

2

0

2 2 2

5 5 5

2

9

15

14

4

14

11

14

15

14

4 4

2

4

0

2

4

6

8

10

12

14

16

1
9
8
2

1
9
9
0

2
0
0
0

2
0
0
8

20 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

ever, this natural phenomenon has only a relatively small
effect to the general publication volume and to the identified
trends. The most affecting source in this sense is Empirical
Software Engineering, which has been published only since
1996. Most of the important topics in inspection research
have nevertheless emerged around the middle of 1990’s or
later.

Classification of the Research

There are three earlier literature surveys on software in-
spections [6-8]. Porter et al. [8] conducted a relatively large
survey, but it is already old and mainly represents only the
early stage of the inspections research.

Laitenberger & DeBaud [7] is another extensive earlier
survey. It is based on an analysis of roughly 400 studies and
includes 99 references to inspection articles and reports. It
aims at classifying the conducted inspection research. Sev-
eral parts of that classification are still valid, but there are
three concerns in our research context. Firstly, most of the
materials covered in that survey have been collected before
1998, whereas 65% of the contents of our survey have been

published since 1998. Secondly, the research field and the
mainly studied subareas have changed. Thirdly, Laitenberger
& DeBaud appear to have classified some articles into sev-
eral classes. From our perspective, it gives more clear results
to place each article simply into one class based on the re-
search question. Due to these reasons, our survey updates
and complements the views provided in that earlier survey.

The third survey of the area is Aurum et al. [6], which
focuses on the variations of the Fagan's original method [2].
That survey is the most recent one including also four arti-
cles which have been published in 2000. However, it mainly
deals only with the literature published before 2000. That
survey includes 56 references. Our survey differs from it by
a somewhat wider scope, inclusion of the more recent stud-
ies, and focusing on the high-impact publication series.
About 55% of the contents of our survey have been pub-
lished since 2000.

Due to the above mentioned reasons it was sensible to
create a newer classification, reflecting better the status of
the newer research. During our analysis we identified nine
clear themes in the analyzed material. Only seven articles
remained unclassified. Finally, we grouped the identified
themes into three main classes: Technical view, management
view and other main topics. The final classification and the
number of the identified articles in each class are presented
in Table 2.

As already noted, Appendix 1 provides a complete classi-
fied list of the surveyed publications. Its Table 4 cites to the
individual articles and also gives their publication years.

We used applicable parts of the earlier classification of
Laitenberger & DeBaud [7]. It used technical-, managerial-,
organizational-, assessment-, and tool dimensions. Other-
wise, our taxonomy has emerged based on the identified na-
ture of the studies included in this survey. The classification
of the individual articles was based on their identified major
research question. The idea of technical and management
views as first-level classes is derived from [7].

Technical view is clearly the most studied main aspect.
Table 2 shows that this class represents nearly half of the
surveyed articles. There is a close match between the techni-
cal dimension of [7] and our technical view. Technical view
includes variations of inspection processes, reading tech-
niques applied in inspections, effectiveness factors affecting
inspections and other substance related issues. Reading tech-
niques and effectiveness factors were clearly the most stud-
ied issues. There exists especially many newer studies on the
effectiveness factors. Therefore, we have also defined the
effectiveness factors as a second-level class. On the other
hand the volume of the research on processes and other tech-
nical topics was marginal.

The volume of the included new research related to the
managerial and organizational dimensions based on the
stated main research question is relatively low. Therefore,
there was no need to split that part into separate main
classes, as done in [7], and we use only the management
view as a first-level class. The assessment dimension ap-
peared to contain mainly only conference-level and partly
more general-level and less related publications and was thus
also useless to be separated. The volume of new research on

Fig. (3). The number of inspection related papers during 5-year
periods in the reviewed publication series (as an exception the first
bar gathers all the early years of the inspection research).

Table 2. The Used Taxonomy and the Amount of Articles in

Each Class

Amounts

Classes

Absolute

Amount

Relative

Amount

Technical view (76) (49,7%)

 Reading techniques 25 16,3%

 Effectiveness factors 23 15,0%

 Processes 22 14,4%

 Other technical topics 6 3,9%

Management view (27) (17,6%)

 Inspection impact 14 9,2%

 Other management topics 13 8,5%

Other main topics (50) (32,7%)

 Defect estimation 23 15,0%

 Inspection tools 16 10,4%

 Comprehensive views 4 2,6%

 Unclassified topics 7 4,6%

TOTAL 153 100%

22

45

58

28

0

10

20

30

40

50

60

70

1980-1993 1994-1998 1999-2003 2004-2008

A
rt

ic
le

s
 /

 p
e

ri
o

d

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 21

tools is modest, so it was only included as a second-level
class. On the other hand, there is much new research on de-
fect estimation. Therefore, it was included as a new second-
level class.

It should be noted that this kind of classification has
some limitations. For example, several studies that mainly
represented the technical view also discussed issues that are
relevant also from the management point of view. However,
based on their major research question, we classified them
under the technical view. Therefore, the surveyed articles
include more research on the management view than can be
seen from the sheer numbers in Table 2. Consequently, only
18% of the articles were classified under the management
view. Resolving this issue in a more sophisticated manner
would require a much more complex classification method,
which could, however, be less illustrative.

 The final structure of the classification was not obvious
in the beginning of our research process. We followed some
principles to optimize the classification. The following list
presents the most important principles:

• Some papers discussed issues from many classes.
These kinds of papers were classified based on the
major research question.

• The papers related to reading techniques could have
been included under effectiveness factors. However,
we wanted to explicate that set of techniques as a
class of its own, due to the relatively large amount of
the articles.

• Some papers about inspection tools were more fo-
cused on inspection process than on technical aspects
of software. However, all papers that were clearly re-
lated to inspection tools were classified into the in-
spection tools class.

It is interesting to view the material also in terms of the
time scale. Table 3 presents the proportion of papers in-
cluded in each class during 5-year periods, but the first col-

umn makes an exception, representing all the early years (i.e.
1980-1993) of the conducted inspection research. The table
shows the most studied viewpoints during each phase. The
relative amounts of the articles in the most populated classes
are written in bold-face in each column of the table. Evolu-
tion and changes of the research themes since 1980 represent
a natural development and extension of scientific knowledge
concerning an initially novel technique.

Phase I: The early phase (1980-1993) of inspection re-
search focused on different modifications of inspection proc-
esses and the first experiences about the impact of inspec-
tions and implementing them in industry.

Phase II: During the next phase (1994-1998) inspection
research expanded to cover new viewpoints. During this
phase, the research on most of the classes started and inspec-
tion research mainly reached its current form. Reading tech-
niques and other effectiveness factors became the most
common questions in inspection research. Also different
management issues were emphasized and the research on
inspection tools was more active than during the later phases.

Phase III: The next phase (1999-2003) was the most ac-
tive time in inspection research overall. The emphasis was
especially on defect estimation and reading techniques.
About half of the studies related to these topics were pub-
lished during this phase.

Phase IV: It is characteristical to the last five years
(2004-2008) that the conducted research represents the dif-
ferent classes of topics more evenly than before. The most
active research topics have been different reading tech-
niques, effectiveness factors and organizational inspection
impact.

General Observations

The presented classification provides a view of the most
studied research topics. However, due to the small number of
articles in the smallest classes, the orientation of that re-

Table 3. Relative Amount of Publications in Each Class During the Different Phases

Phases and Years Classes
Phase I

1980-1993

Phase II

1994-1998

Phase III

1999-2003

Phase IV

2004-2008

Technical view (54,5%) (53,4%) (43,9%) (51,6%)

 Reading techniques 0,0% 17,8% 21,1% 17,2%

 Effectiveness factors 0,0% 22,2% 14,0% 17,2%

 Processes 54,5% 6,7% 5,3% 13,8%

 Other technical topics 0,0% 6,7% 3,5% 3,4%

Management view (27,2%) (20,0%) (7,0%) (27,5%)

 Inspection impact 22,7% 4,4% 3,5% 17,2%

 Other management topics 4,5% 15,6% 3,5% 10,3%

Other main topics (18,1%) (26,7%) (49,2%) (20,6%)

 Defect estimation 9,1% 8,9% 22,8% 13,8%

 Inspection tools 4,5% 15,6% 12,3% 3,4%

 Comprehensive views 0,0% 2,2% 5,3% 0,0%

 Unclassified topics 4,5% 0,0% 8,8% 3,4%

TOTAL 100% (n=22) 100% (n=45) 100% (n=57) 100% (n=29)

22 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

search may have been sensitive to the current interests of
single active research groups or even individual researchers.
For example, more than half of the papers related to defect
estimation were published by two active research groups. So,
the changing research trends can be partially explained by
the evolution of individual interests. Nevertheless, the survey
describes the issues that have actually been studied. When
new researchers come to the field, they may bring new re-
search questions with them.

The previous subsection presented and discussed the used
classification. The classification could also have been
formed by taking all the discussed topics in each paper into
account. That would have created a more fine-grained view
of the research, and could have revealed, for example, the
actual role of the management aspects within the individual
studies better. However, that kind of classification would
also be relatively hard to create systematically and thereby
its results could be more vulnerable to misinterpretations by
other researchers.

The conducted studies can also be characterized based on
the applied research methods. For example, 72% of the stud-
ies applied or reported some kind of empirical research. 56%
of the empirical research was based on controlled experi-
ments and the rest was based on field experiences in the
software industry. 77% of the controlled experiments were
student experiments, and the rest used professionals as sub-
jects. Therefore, it can be stated that empirical research has
a dominant position on the field. A typical example of in-
spection related research is a controlled student experiment.

Most (77%) of the surveyed articles discuss inspections.
In addition, most of the other articles define the peer review
process to be very similar to the inspection process. The
authors of those papers appear to have some reason to avoid
using the term inspection. We found only few papers on peer
reviews that really significantly differ from inspections.

5. TECHNICAL VIEW

Technical view includes research that is focused on the
question “How inspections should be implemented?” These
studies are focused on different aspects in the inspection
process. The papers discussing inspection tools are an excep-
tion to this. Some of them have this kind of research ques-
tion, but in our classification all tool papers are kept in their
own special subclass. Technical view has been the most
popular aspect in inspection research. Half (50%) of the arti-
cles were classified under it. The following subsections will
describe the most important results from the earlier studies
related to the technical view, including: Different reading
techniques, effectiveness factors, and inspection processes.

Reading Techniques

Reading techniques mean here different kinds of methods
to find defects from documents; such as requirements docu-
ments, design documents, and source code, during the in-
spection process. This has been one of the most active re-
search areas. About 16% of the papers were focused on it.
All the presented techniques have been created to support
individual inspection work. They obviously are based on the
assumption that most defects are found already during the
preparation phase before the inspection meeting. The prepa-

ration task is traditionally individual work and so far re-
searchers have not been very interested in studying prepara-
tion as a group-based activity. However, many of the pre-
sented techniques include the idea of distributed work, but
they do not consider preparation as a group-based process.

The original inspection method [2] included the idea of
using checklists in defect finding. Checklists contain exper-
tise concerning the most common defects and thereby sup-
port inspections. Ciolkowski et al. [27] reported that about
half of the respondents in their survey used checklists in peer
reviews, 35% did not use any kind of support material, and
about 10% used more specific reading techniques presented
in the literature.

Traditionally all inspectors use the same checklist in
finding defects. Parnas & Weis [28] criticized this issue al-
ready in 1985 and assigned the defect finding task for differ-
ent roles in their active design reviews. Another key idea in
their method was to make the reviewer’s role more active
than in traditional checklist-based reading. Many other read-
ing techniques in the later research are based on these basic
ideas as highlighted by Parnas and Weis.

The research conducted related to the different reading
techniques is mostly based on empirical settings, where
some specific technique is compared to checklist-based read-
ing or to ad hoc approaches. The starting point in creating a
new technique has usually been some critique presented
against the traditional checklist-based reading. Laitenberger
& DeBaud [7] have summarized the critique into the follow-
ing key points: 1) The nature of questions [in the checklists]
is often general and they are not sufficiently tailored to take
into account a particular development environment. 2) Con-
crete instructions on how to use a checklist are often miss-
ing. 3) Inspectors may not focus on defect types which have
not been previously detected and, therefore, might even miss
entire classes of defects.

Active research on different reading techniques started
from an article published by Porter & Votta [29]. They pre-
sented a new scenario-based reading technique. Scenario-
based reading is based on scenarios, which give inspectors
more specific instructions than typical checklists. Addition-
ally, inspectors are provided with different scenarios, focus-
ing on different kinds of defects.

Porter & Votta [29] organized a student experiment, in
which they compared scenario-based reading, checklist-
based reading and ad hoc reading in requirements specifica-
tion inspection. Their conclusion was that scenario-based
reading was the most effective technique in finding defects,
whereas there was no significant difference between the ef-
fectiveness of checklist-based and ad hoc reading.

The experiment of Porter & Votta [29] has been repli-
cated several times. Porter et al. [30] presented new student
experiment data, which supported the original results. Later,
Porter & Votta also replicated the original experiment by
using experienced professionals and reported again similar
results [31]. Also the results reported by Miller et al. [32]
regarding a student experiment have supported the original
results. Some replications of the original study have pro-
duced also different kinds of results. Fusaro et al. [33] and
Sandahl et al. [34] did not find significant differences be-

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 23

tween the applied techniques in their student experiment.
However, at least some kind of support for the claim of the
usefulness of scenarios has been produced by the previous
research. The affecting factors behind the different results
can only be guessed, based on these studies.

Basili et al. [35] define scenario-based reading as a gen-
eral-level term, which they break down to more specific
techniques. They call the original method of Porter & Votta
[29] as defect-based reading. In their paper Basili et al. pre-
sent a new scenario-based technique, which they call per-
spective-based reading. It is also a method for requirements
inspection and the basic idea is based on different skills re-
quired and aspects covered in software development. Partici-
pants have an active role in inspecting requirements of their
own area of expertise. For example, a testing expert first
creates a test plan based on the requirements specification
and then attempts to find defects from it.

Basili et al. [35] studied perspective-based reading in an
experiment with experienced professionals as subjects. They
compared that technique to the techniques usually applied by
the participants of inspections to find defects. Their original
goal for applying perspective-based reading was to improve
the coverage of defects found in inspections. The results
supported this goal, but also the individual participants found
more defects by using perspective-based reading than by
using their original techniques. Recently, Maldonado et al.
[36] have replicated this study using university students.
They also found the perspective-based reading more effec-
tive than use of checklists.

Later perspective-based reading has been applied both to
code inspections [37] and design inspections [38]. These
studies have provided promising results. In addition to the
presented benefits, Laitenberger & DeBaud [37] reported
that perspective-based reading appeared to balance the effect
of experience on the number of the found defects. Therefore,
this technique might partially compensate limited expertise.
However, the results of Sabaliauskaite et al. [39] do not sup-
port the claim of the superiority of the perspective-based
technique.

According to the definition of Basili et al. [35], most of
the reading techniques presented in the surveyed articles are
scenario-based. The basic idea is usually cognitive activation
so that the inspector has to actively work with the inspected
documents instead of mere straightforward reading.

Thelin et al. [40-42] introduce usage-based reading,
which they apply in design inspections. Design documenta-
tion is inspected based on use cases, which are documented
in requirements specification. This approach sets the focus
on finding functional defects, which are relevant from the
user point of view.

Dunsmore et al. [43-45] present an abstraction-driven
technique for code inspections. In this technique, the inspec-
tor creates an abstraction level specification based on the
code under inspection. The purpose of the task is to ensure
that the inspector has really understood the code.

Kelly & Shepard [46] have created a code inspection
method, which they call task-driven inspection. It is not only
a reading technique, but it also includes some elements re-

lated to the inspection process. Their method includes the
same kind of idea as the abstraction-driven technique by
Dunsmore et al. [43], but Kelly & Shepard have defined the

task more specifically. The inspector has to create a data
dictionary, a complete description of the logic and a cross-
reference between the code and the specifications.

Progress on scenario-based reading techniques can be
summarized as having provided promising results as com-
pared to checklist-based reading. However, the results are
not completely consistent and most of the research settings
have not been replicated by any independent research group.
The conducted studies include mainly comparisons between
checklists or ad hoc approach and some new techniques,
whereas very few studies have compared the different sce-
nario-based techniques. More research is needed in this area
to understand how the different methods really perform un-
der different conditions.

Effectiveness Factors

Effectiveness factors refer here to inspection process fac-
tors, which may affect the effectiveness of inspections. On
the other hand, effects of inspections on software processes
are discussed under the management view. Different kinds of
effectiveness factors have been one of the big research is-
sues. This class included 25 (15%) of the surveyed articles.

The reading techniques presented in the previous subsection
could also have been classified here, because the focus in
that research is on inspection process factors.

The meaning of effectiveness is not self-evident, instead
it may include several aspects. The most important terms in
inspection research are efficacy and efficiency. Efficacy
means the number of found defects and efficiency usually
means the number of found defects per inspection hour.
Some studies take only efficacy into account which may be
reasonable in a context where extremely high quality is
required. However, in most cases it is not a relevant metric,
because inspection resources are limited in practice.

Therefore, most of the research is focused on finding an
optimal cost-benefit ratio by determining efficiency.
However, even effectiveness does not provide enough
information to determine a practical cost-benefit ratio. The

determination requires the user organization to measure the
real benefits from finding a defect during inspections.

The starting point of the active research on effectiveness
issues was probably Votta’s [47] study, in which he ques-
tions the meaning of traditional meetings in the inspection
process. Later, effectiveness issues have been studied from
different perspectives. The following subsections discuss the
most important effectiveness factors, which have appeared in
the surveyed articles. They include individual performance,
meetings, preparation, the amount of inspected materials,
team size, training, and roles.

Individual Performance

Sauer et al. [48] studied inspection effectiveness issues
theoretically by using behavioral theories. They argue that
individual expertise is the most important factor in inspec-
tion effectiveness. This conclusion was recently supported

24 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

by Hatton [49], who found huge individual differences in
defect finding task in his empirical experiment. This is actu-
ally the same conclusion that Barry Boehm [50] made almost
30 years ago related to the whole software engineering field.
Knight & Myers [51] reported in their article that experience
in the used programming language had a significant impact
on the defect finding task. Individual performance is claimed
to explain inspection effectiveness in some other studies as
well; including [52].

Inspection Meetings

The usefulness of inspection meetings has been one of
the most popular research topics related to inspection process
since Votta’s paper [47]. Votta compared the performance of
a group (A) applying traditional inspection with another (B),
which did not apply a meeting. Instead, individually found
defects were collected by other means. Group B found even
more defects than group A. Based on this finding, Votta ar-
gued that the meeting is meaningless and only a resource-
consuming element in the inspection process. However, he
also reported that the meeting succeeded in eliminating most
of the false positives, i.e. assumed defects, which were not
real defects.

Several studies [32, 53-55] have later supported Votta’s
findings. All these studies have reported that meetings did
not improve defect finding as compared to various optional
arrangements. These studies have considered meetings pri-
marily as an extra cost and have recommended replacing
meetings with other arrangements.

Despite all the critique, the critical view is not consistent
among all researchers. Kitchenham et al. [56] use the inspec-
tion meeting discussion as a bad example about drawing
conclusions. They state that the usefulness of inspection
meetings can not be judged merely based on the amount of
identified defects, because meetings have been reported to
have also positive influences on the inspection process.
D’Astous and Robillard [57] agree with this point and em-
phasize different kinds of perspectives in studying inspection
meetings. Finally, there are also contrary results. Ebert et al.
[58] found inspection teams with meetings to be more effec-
tive than teams without meetings.

There seems to be two different lines in the research re-
lated to inspection meetings. Some researchers are focused
on inspection process effectiveness and usually criticize the
usefulness of meetings as part of the inspection process.
Other researchers emphasize different perspectives, which
favor inspection meetings. An example of these perspectives
is to consider meetings as a place for learning and knowl-
edge sharing [59]. It should be noticed, that all researchers
who criticize the effectiveness of inspection meetings, do not
suggest replacing them completely. Johnson & Tjahjono [60]
recommend meetings when employees are inexperienced
with inspections. They also recommend discarding meetings
after employees have gained more experience.

Preparation

Gilb & Graham [11] claim that individual preparation
for inspections is the most important element contributing to
the effectiveness of the inspection processes. It might be that
this issue has been considered so self-evident that it has not

been systematically studied. Some studies with other kinds
of primary objectives have also reported results supporting
this claim. Laitenberger et al. [61] noticed in their study at

DaimlerChrysler that the more participants used time for
preparation, the more defects they found. Also Christenson
et al. [62] found a positive correlation between the prepara-
tion time and the amount of found defects.

Amount of Materials

Already Fagan [9] recognized that it is essential not to at-
tempt to inspect too much material in any one inspection

cycle and recommended inspecting about 125 lines of soft-
ware code per hour. Also Gilb & Graham [11] emphasized
the significance of the proper amount of material and gave
strict recommendations concerning it. They claim that rigor-
ous inspections lose their potential to identify really critical
defects, if participants do not use enough time for prepara-
tion, which in turn is impossible if there is too much material
to be inspected.

Dunsmore [63] gives some support for the presented rec-
ommendations. He calculated the optimal amount of materi-
als based on empirical data from the industry. As a result he
recommended inspecting 200 lines of object-oriented code
per hour. On the other hand, Seaman & Basili [64] noted that
in practice the speed of inspections was 60 pages of software

code per hour even in their case in NASA. Bourgeois [65]
has also reported similar results in his study. Thereby, the
suggestions of the researchers and the practice in the field
seem to differ a lot at least in these cases.

Team Size

Some researchers have tried to determine the most effec-
tive team size for inspections. Porter et al. [52] arranged an

experiment to assess the costs and benefits of code inspec-
tions. They analyzed different factors including team size.
They found out that four inspectors did not find significantly
more defects than two inspectors. However, both four and
two inspectors were clearly more effective than only one
inspector. Porter et al. reported that team size had more ef-
fect on the inspection interval than the actual finding of de-
fects. A big team carries the risk of delaying inspection ar-
rangements, because it is often hard to find common time for
meetings.

Also some other studies have found two inspectors to be
clearly more effective than only one [49, 61]. So, two in-
spectors seems to be the usually suggested team size. How-
ever, these studies have tried only to identify the optimal

time consumption per defect. If only the found defects are
considered, increasing team size could be reasonable. How-
ever, without knowing the real saving gained by finding the
defects, it is impossible to define the optimal team size that
would be relevant also in practice.

Training

Proper inspection training has been proposed to be a fac-
tor affecting inspection effectiveness. Actually, this is a logi-
cal conclusion based on the revealed importance of individ-
ual skills in inspections. Rifkin & Deimel [66] reported that

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 25

training improved inspection effectiveness. They compared
different kinds of inspection training programs. Based on
their study, they recommended practical training focused on
defect finding skills. That kind of training was found more
effective than other training programs that focus on process
level issues. Ebert et al. [58] later presented similar kinds of
conclusions on the general improvement of inspection effi-
ciency by training.

Roles

Some researchers have tried to understand the roles of
those participating in inspection processes. Most of these
studies are related to reading techniques. Most of the pre-
sented reading techniques include the idea of dividing the
defect finding task into parts and thereby avoiding overlap-
ping activities. In these studies, it is hard to distinguish the
effect of the division of work from the effect of the applied
reading technique. It can only be guessed that possibly both
of these factors affect the results. Land et al. [67] have stud-
ied the effect of the procedural roles (e.g. moderator) on in-
spection process. They did not find these roles to have af-
fected inspection effectiveness in their study.

Other Viewpoints

Porter et al. [68] studied several proposed effectiveness
factors in an experiment. They varied team size, number of
inspection cycles and defect correction between inspection
cycles. These factors did not produce a significant effect on
inspection effectiveness. Biffl et al. [69] gave some support
to these results. They found that more than one inspection
cycle causes a reduction in inspection effectiveness, when
measured as identified defects per hour. However, they also
calculated an estimate of the ensued savings. According to
the calculations, a second inspection cycle may pay itself off.

Porter et al. [68] conclude that the variations in inspec-
tion effectiveness must be due to some other process factors.
They suggest that the type of the inspected documents or the
inspectors might explain the variation better. Individual per-
formance was already discussed earlier, but the effects of
document types have not been systematically studied in the
surveyed articles. Nevertheless, Christenson et al. [62] pro-
posed that complexity of the documents has an effect on the
effectiveness of inspections.

Carver et al. [70] have received some interesting results
in their recent study on the effectiveness of requirements
inspection. They found in their experiment that the employ-
ees, who did not have their educational background in com-
puter science, found more defects. Prior working experience
generally did not have any impact, but experience in writing
requirements had a positive effect on finding defects.

Processes

Several different kinds of modifications of the inspection
process have been proposed over the years. This class in-
cludes 22 (14%) articles, which mostly represent the earliest
phase of the inspection research. Later studies have focused
more on in-process factors as described in the previous sub-
sections.

After Fagan’s [2] original inspection paper presenting the
general form of the process, Runge [71] presented inspection

adaptation for small projects. Later Parnas & Weis [28] in-
troduced active design reviews, which we already discussed
related to the reading techniques. Bisant & Lyle [72] devel-
oped a two-person inspection method based on the given
critique that traditional inspections allegedly require too
much resources. Later Kusumoto et al. [73] picked up the
same idea and received some supporting evidence for its
usefulness in practice.

There are only a few really new methods presented in the
surveyed articles. Schneider et al. [74] studied n-fold inspec-
tion, which has been created especially for the needs of criti-
cal projects. Their idea is based on several parallel teams
doing the same inspection. According to Schneider at al.,
several independent teams find more defects than a single
team. The n-fold inspection was originally presented a cou-
ple of years earlier by Martin & Tsai [75].

Knight & Myers [51] have presented phased inspection,
which they created for software code inspections. Consistent
with its name, it includes several phases, which are actually
inspection cycles focusing on different aspects. For example,
language, source code layout and programming constructs
could each be inspected in a separate phase.

Thelin et al. [76] bring forth a new perspective with their
idea of sampling-based inspections. Their basic idea is to
inspect a sample of documents instead of all documents pro-
duced during the software development process. First, one
inspector does a so-called pre-inspection phase and checks
about 20-30% of the documents. This phase is used to de-
termine which documents need the most inspection time.
Then, the main inspection is focused on these documents.

None of these few inspection variations have yet inspired
other researchers to do further studies. Instead, the later stud-
ies are mostly focused on the in-process factors of the tradi-
tional process. However, some of these studies suggest some
changes into the traditional inspection process. Most of these
suggestions are related to a debate on traditional inspection
meetings. Sauer et al. [48] state that it may not be necessary
to have the whole inspection team in a meeting, but a couple
of experts could go through the defects found in the prepara-
tion phase. Mishra & Mishra [77] have refined the purpose
of inspection meeting. They suggest that the found defects
should be logged in advance and the common time in the
meeting be used effectively in the discussion about the find-
ings. Kelly & Shepard [46] have left out the whole meeting
from their method. However, they suggest arranging a start-
up meeting, which is usually an optional phase in the proc-
ess.

Rigby et al. [78] raise up a current topic in their recent
paper discussing on review practices in open source devel-
opment. They report experiences from a large open source
project, which differs much from traditional in-house soft-
ware development. A different kind of aspect in inspection
process has been the support of software reviews with formal
methods. Some degree of formality has been aimed at in re-
viewing specifications by Jackson & Hoffman [79] and
Polack [80] and software code by van Emden [81].

One additional clearly process-related viewpoint is tool
support for inspections. The debate on the inspection meet-
ing is one important theme, which has inspired some re-

26 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

searchers to develop tool support. This aspect is discussed
separately in Section 7.

Other Technical Topics

There were 6 (4%) articles, which clearly represented the
technical view, but did not fit into the subclasses presented
here. These studies are typically somehow focused on the
question: “What should be inspected related to the docu-
ments?” Macdonald et al. [82] and Dunsmore et al. [83]
studied issues which are specific to the inspection of object-
oriented code. Tervonen [84] presented some principles for
supporting inspectors with relevant materials and tools.
Chernak [85] introduced a model for the systematic im-
provement of checklists. Traore and Aredo [86] discussed the
relationship between automatic verification and technical
reviews. Finally, De Almeida et al. [87] presented the best
practices for code inspections.

6. MANAGEMENT VIEW

The management view certainly represents a practically

useful area of inspection research, but for some reason it

does not include as much research as could be expected.
Only 27 (18%) of the surveyed articles were primarily fo-

cused on management view. However, as noted earlier, many

studies with a more technical focus have discussed topics

that are also relevant to management. Inspection impact on

the development process was the only clearly consistent

theme under the management view. 14 (9%) papers were

related to inspection impact on development process and the

other 13 (9%) papers represented miscellaneous related top-

ics.

Inspection Impact on Development Process

This class has been emphasized at the early stages of in-
spection research. The typical article is a case study in some
specific company. For example, already Bush [88] described
how the Jet Propulsion Laboratory calculated the benefits
gained by using inspections. According to Bush, correcting
one defect later in the process would cost US$1,700 and
therefore one inspection saves on average US$25,000.

Russell [5] reported that every inspection hour saved 33
hours of maintenance work at Bell-Northern Research.
Doolan [3] found in his research that every hour invested in
inspections paid itself back 30 times. Grady & Van Slack [4]
have also reported similar results at Hewlett-Packard.

Some studies in this class have compared the effective-
ness of code reviews and testing methods. Basili & Selby
[89] noticed in their early experiment that more defects were
found and more effectively by reading code than by testing
it. Jalote & Haragopal [90] also received similar results from
their case study. So et al. [91] did not find a difference in the
number of identified defects, but their study also verified
inspections as being more cost-effective than the testing
methods which they studied. Houdek et al. [92] studied dif-
ferent defect detection techniques for executable specifica-
tions. They did not find a notable difference in the effective-
ness of testing and inspections. Roper et al. [93] did not find
any difference in effectiveness between code reading and
different testing methods. They also refer to several other

studies that have produced inconsistent results. Runeson
et al. [94] have recently published a survey focused on this
topic. Their conclusion based on the past research was that
there is no clearly superior technique for finding defects.

It can be concluded that the earlier research does not in-
clude consistent evidence of inspection effectiveness as
compared to testing methods. Instead, several studies; in-
cluding [93], have concluded that code reading and different
testing methods have their own strengths in effectively iden-
tifying different kinds of defects. These studies usually sug-
gest using a combination of different methods to find all
kinds of defects effectively.

Müller’s [95, 96] studies represented a different kind of
theme. He compared pair programming and individual pro-
gramming as supported with peer reviews. Student experi-
ments did not reveal significant differences in effects in
terms of code quality and development costs.

Zheng et al. [97] brought a new perspective to inspection
research in their study on static analysis. Their study com-
pared the defects found based on automated static analysis
and code inspections. Based on the result they suggest using
them both as complementary methods.

Other Management Topics

This class included other articles, which are primarily fo-
cused on the management view. Some of the articles discuss
metrics. Barnard & Price [98] present various metrics rele-
vant to code inspections. Madachy [99] presents a model
which can be used to measure inspection impact on the soft-
ware development process. Briand et al. [100] have created a
model for creating inspection efficiency benchmarks. Re-
cently Freimut et al. [101] introduced a method to determine
cost-effectiveness of inspections in an organization.

Chatzigeorgiou & Antoniadis [102] focused on inspec-
tion scheduling. In a case organization they revealed an im-
portant phenomenon: Inspections tended to be postponed and
accumulated towards internal project deadlines leading to
excess overtime costs, quality degradation, and difficulties in
reaching milestones. Related to this same issue, Kusumoto
et al. [103] introduced earlier a time allocation procedure for
reviews.

Jakob & Pillai [104] presented a statistical process con-
trol method, which can be used to improve coding as well as
code reviews. Their process control is based on monitoring
defects found in reviews during the process. Chaar et al.
[105] discussed evaluating and improving inspection and
testing activities.

Jalote & Haragopal [90] represented a somewhat differ-
ent viewpoint. They discussed inspection adaptation in or-
ganizations and are focused on the so-called “not-applicable-
here (NAH)” syndrome, which hinders effective adoption
and application of inspections in organizations. They intro-
duced a simple approach to overcome this kind of resistance
and reported promising results from one case organization.

Surprisingly, only a couple of papers clearly focused on
organizational inspection improvement issues. The signifi-
cance of inspections in software engineering is generally
acknowledged, but their effective implementation in the

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 27

software industry is a problem. Some studies have created
methods that provide support for organizational inspection
improvements [106-108]. Ideas about capability or maturity
models for inspections have also been presented [4, 14, 109],
but there exists only very few significant empirical studies
on them.

7. OTHER MAIN TOPICS

This section introduces the other classes identified in the
survey material. These classes are defect estimation, inspec-
tion tools and comprehensive views of inspections. These
classes comprise 50 (33%) of the papers in the surveyed ma-
terial. Seven articles remained unclassified.

Defect Estimation

This class includes the research that aims at finding a
way to reliable estimatation of the defect content of a docu-
ment after inspection. The usually proposed starting point is
that this information is useful for project management while
making decisions regarding further actions after the inspec-
tions.

One of the important themes in the surveyed articles is
estimation of the defect amounts. 23 (15%) of the surveyed
articles discuss it. Moreover, there is an increase in the rela-
tive amount of these kinds of studies during the latest years
within this survey. Since 2000 it has even been the most
popular individual inspection research issue.

Eick et al's [110] article is a starting point in this subarea.
That study applied capture-recapture sampling, which is
well known in the field of ecology. The principle behind that
approach is that an estimate of the total amount of defects
within an analyzed document is made based on the amount
of the found defects. Most of the approaches in this area at-
tempt to form a maximally reliable model based on this
method. Another early study on this field was Vander Wiel
& Votta [111].

This approach requires prior knowledge of the way in-
spections are applied in the user organization. For example,
Padberg [112] shows how to form a sort of organization-
specific profile of the found and the not found defects based
on inspection history.

Petersson et al. [113] have written a comprehensive sur-
vey of the studies conducted on this subarea by then. Differ-
ent studies regarded different kinds of estimation models as
promising. However, these models are still too imprecise to
be successfully applied in practice.

Research on this area has separated into two branches
during the latest years. Earlier estimation models have been
characterized as objective. Another newer branch is research
on subjective estimation. These estimation models are simply
based on the subjective views, concerning the amount of
found defects, of the participants of the inspections.

Biffl & Grossman [114] claimed that the then current ob-
jective estimation models were actually quite inaccurate,
especially when defect detection effectiveness was low. The
objective methods appeared to perform relatively well under
some conditions. Therefore, Biffl & Grossman claimed that
the real question here is about when the estimates can be

trusted. They suggested complementing objective estimation
with other indicators like subjective estimation.

Subjective estimation has been studied by El Emam et al.
[115], Thelin [116], and Yin et al. [117]. El Emam et al.
[115] arranged an experiment with professional software
engineers as subjects and found out that the median relative
error of the received subjective estimates of defect content is
zero. Yin et al. [117] reported similar results based on their
experiment with students. In these experiments, the partici-
pants usually performed quite well. The problem in practice
was that the reliability of the estimates was weak. Thelin
[116] compares objective and subjective estimation and con-
siders the objective method to be more reliable.

Inspection Tools

All the articles related to computer aided inspection tools
were included in this class. This has clearly been one inter-
esting topic in inspection research, because 16 articles (11%)
dealt with this class. The specific interest in this area
emerged during the late 1990’s after the rapid growth of the
Internet. The typical aspect in this class is computer aided
distribution of inspection tasks. The articles surveyed here
offer only a limited view of inspection tools, but Hedberg
[118] has presented a more extensive review of the previous
research on the field.

The earliest studies in this area emerged already in the
beginning of the 1990’s. Within our survey Mashayekhi
et al. [119] were the first ones to introduce a tool for sup-
porting inspections. Johnson [120] also presented similar
ideas about tool support. The basic idea was asynchronous
inspection, where the inspectors do not have to be in the
same place at the same time. The goal of this approach is to
save costs and increase the flexibility of the inspection proc-
ess.

Various inspection tools have been presented, e.g. by
Macdonald & Miller [121, 122], Perry et al. [123], and Ter-
vonen [124]. All these tools were primarily created to sup-
port the inspection process. Instead, Anderson et al. [125]
focused on program comprehension support in their study.

Macdonald & Miller [126] conducted a student experi-
ment to compare tool supported inspection and paper-based
inspection. The only difference revealed between the two
procedures was the defect finding task. They did not find a
significant difference between these two groups and they
regarded this as a promising result for tool supported inspec-
tion. Tyran & George [127] conducted a similar kind of
study, but in their procedure the tool-supported group inter-
acted only by writing through the tool interface. The tool-
supported group found more defects than the other group.
Tyran & George gave several explanations for that result.
For example, traditional meetings often had one dominant
member, restricting open discussion. In addition, sidetrack-
ing was significantly lower in the tool supported group.

The research on tool support is related to the nature of the
traditional inspection meeting. Perpich et al. [128] discuss
implementation of tool-supported distributed inspection at
Lucent Technologies. The key idea in their new process was
the tool-supported asynchronous meeting. They found out

28 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

that the number of identified defects was the same as in tra-
ditional inspections, but the new method reduced costs. Stein
et al. [129] reported similar results. However, they discov-
ered that traditional inspections were more effective in iden-
tifying certain types of defects. They emphasized also that
meetings produce other benefits in addition to the mere iden-
tification of defects. They do not recommend replacing in-
spection meetings with asynchronous protocol without a
good reason.

Vitharana & Ramamurthy [130] found out in their recent
student experiment that anonymity in tool-supported inspec-
tion may affect inspection effectiveness. They compared
groups with anonymity tool-support with groups where the
participants knew each others’ identities. The groups with
anonymity support were more effective in identifying the
seeded errors in relatively more complex tasks.

Comprehensive Views

This class includes the articles that discuss issues within
many classes of our taxonomy. Only four papers were classi-
fied into this class, but they clearly formed a class of their
own.

Our sample of articles included two real literature sur-
veys. Laitenberger & DeBaud [7] have published an exten-
sive life cycle centric survey, as mentioned earlier. It in-
cluded a very comprehensive view of the inspection-related
research but only dealt with the literature prior to 1998.
Laitenberger and DeBaud provided a taxonomy of the com-
pleted inspection studies. The taxonomy contains technical,
managerial, organizational, assessment, and tool dimensions.
The taxonomy helps to relate inspection studies and ap-
proaches to particular life-cycle stages, to structure the in-
spection field, to compare and assess inspection methods,
and to identify areas where little work has been done so far.
They have also suggested causal models for explaining in-
spection quality, effort, and duration.

Aurum et al. [6] published another survey, which has a
narrower scope; inspection method variations. They studied
Fagan's original inspection method and its variations during
the previous 25 years, but they did not focus on other aspects
of inspection research. The survey included a classification
of the studies using three dimensions: 1) Change of the basic
inspection structure vs. support of the inspection process
structure, 2) phases of the inspection process (preparation,
meeting, reinspection), and 3) existence of the evaluative
elements. The support includes models, methods, and tools,
whereas evaluations relate to empirical testing of the inspec-
tion tools and techniques.

Additionally, Ciolkowski et al. [27] conducted a rela-
tively extensive inspection study. Although it uses the term
survey, it is not a literature survey, but an empirical study,
which investigated software reviews and their state of the
practice in the industry. There were over 200 involved re-
spondents, of which about 30-40% conducted reviews regu-
larly. The variation on using the reviews was due to the type
of the inspected documents. Requirements were reviewed
slightly more regularly than software code.

Another small-scale attempt to study the state of the prac-
tice was an informal empirical survey focusing on reengi-

neering inspections as reported by Johnson [59]. There were
90 respondents, of which 80% practiced inspections irregu-
larly or not at all. However, the real contribution of that pa-
per was to consider how inspection practices should be im-
proved in the light of the earlier research.

8. DISCUSSION

In this section we provide a brief synthesis of the main
results of the surveyed studies and the suggested further re-
search. The discussion is organized based on our research
taxonomy.

Synthesis of the Results of the Studies

Technical View

There are several variations of inspection processes for
different environments. For example, these variations are
created for small projects, critical solutions, and distributed
environments. In addition to the process aspect, a number of
studies focus on different reading techniques. Several special
techniques have been introduced to effectively find defects
from requirements, design documents, or software code.
Most of these studies have received promising results as
compared to ad hoc reading or traditional checklists. How-
ever, a weakness related to the different processes and read-
ing techniques is that there is, for example, no research com-
paring the different new reading techniques. The surveyed
papers include some practical results of the different effec-
tiveness factors of the inspection process. Several research-
ers agree that the performance of individual team members is
the most important factor in inspection effectiveness. Prepa-
ration for the inspection meeting is obviously the most im-
portant phase in the inspection process. Some researchers
even consider meetings as a waste of time, because most of
the defects are found already during the preparation.

Management View

There is evidence of inspection benefits in several case
studies in the surveyed papers. Fagan’s [2] first experiences
with inspections already included improvement in quality
and productivity, when they replaced informal walkthroughs
with inspections. The focus in the case reports is typically on
presenting savings or return on investment (ROI) gained in
implementing inspections in the company. Multiple organi-
zations have reported ROI to be at least 30, and there was no
papers in the selected publication series that would have
questioned the overall inspection benefits. One topic dis-
cussed in several papers is the comparison between code
review and different testing techniques. There is no clear
evidence for the superiority of any single technique. Instead,
different techniques are generally seen as complementary to
each other.

Other Main Topics

Several aspects related to inspection tools have been cov-
ered in the surveyed papers. The introduced tools are primar-
ily focused on inspection process support. For example, they
usually support distributed asynchronous inspection, which
frees the participants from specific meeting times and places.
Defect estimation is an area, which has inspired a significant
number of studies. The key idea is to estimate the number of
defects remaining in the document after the inspection. Good

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 29

estimates would provide useful decision support for project
management, but unfortunately the research on this area has
not at least yet succeeded to fulfill the expectations.

Suggested Further Research

Technical View

Overall, the suggestions for the needed further research
as presented earlier in the surveyed studies are heavily fo-
cused on the issues within the technical view class. Many
researchers, including Aurum et al. [6], Laitenberger et al.
[7], and Parnas & Lawford [131], have suggested further
research related to the technical view, and especially on the
effectiveness factors.

Laitenberger & DeBaud [7] identified the then relevant
further research avenues. On the general level the goals in-
cluded: Assurance of software quality, reduction of devel-
opment costs, and keeping software projects within schedule.
On the more specific level there were multiple issues. They
included issues such as: Determining the most cost-effective
inspection variations, the proper amount of effort to be allo-
cated to inspections, the effects of the number and experi-
ence of the inspectors, the adequacy of different reading
techniques, the effects of the inspected software artifact
types, and the proper amount of the inspected materials.

The survey of Aurum et al. [6] similarly addressed the
then most relevant oncoming research avenues. These in-
cluded issues such as: Determining the efficiency of the dif-
ferent kinds of reading techniques, efficient ways of support-
ing inspections, measuring the effectiveness of inspections,
possible synergy of inspections and testing, and possible
differences of the proper form of inspections in case of dif-
ferent kinds of applications and systems such as object-
oriented systems, real-time systems, and web-based systems.
The nature of the further research issues suggested in [6, 7]
is mainly conducting more research on the technical issues
which have already been studied earlier in some extent.

Parnas and Lawford [131] considered the future of in-
spections and brought forth from the technical view point a
need to specify inspection processes. By this they mainly
mean the development of different kinds of reading tech-
niques. It is noteworthy that studies on determining the ade-
quacy and effectiveness of different reading techniques are
suggested by many researchers, including Aurum et al. [6],
Laitenberger & DeBaud [7], and Parnas & Lawford [131].
Thereby, the area of reading techniques still requires active
further research.

 These kinds of developments can and should be linked
to the studies of inspection efficiency. A clear deficiency
affecting these kinds of studies is the currently modest level
of understanding issues related to practically applying in-
spections in industrial settings. Generally, the conducted
studies have only considered factors affecting inspection
efficiency in a limited context. It is, however, also necessary
to understand what environmental factors mainly affect effi-
ciency.

Management View

Laitenberger & DeBaud [7] have suggested more re-
search on scaling up inspections, and Aurum et al. [6] on

management and inspection process control. It is difficult to
predict the orientation of future research based on earlier
studies, but some observations can be made regarding weak-
nesses in the current body of knowledge. From the practical
point of view, the biggest issue is still the relatively weak
state of implementing inspections in organizational settings.

Organizations have not yet widely adopted inspection
techniques and their maturity level for adopting those tech-
niques probably still has to be much improved [16]. Imple-
mentation and management issues need to be studied more
extensively since very few of the papers covered in this sur-
vey discuss them. So, this probably is the most important gap
area in the current research and also in the suggestions of the
needed further research in most of the earlier studies.

Other Main Topics

It is noteworthy that many researchers, including Aurum
et al. [6], Laitenberger & DeBaud. [7], and Parnas & Law-
ford [131], have suggested that more tool support should be
developed. Anderson et al. [125] have presented a tool that
includes support for its users in identifying defects. How-
ever, generally it seems to be that interest in studying inspec-
tion tools has unfortunately rather diminished than increased
during this decade. Nevertheless, there will undoubtedly be a
need for tools in the future since they potentially enable im-
proving both the efficiency and the attractiveness of inspec-
tions to commercial organizations.

For example, Xu [132] has presented a method that can
be used to improve the inspectability of real-time systems
during the system design phase. These kinds of special ques-
tions will undoubtedly be increasingly important in the fu-
ture. After the basic processes of inspections have reached a
mature level, a further improvement in efficiency can be
attempted by also improving the understanding of the
specificities of the inspected document contents. Currently
there are only a few examples of this kind of research. Mac-
donald et al. [82] and Dunsmore et al. [83] have studied the
specificities of inspecting object-oriented code.

Software engineering is an evolving discipline. Some
changes in software engineering practices may affect the role
of software inspections. For example, implementing agile
methods or domain-specific modelling may lead to an exten-
sive change in the entire software development process.
Therefore, the relationship between inspections and these
new development models have to be understood. Serious
research on this field is only just emerging. For example, in
our survey, Müller’s [95, 96] papers were the only ones dis-
cussing agile methods.

9. CONCLUSIONS

This paper has reported a comprehensive survey of soft-
ware inspection literature published in the selected high-
impact publication series during the selected time period (i.e.
1980-2008). The survey includes most of the software in-
spection studies which have ever been published. It has fully
covered 16 central publication series including 153 identified
and studied articles. The paper has reported the following
three main results related to the survey: 1) Trends in inspec-
tion research. 2) An emergent taxonomy of the inspection
research. 3) A summary of the most important research re-
sults in each class of the taxonomy.

30 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

The survey revealed the continuously increasing trend of
software inspection research till the recent years. During the
early years (i.e. 1980-1993) the inspection research focused
on different variations of inspection processes. However, the
core of the original inspection ideas has not changed.

Later research has been strongly focused on different in-
process details like reading techniques and different effec-
tiveness factors. For some reason, the volume has signifi-
cantly decreased during the four last years (i.e. 2005-2008).
This might be mostly explained by the personal interests of
some key researchers, who appear to have directed their
work to other areas. However, there would still be a lot of
important work to be done in the inspection research area.

Overall, the conducted research is relatively scattered
relative to its volume. There are many adapted variants of the
inspection methods for different needs. The studied materials
present clear evidence of inspection benefits in several cases.
Some understanding has been gained regarding several effec-
tiveness factors such as team size and the proper amount of
materials to be inspected. Also tool support for the inspec-
tion process has produced notable results. We thus have a
fairly good understanding of how to run effective inspections

in limited controlled research settings, in which most of the
empirical studies have been conducted.

The real issue with inspections is still their weak imple-
mentation in the software industry. Only relatively few stud-
ies within our survey were related to the implementation and
management of inspections in practice. Empirical studies are
needed especially to better understand these issues. From our
point of view this is the most important direction for future
inspection research.

The gained body of knowledge creates a good basis for
further studies. Now there is a need to transfer the results
achieved in the controlled research settings to the industry
and to study how inspections can be effectively implemented
in different organizational environments.

SUMMARY (MAX. 50 WORDS)

This paper presents a comprehensive survey of the soft-
ware inspection research focusing on high-impact scientific
publication series. The main results include a description of
the research trends during 1980-2008 and a description of
the main results of the identified 153 articles.

APPENDIX 1: COMPLETE SURVEY CLASSIFICATION DATA

Table 4. Complete List of References in Each Research Class

Reading techniques (25) Basili et al. (1996) [35], Berling & Runeson (2003) [133], Dunsmore et al. (2001;2002;2003) [43-45], Fusaro et al.

(1997) [33], Hatton (2008) [49], Hungerford et al. (2004) [134], Höst & Johansson (2000) [135], Kelly & Shepard

(2004) [46], Laitenberger & DeBaud (1997) [37], Laitenberger et al. (2000;2001) [38, 136], Maldonado et al.

(2006) [36], Miller et al. (1998) [32], Porter et al. (1995) [30], Porter & Votta (1994;1998) [29, 31], Regnell et al.

(2000) [137], Sabaliauskaite et al. (2003) [39], Sandahl (1998) [34], Thelin et al. (2001;2003;2004) [40, 41, 42],

Zhang et al. (1999) [138].

Effectiveness factors (23) Biffl et al. (2001) [69], Biffl & Halling (2003) [139], Briand et al. (2004) [140], Carver et al. (2008) [70],

Dunsmore et al. (2000) [141], Ebert et al. (2001) [58], Halling & Biffl (2002) [142], Johnson & Tjahjono

(1997;1998) [143, 60], Kelly & Shepard (2004) [144], Laitenberger et al. (2002) [61], Land et al. (2000) [67],

Miller & Yin (2004) [145], Porter et al. (1997;1997;1998) [52, 146, 67], Porter & Johnson (1997) [54], Porter &

Votta (1997) [147], Raz & Yaung (1997) [148], Sabaliauskaite et al. (2004) [55], Sauer et al. (2000) [48], Seaman

& Basili (1997;1998) [149, 64].

Processes (22) Ackerman et al. (1989) [150], d'Astous (2001) [151], Bias (1991) [152], Bisant & Lyle (1989) [72], van Emden

(1992) [81], Fagan (1986) [9], Gantner & Barth (2003) [153], Jackson & Hoffman (1994) [79], Knight & Myers

(1993) [51], Kosman (1997) [154], Kusumoto et al. (1998) [73], Martin ja Tsai (1990) [75], Meyer (2008) [155],

Mishra & Mishra (2007) [77], Parnas & Weis (1985;1987) [28, 156], Polack (2001) [80], Rigby et al. (2008) [78],

Runge (1982) [71], Schneider et al. (1992) [74], Thelin et al. (2004) [76], Weinberg ja Freedman (1984) [157].

Technical view

(76)

Other technical topics (6) de Almeida et al. (2003) [87], Chernak (1996) [85], Dunsmore et al. (2000) [83], Macdonald et al. (1996) [82],

Tervonen (1996) [84], Traore & Aredo (2004) [86].

Inspection impact on the

development process (14)

Basili & Selby (1987) [89], Bush (1990) [88], Doolan (1992) [3], Grady & Van Slack (1994) [4], Houdek et al.

(2002) [92], Maranzano et al. (2005) [158], Müller (2004;2005) [95, 96], Roper et al. (1997) [93], Runeson et al.

(2006) [94], Russel (1991) [5], So et al. (2002) [91], Weller (1993) [159], Zheng et al. (2006) [97].

Management

view (27)

Other management topics

(13)

Barnard & Price (1994) [98], Briand et al (1998) [100], Chaar et al. (1993) [105], Chatzigeorgiou & Antoniadis

(2003) [102], Denger & Shull (2007) [106], Freimut et al. (2005) [101], Hall & Fenton (1996) [160], Harjumaa

(2005) [107], Iisakka & Tervonen (1998) [108], Jacob & Pillai (2003) [104], Jalote & Haragopal (1998) [90],

Kusumoto et al. (1996) [103], Madachy (1996) [99].

Other main

topics (50)

Defect estimation (23) Biffl (2000;2003) [161, 162], Biffl & Grossmann (2001) [114], Biffl & Gutjahr (2002) [163], Briand et al. (2000)

[164], Cockram (2001) [165], Ebrahimi (1997) [166], Eick et al. (1992) [110], El Emam et al. (2000) [115], El

Emam & Laitenberger (2001) [167], Miller (1999;2002) [168, 169], Padberg (2002) [112], Padberg et al. (2004)

[170], Petersson et al. (2004) [113], Runeson & Wohlin (1998) [171], Thelin (2004) [116], Thelin & Runeson

(2000;2002) [172, 173], Vander Wiel & Votta (1993) [111], Wohlin et al. (1995) [174], Wohlin & Runeson (1998)

[175], Yin et al. (2004) [117].

 Inspection tools (16) Anderson et al. (2003) [125], van Genuchten et al. (2001) [176], Johnson (1994) [120], Lanubile et al. (2003)

[177], Macdonald & Miller (1997;1998;1999) [121, 126, 122], Mashayekhi et al. (1993) [119], Miller & Mac-

donald (2000) [178], Perpich et al. (1997) [128], Perry et al. (2002) [123], Stein et al. (1997) [129], Tervonen

(1996) [124], Tervonen & Oinas-Kukkonen (1996) [179], Tyran & George (2002) [127], Vitharana & Ramamurt-

hy (2003) [130].

 Comprehensive views (4) Aurum et al. (2002) [6], Ciolkowski et al. (2003) [27], Johnson (1998) [59], Laitenberger & DeBaud (2000) [7].

 Unclassified topics (7) d'Astous & Robillard (2000;2002) [57, 180], Carver ym. (2006) [181], Kazman & Bass (2002) [182], Kelly et al.

(1992) [183], Näslund & Löwgren (1999) [184], Xu (2003) [132].

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 31

REFERENCES

[1] L. Osterweil, L. Clarke, R. DeMillo et al., “Strategic directions in
software quality”, ACM Computing Surveys, vol. 28(4), pp. 738-
750, 1996.

[2] M.E. Fagan, “Design and code inspection to reduce errors in pro-
gram development”, IBM Systems Journal, vol. 15(3), pp. 182-211,
1976.

[3] E. Doolan, “Experience with Fagan's inspection method”, Software
Practice and Experience, vol. 22(2), pp. 173-182, 1992.

[4] R. Grady, & T. Van Slack, “Key lessons in achieving widespread
inspection use”, IEEE Software, vol. 11(4), pp. 46-57, 1994.

[5] G.W. Russell, “Experience with inspection in ultra large-scale
developments”, IEEE Software, vol. 8(1), pp. 25-31, 1991.

[6] A. Aurum, H. Petersson, & C. Wohlin, “State-of-the-art: Software
inspections after 25 years”, Software Testing, Verification and Re-

liability, vol. 12(3), pp. 133-154, 2002.
[7] O. Laitenberger, & J.M. DeBaud, “An encompassing life cycle

centric survey of software inspection”, Journal of Systems and
Software, vol. 50(1), pp. 5-31, 2000.

[8] A.A. Porter, H.P. Siy, & L.G. Votta, “A review of software inspec-
tions”, Advances in Computers, vol. 42, pp. 39-76, 1996.

[9] M.E. Fagan, “Advances in software inspections” IEEE Transac-
tions on Software Engineering, vol. 12(7), pp. 744-751, 1986.

[10] R. G. Ebenau, & S.H. Strauss. “Software Inspection Process”, New
York: McGraw-Hill, 1994.

[11] T. Gilb, & D. Graham, “Software Inspection”, Wokingham, Eng-
land: Addison-Wesley, 1993.

[12] K. Wiegers, Peer Reviews in Software: A Practical Guide. Boston:
Addison-Wesley, 2002.

[13] P. Brereton, B. Kitchenham, D. Budgen et al., “Lessons from ap-
plying the systematic literature review process within the software
engineering domain”, Journal of Systems and Software, vol. 80(4),
pp. 571-583, 2007.

[14] S. Kollanus, “ICMM - Inspection capability maturity model”, in
IASTED International Conference on Software Engineering, pp.
372-377.

[15] S. Kollanus, “Issues in software inspection practices”, in Product
Focused Software Process Improvement - 6th International Confer-
ence, LNCS 3547, 2005, pp. 429-442.

[16] S. Kollanus, “Experiences from using ICMM in inspection process
assessment”, Software Quality Journal, 2009 (In press, available
online).

[17] S. Kollanus, & J. Koskinen, “Software inspections in practice: Six
case studies”, in Product Focused Software Process Improvement -
7th International Conference, LNCS 4034, pp. 377-382, 2006.

[18] ISI, “ISI Web of Knowledge. Journal Citation Reports”, JCR Sci-
ence Edition, 2009, categories: Computer Science, Software Engi-
neering (URL: http://www.isiknowledge. com/) [Accessed: Feb.
20, 2009].

[19] A. Abran, J.W. Moore, P. Bourque, et al. (Eds.), SWEBOK: Guide
to the Software Engineering Body of Knowledge. IEEE Computer
Society, 2004. (URL: http://www.swebok.org/htmlformat.html)
[Accessed: Feb. 20, 2009].

[20] CiteSeer, “Estimated impact of publication venues in computer
science (Based on CiteSeer database and DBLP)”, 2009, (URL:
http://citeseer.ist.psu.edu/impact.html) [Accessed: Feb. 20, 2009].

[21] DBLP, “Computer Science Bibliography - University of Trier”,
2009, (URL: http://dblp.uni-trier.de/) [Accessed: Feb. 20, 2009].

[22] IEEE, “IEEE Xplore (Release 2.5)”, 2009, (URL:
http://ieeexplore.ieee.org) [Accessed: Feb. 20, 2009].

[23] ACM, “The ACM Digital Library”, 2009, (URL:
http://www.acm.org/dl/) [Accessed: Feb. 20, 2009].

[24] F. Shull, F. Lanubile, & V.R. Basili, “Investigating reading tech-
niques for object-oriented framework learning”, IEEE Transactions
on Software Engineering, vol. 26(11), pp. 1101-1118, 2000.

[25] R. Chillarege, I.S. Bhandari, J.K. Chaar et al., “Orthogonal defect
classification - A concept for in-process measurements”, IEEE

Transactions on Software Engineering, vol. 18(11), pp. 943-956,
1992.

[26] V. Basili, & S. Green, “Software process evolution at the SEL”,
IEEE Software, vol. 11(4), pp. 58-66, 1994.

[27] M. Ciolkowski, O. Laitenberger, & S. Biffl, “Software reviews, the
state of the practice”, IEEE Software, vol. 20(6), pp. 46-51, 2003.

[28] D.L. Parnas, & D.M. Weiss, “Active design reviews: Principles
and practices”, In 10th International Conference on Software Engi-
neering, pp. 132-136, 1985.

[29] A. Porter, & L.G. Votta, “An experiment to assess different defect
detection methods for software requirements inspections”, in Pro-
ceedings of the 16th International Conference on Software Engi-
neering, pp. 103-112, 1994.

[30] A.A. Porter, L.G. Votta, & V.R. Basili, “Comparing detection
methods for software requirements inspections: A replicated ex-
periment”, IEEE Transactions on Software Engineering, vol. 21(6),
pp. 563-575, 1995.

[31] A. Porter, & L. Votta, “Comparing detection methods for software
requirements inspections: A replication using professional sub-
jects”, Empirical Software Engineering, vol. 3(4), pp. 355-379,
1998.

[32] J. Miller, M. Wood, & M. Roper, “Further experiences with scenar-
ios and checklists”, Empirical Software Engineering, vol. 3(1), pp.
37-64, 1998.

[33] P. Fusaro, F. Lanubile, & G. Visaggio, “A replicated experiment to
assess requirements inspection techniques”, Empirical Software

Engineering, vol. 2(1), pp. 39-57, 1997.
[34] K. Sandahl, O. Blomkvist, K. Karlsson, C. et al., “An extended

replication of an experiment for assessing methods for software re-
quirements inspections”, Empirical Software Engineering, vol.
3(4), pp. 327-354, 1998.

[35] V.R. Basili, S. Green, O. Laitenberger, F. et al., “The empirical
investigation of perspective-based reading”, Empirical Software
Engineering, vol. 1(2), pp. 133-164, 1996.

[36] J. Maldonado, J. Carver, F. Shull et al., “Perspective-based reading:
A replicated experiment focused on individual reviewer effective-
ness. An empirical investigation”, Empirical Software Engineering,
vol. 11(1), pp. 119-142, 2006.

[37] O. Laitenberger, & J.-M. DeBaud, ” Perspective-based reading of
code documents at Robert Bosch GmbH”, Information and Soft-

ware Technology, vol. 39(11), pp. 781-791, 1997.
[38] O. Laitenberger, C. Atkinson, M. Schlich et al., “An experimental

comparison of reading techniques for defect detection in UML de-
sign documents”, Journal of Systems and Software, vol. 53(2), pp.
183-204, 2000.

[39] G. Sabaliauskaite, F. Matsukawa, S. Kusumoto et al., “Further
investigations of reading techniques for object-oriented design in-
spection”, Information and Software Technology, vol. 45(9), pp.
571-585, 2003.

[40] T. Thelin, P. Runeson, & B. Regnell, “Usage-based reading - An
experiment to guide reviewers with use cases”, Information and
Software Technology, vol. 43(15), pp. 925-938, 2001.

[41] T. Thelin, P. Runeson, & C. Wohlin, “An experimental comparison
of usage-based and checklist-based reading”, IEEE Transactions

on Software Engineering, vol. 29(8), pp. 687-704, 2003.
[42] T. Thelin, P. Runeson, C. Wohlin et al., “Evaluation of usage-

based reading - Conclusions after three experiments”, Empirical
Software Engineering, vol. 9(1-2), pp. 77-110, 2004.

[43] A. Dunsmore, M. Roper, & M. Wood, “Systematic object-oriented
inspection technique”, In Proceedings of the 23rd International
Conference on Software Engineering, pp. 123-144, 2001.

[44] A. Dunsmore, M. Roper & M. Wood, “Further investigations into
the development and evaluation of reading techniques for object-
oriented code inspection”, In Proceedings of the 24th International
Conference on Software Engineering, pp. 47-57, 2002.

[45] A. Dunsmore, M. Roper & M. Wood, “The development and
evaluation of three diverse techniques for object-oriented code in-
spection”, IEEE Transactions on Software Engineering, vol. 29(8),
pp. 677-686, 2003.

[46] D. Kelly, & T. Shepard, “Task-directed software inspection”, Jour-

nal of Systems and Software, vol. 73(2), pp. 361-368, 2004.
[47] L. Votta, “Does every inspection need a meeting?”, ACM Software

Engineering Notes, vol. 18(5), pp. 107-114, 1993.
[48] C. Sauer, D.R. Jeffery, L. Land et al., “The effectiveness of soft-

ware development technical reviews: A behaviorally motivated
program of research”, IEEE Transactions on Software Engineering,
vol. 26(1), pp. 1-14, 2000.

[49] L. Hatton, “Testing the value of checklists in code inspections”,
IEEE Software, vol. 25(4), pp. 82-88, 2008.

[50] B.W. Boehm, Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

32 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

[51] J.C Knight, & E.A. Myers, “An improved inspection technique”,
Communications of the ACM, vol. 36(11), pp. 51-61, 1993.

[52] A.A. Porter, H.P. Siy, C.A. Toman et al., “An experiment to assess
the cost-benefits of code inspections in large scale software devel-
opment”, IEEE Transactions on Software Engineering, vol. 23(6),
pp. 329-346, 1997.

[53] A. Bianchi, F. Lanubile, F.G. Visaggio, “A controlled experiment
to assess the effectiveness of inspection meetings”, in International
Symposium on Software Metrics, pp. 42-50, 2001.

[54] A.A. Porter, & P.M. Johnson, “Assessing software review meet-
ings: Results of a comparative analysis of two experimental stud-
ies”, IEEE Transactions on Software Engineering, vol. 23(3), pp.
129-145, 1997.

[55] G. Sabaliauskaite, S. Kusumoto, & K. Inoue, “Assessing defect
detection performance of interacting teams in object-oriented de-
sign inspection”, Information and Software Technology, vol.
46(13), pp. 875-886, 2004.

[56] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard et al., “Preliminary
guidelines for empirical research in software engineering”, IEEE

Transactions on Software Engineering, vol. 28(8), pp. 721-734,
2002.

[57] P. d'Astous, & P.N. Robillard, “Characterizing implicit information
during peer review meetings”, In: Proceedings of the 22nd Interna-
tional Conference on Software Engineering, pp. 460-466, 2000.

[58] C. Ebert, C.H. Parro, R. Suttels et al., “Improving validation activi-
ties in a global software development”, In Proceedings of the 23rd
International Conference on Software Engineering, pp. 545-554,
2001.

[59] P.M. Johnson, “Reengineering inspection”, Communications of the

ACM, vol. 41(2), pp. 49-52, 1998.
[60] P.M. Johnson, & D. Tjahjono, “Does every inspection really need a

meeting?”, Empirical Software Engineering, vol. 3(1), pp. 9-35,
1998.

[61] O. Laitenberger, T. Beil, & T. Schwinn, “An industrial case study
to examine a non-traditional inspection implementation for re-
quirements specifications”, Empirical Software Engineering, vol.
7(4), pp. 345-374, 2002.

[62] D.A. Christenson, S.T. Huang, & A.J. Lamperez, “Statistical qual-
ity control applied to code inspections”, IEEE Journal of Selected

Areas of Communication, vol. 8(2), pp. 196-200, 1990.
[63] A. Dunsmore, “Survey of Object-oriented Defect Detection Ap-

proaches and Experience in Industry”, Technical Report - EFoCS-
37-2000, University of Strathclyde, Scotland, UK, July 2000.

[64] C. Seaman, & V. Basili, “Communication and organization: An
empirical study of discussion in inspection meetings”, IEEE Trans-

actions on Software Engineering, vol. 24(7), pp. 559-572, 1998.
[65] K.V. Bourgeois, “Process insights from a large-scale software

inspections data analysis”, CrossTalk, Oct. 1996.
[66] S. Rifkin, & L. Deimel, ”Applying program comprehension tech-

niques to improve software inspections”, In: Proceedings of the
19th Annual NASA Software Engineering Workshop, pp. 115-126,
1994.

[67] L. Land, C. Sauer & R. Jeffery, “The use of procedural roles in
code inspections: An experimental study”, Empirical Software En-
gineering, vol. 5(1), pp. 11-34, 2000.

[68] A. Porter, H. Siy, A. Mockus et al., “Understanding the sources of
variation in software inspections”, ACM Transactions on Software

Engineering and Methodology, vol. 7(1), pp. 41-79, 1998.
[69] S. Biffl, B. Freimut, & O. Laitenberger, “Investigating the cost-

effectiveness of reinspections in software development”, in Pro-
ceedings of the 23rd International Conference on Software Engi-
neering, 2001, 155-164.

[70] J. Carver, N. Nagappan, & A. Page, “The impact of educational
background on the effectiveness of requirements inspections: An
empirical study”, IEEE Transactions on Software Engineering, vol.
34(6), pp. 800-812, 2008.

[71] B. Runge, “The Inspection Method applied to small projects”, In:
Proceedings of the 6th International Conference on Software Engi-
neering, 416-417, 1982.

[72] D.B. Bisant, & J.R. Lyle, “A two-person inspection method to
improve programming productivity”, IEEE Transactions on Soft-

ware Engineering, vol. 15(10), pp. 1294-1304, 1989.
[73] S. Kusumoto, A. Chimura, T. Kikuno, et al., “A promising ap-

proach to two-person software review in educational environment",
Journal of Systems and Software, vol. 40(2), pp. 115-123, 1998.

[74] M. Schneider, J. Martin, & W. Tsai, “An experimental study of
fault detection in user requirements documents”, ACM Transac-
tions on Software Engineering and Methodology, vol. 1(2), pp.
188-204, 1992.

[75] J. Martin, & W.T. Tsai, “N-fold inspection: A requirements analy-
sis technique”, Communications of the ACM, vol. 33(2), pp. 225-
232, 1990.

[76] T. Thelin, H. Petersson, P. Runeson et al., “Applying sampling to
improve software inspections”, Journal of Systems and Software,
vol. 73(2), pp. 257-269, 2004.

[77] D. Mishra, & A. Mishra, “Efficient software review process for
small and medium enterprises”, IET Software, vol. 1(4), pp. 132-
142, 2007.

[78] P. Rigby, D. German & M. Storey, “Open source software peer
review practices: A case study of the Apache server”, In: Proceed-
ings of the 30th International Conference on Software Engineering,
pp. 541-550, 2008.

[79] A. Jackson, & D. Hoffman, “Inspecting module interface specifica-
tions”, Software Testing, Verification, and Reliability, vol. 4(2), pp.
133-153, 1994.

[80] F. Polack, “A case study using lightweight formalism to review an
information system specification”, Software: Practice and Experi-
ence, vol. 31(8), pp. 757-780, 2001.

[81] M. van Emden, “Structured inspections of code”, Software Testing,
Verification, and Reliability, vol. 2(2), pp. 133-153, 1992.

[82] F. Macdonald, J. Miller, A. Brooks et al., “Applying inspection to
object-oriented code”, Software Testing, Verification and Reliabil-

ity, vol. 6(2), pp. 61-82, 1996.
[83] A. Dunsmore, M. Roper, & M. Wood, “Object-oriented inspection

in the face of delocalization”, In: Proceedings of the 22nd Interna-
tional Conference on Software Engineering, pp. 467-476, 2000.

[84] I. Tervonen, “Consistent support for software designers and inspec-
tors”, Software Quality Journal, vol. 5(3), pp. 221-229, 1996.

[85] Y. Chernak, “A statistical approach to the inspection checklist -
Formal synthesis and improvement”, IEEE Transactions on Soft-

ware Engineering, vol. 22(12), pp. 866-874, 1996.
[86] I. Traore, & D.B. Aredo, “Enhancing structured review with

model-based verification”, IEEE Transactions on Software Engi-
neering, vol. 30(11), pp. 736-753, 2004.

[87] J.R. de Almeida, J.B. Camargo, B.A. Basseto et al., “Best practices
in code inspection for safety-critical software”, IEEE Software, vol.
20(3), pp. 56-63, 2003.

[88] M. Bush, “Improving software quality: The use of formal inspec-
tions at the JPL”, In: Proceedings of the 14th International Confer-
ence on Software Engineering, pp. 196-199, 1990.

[89] V.R. Basili & R. Selby, “Comparing the effectiveness of software
testing strategies”, IEEE Transactions on Software Engineering,
vol. 13(12), pp. 1278-1296, 1987.

[90] P. Jalote & M. Haragopal, “Overcoming the NAH syndrome for
inspection deployment”, in Proceedings of the 20th International
Conference on Software Engineering, 1998, pp. 371-378.

[91] S. So, S. Cha, T. Shimeall, et al., “An empirical evaluation of six
methods to detect faults in software”, Software Testing, Verifica-

tion and Reliability, vol. 12(3), pp. 155-171, 2002.
[92] F. Houdek, T. Schwinn, & D. Ernst, “Defect detection for executa-

ble specifications - an experiment”, International Journal of Soft-
ware Engineering and Knowledge Engineering, vol. 12(6), pp. 637-
655, 2002.

[93] M. Roper, M. Wood, & J. Miller, “An empirical evaluation of
defect detection techniques”, Information and Software Technol-
ogy, vol. 39(11), pp. 763-775, 1997.

[94] P. Runeson, C. Andersson, T. Thelin et al., “What do we know
about defect detection methods?”, IEEE Software, vol. 23(3), pp.
82- 90, 2006.

[95] M. Müller, “Are reviews an alternative to pair programming?”,
Empirical Software Engineering, vol. 9(4), pp. 335-351, 2004.

[96] M. Müller, “Two controlled experiments concerning the compari-
son of pair programming to peer review”, Journal of Systems and
Software, vol. 78(2), pp. 166-179, 2005.

[97] J. Zheng, L. Williams, N. Nagappan et al., “On the value of static
analysis for fault detection in software”, IEEE Transactions on

Software Engineering, vol. 32(4), pp. 240-253, 2006.
[98] J. Barnard, & A. Price, “Managing code inspection information”,

IEEE Software, vol. 11(2), pp. 59-69, 1994.

Survey of Software Inspection Research The Open Software Engineering Journal, 2009, Volume 3 33

[99] R. Madachy, “System dynamics modeling of an inspection-based
process”, In: Proceedings of the 18th International Conference on
Software Engineering, pp. 376-386, 1996.

[100] L. Briand, K. El Emam, O. Laitenberger, et al., “Using simulation
to build inspection efficiency benchmarks for development pro-
jects”, In: Proceedings of the 20th International Conference on
Software Engineering, pp. 340-349, 1998.

[101] B. Freimut, L.C. Briand, & F. Vollei, “Determining inspection
cost-effectiveness by combining project data and expert opinion”,
IEEE Transactions on Software Engineering, vol. 31(12), pp. 1074-
1092, 2005.

[102] A. Chatzigeorgiou, & G. Antoniadis, “Efficient management of
inspections in software development projects”, Information and

Software Technology, vol. 45(10), pp. 671-680, 2003.
[103] S. Kusumoto, T. Kikuno, K. Matsumoto e al.,”Experimental

evaluation of time allocation procedure for technical reviews”,
Journal of Systems and Software, vol. 35(2), pp. 119-126, 1996.

[104] A.L. Jacob, & S.K. Pillai, “Statistical process control to improve
coding and code review”, IEEE Software, vol. 20(3), pp. 50-55,
2003.

[105] J.K. Chaar, M.J. Halliday, I.S. Bhandari, et al., “In-process evalua-
tion for software inspection and test”, IEEE Transactions on Soft-
ware Engineering, vol. 19(11), pp. 1055-1070, 1993.

[106] C. Denger, & F. Shull, “A Practical Approach for Quality-Driven
Inspections”, IEEE Software, vol. 24(2), pp. 79-86, 2007.

[107] L. Harjumaa, “A pattern approach to software inspection process
improvement”, Software Process: Improvement and Practice, vol.
10(4), pp. 455-465, 2007.

[108] J. Iisakka, & I. Tervonen, ”Painless improvements to the review
process”, Software Quality Journal, vol. 7(1), pp. 11-20, 1998.

[109] L. Harjumaa, I. Tervonen, & P. Vuorio, “Using software inspection
as a catalyst for SPI in a small company”, In: Proceedings of the
5th International Conference on Product Focused Software Process
Improvement, LNCS 3009, pp. 62-75, 2004.

[110] S.G. Eick, C.R. Loader, M.D. Long, et al., “Estimating software
fault content before coding”, In: Proceedings of the 14th Interna-
tional Conference on Software Engineering, 1992, pp. 59-65.

[111] S. Vander Wiel, & L. Votta, “Assessing software designs using
capture-recapture methods”, IEEE Transactions on Software Engi-

neering, vol. 19(11), pp. 1045-1054, 1993.
[112] F. Padberg, “Empirical interval estimates for the defect content

after an inspection”, In: Proceedings of the 24th International Con-
ference on Software Engineering, 2002, pp. 58-68.

[113] H. Petersson, T. Thelin, P. Runeson et al., “Capture–recapture in
software inspections after 10 years research - Theory, evaluation
and application”, Journal of Systems and Software, vol. 72(2), pp.
249-264, 2004.

[114] S. Biffl, & W. Grossmann, “Evaluating the accuracy of defect
estimation models based on inspection data from two inspection
cycles”, In: Proceedings of the 23rd International Conference on
Software Engineering, 2001, pp. 145-154.

[115] K. El Emam, O. Laitenberger & T. Harbich, “The application of
subjective estimates of effectiveness to controlling software inspec-
tions”, Journal of Systems and Software, vol. 54(2), pp. 119-136,
2000.

[116] T. Thelin, “Team-based fault content estimation in the software
inspection process”, in Proceedings of the 26th International Con-
ference on Software Engineering, 2004, pp. 263-272.

[117] Z. Yin, A. Dunsmore & J. Miller, “Self-assessment of performance
in software inspection processes”, Information and Software Tech-
nology, vol. 46(3), pp. 185-194, 2004.

[118] H. Hedberg, “Introducing the next generation of software inspec-
tion tools”, in Proceedings of the 5th International Conference on
Product Focused Software Process Improvement, LNCS 3009,
2004, pp. 234-247.

[119] V. Mashayekhi, J.M. Drake, W.-T. Tsai, et al., “Distributed, col-
laborative software inspection”, IEEE Software, vol. 10(5), pp. 66-
75. 1993.

[120] P.M. Johnson, “An instrumented approach to improving software
quality through formal technical review”, in Proceedings of the
16th International Conference on Software Engineering, 1994, pp.
113-122.

[121] F. Macdonald, & J. Miller, “A software inspection process defini-
tion language and prototype support tool”, Software Testing, Verifi-
cation and Reliability, vol. 7(2), pp. 99-128, 1997.

[122] F. Macdonald & J. Miller, “ASSIST - A tool to support software
inspection”, Information and Software Technology, vol. 41(15), pp.
1045-1057, 1999.

[123] D.E. Perry, A. Porter, M.W. Wade et al., “Reducing inspection
interval in large-scale software development”, IEEE Transactions

on Software Engineering, vol. 28(7), pp. 695-705, 2002.
[124] I. Tervonen, “Support for quality-based design and inspection”,

IEEE Software, vol. 13(1), pp. 44-54, 1996.
[125] P. Anderson, T. Reps, & T. Teitelbaum, “Design and implementa-

tion of a fine-grained software inspection tool”, IEEE Transactions
on Software Engineering, vol. 29(8), pp. 721-733, 2003.

[126] F. Macdonald, & J. Miller, “A comparison of tool-based and paper-
based software inspection”, Empirical Software Engineering, vol.
3(3), pp. 233-253, 1998.

[127] C.K. Tyran, & J.F. George, “Improving software inspections with
group process support”, Communications of the ACM, vol. 45(9),
pp. 87-92, 2002.

[128] J.M. Perpich, D.E. Perry, A.A. Porter, et al., “Anywhere, anytime
code inspections: Using the web to remove inspection bottlenecks
in large-scale software development”, in Proceedings of the 19th
International Conference on Software Engineering, 1997, pp. 14-
21.

[129] M. Stein, J. Riedl, S. Harner, et al., “A case study of distributed,
asynchronous software inspection”, in Proceedings of the 19th In-
ternational Conference on Software Engineering, 1997, pp. 107-
117.

[130] P. Vitharana, & K. Ramamurthy, “Computer-mediated group sup-
port, anonymity, and the software inspection process: An empirical
investigation”, IEEE Transactions on Software Engineering, vol.
29(2), pp. 167-180, 2003.

[131] D.L. Parnas, & M. Lawford, “The role of inspection in software
quality assurance”, IEEE Transactions on Software Engineering,
vol. 29(8), pp. 674-676, 2003.

[132] J. Xu, “On inspection and verification of software with timing
requirements”, IEEE Transactions on Software Engineering, vol.
29(8), pp. 705-720, 2003.

[133] T. Berling, & P. Runeson, “Evaluation of a perspective based re-
view method applied in an industrial setting”, IEE Proceedings -
Software, vol. 150(3), pp. 177-184, 2003.

[134] B. Hungerford, A. Hevner, & R. Collins, “Reviewing software
diagrams: A cognitive study”, IEEE Transactions on Software En-

gineering, vol. 30(2), pp. 82-96, 2004.
[135] M. Höst, & C. Johansson, “Evaluation of code review methods

through interviews and experimentation”, Journal of Systems and
Software, vol. 52(2-3), pp. 113-120, 2000.

[136] O. Laitenberger, K. El Emam, & T.G. Harbich, “An internally
replicated quasi-experimental comparison of checklist and perspec-
tive based reading of code documents”, IEEE Transactions on
Software Engineering, vol. 27(5), pp. 387-421, 2001.

[137] B. Regnell, P. Runeson, & T. Thelin, “Are the perspectives really
different? – Further experimentation on scenario-based reading of
requirements”, Empirical Software Engineering, vol. 5(4), pp. 331-
356, 2000.

[138] Z. Zhang, V. Basili, & B. Shneiderman, “Perspective-based usabil-
ity inspection: An empirical validation of efficacy”, Empirical

Software Engineering, vol. 4(1), pp. 43-69, 1999.
[139] S. Biffl, & M. Halling, “Investigating the defect detection effec-

tiveness and cost benefit of nominal inspection teams”, IEEE
Transactions on Software Engineering, vol. 29(5), pp. 385-397,
2003.

[140] L. Briand, B. Freimut, & F. Vollei, “Using multiple adaptive re-
gression splines to support decision making in code inspections”,
Journal of Systems and Software, vol. 73(2), pp. 205-217, 2004.

[141] A. Dunsmore, M. Roper, & M. Wood, “The role of comprehension
in software inspection”, Journal of Systems and Software, vol.
52(2-3), pp. 121-129, 2000.

[142] M. Halling, & S. Biffl, “Investigating the influence of software
inspection process parameters on inspection meeting performance”,
IEE Proceedings – Software, vol. 149(5), pp. 115-121, 2002.

[143] P. Johnson, & D. Tjahjono, “Assessing software review meetings:
A controlled experimental study using CSRS”, in 19th International
Conference on Software Engineering, 1997, pp. 118-127.

[144] D. Kelly, & T. Shepard, “Eight maxims for software inspectors”,
Software Testing, Verification and Reliability, vol. 14(4), pp. 243-
256, 2004.

34 The Open Software Engineering Journal, 2009, Volume 3 Kollanus and Koskinen

[145] J. Miller, & Z. Yin, “A cognitive-based mechanism for construct-
ing software inspection teams”, IEEE Transactions on Software
Engineering, vol. 30(11), pp. 811-825, 2004.

[146] A. Porter, H. Siy. & L. Votta, “Understanding the effects of devel-
oper activities on inspection interval”, in Proceedings of the 19th
International Conference on Software Engineering, 1997, pp. 128-
138.

[147] A. Porter, & L. Votta, “What makes inspections work?”, IEEE
Software, vol. 14(6), pp. 99-102, 1997.

[148] T. Raz, & A. Yaung, “Factors affecting design inspection effec-
tiveness in software development”, Information and Software

Technology, vol. 39(4), pp. 297-305, 1997.
[149] C. Seaman, & V. Basili, “An empirical study of communication in

code inspections”, in Proceedings of the 19th International Confer-
ence on Software Engineering, 1997, pp. 96-106.

[150] A.F. Ackerman, L.S. Buchwald,, & F.H. Lewski, “Software inspec-
tions: An effective verification process”, IEEE Software, vol. 6(3),
pp. 31-36, 1989.

[151] P. d'Astous, P. Robillard, F. Détienne et al., “Quantitative meas-
urements of the influence of participant roles during peer review
meetings”, Empirical Software Engineering, vol. 6(2), pp. 143-159,
2001.

[152] R. Bias, “Interface-walkthroughs: Efficient collaborative testing”,
IEEE Software, vol. 8(5), pp. 94-95, 1991.

[153] T. Gantner, & T. Barth, “Experiences on defining and evaluating an
adapted review process”, in Proceedings of the 25th International
Conference on Software Engineering, 2003, 506-511.

[154] R. Kosman, “A two-step methodology to reduce requirement de-
fects”, Annals of Software Engineering, vol. 3, pp. 477-494, 1997.

[155] B. Meyer, “Design and code reviews in the age of the internet”,
Communications of the ACM, vol. 51(9), pp. 66-71, 2008.

[156] D.L. Parnas, & D.M. Weis, “Active design reviews: Principles and
practices”, Journal of Systems and Software, vol. 7(4), pp. 259-265,
1987.

[157] G.M. Weinberg, & D.P. Freedman, “Reviews, walkthroughs, and
inspections”, IEEE Transactions on Software Engineering, vol.
10(1), pp. 68-72, 1984.

[158] J. Maranzano, S. Rozsypal, G. Zimmerman et al., “Architecture
reviews: Practice and experience”, IEEE Software 22(2), pp. 34-43,
2005.

[159] E. Weller, “Lessons from three years of inspection data”, IEEE

Software, vol. 10(5), pp. 38-45, 1993.
[160] T. Hall, & N. Fenton, “Software quality programmes: A snapshot

of theory versus reality”, Software Quality Journal, vol. 5(4), pp.
235-242, 1996.

[161] S. Biffl, “Using inspection data for defect estimation”, IEEE Soft-
ware, vol. 17(6), pp. 36-43, 2000.

[162] S. Biffl, “Evaluating defect estimation models with major defects”,
Journal of Systems and Software, vol. 65(1), pp. 13-29, 2003.

[163] S. Biffl, & W. Gutjahr, “Using a reliability growth model to control
software inspection”, Empirical Software Engineering, vol. 7(3),
pp. 257-284, 2002.

[164] L. Briand, K. El Emam, B. Freimut et al., “A comprehensive
evaluation of capture-recapture models for estimating software de-
fect content”, IEEE Transactions on Software Engineering, vol.
26(6), pp. 518-540, 2000.

[165] T. Cockram, “Gaining confidence in software inspection using a
Bayesian belief model”, Software Quality Journal, vol. 9(1), pp.
31-42, 2001.

[166] N. Ebrahimi, “On the statistical analysis of the number of errors
remaining in a software design document after inspection”, IEEE
Transactions on Software Engineering, vol. 23(8), pp. 529-532,
1997.

[167] K. El Emam, & O. Laitenberger, “Evaluating capture-recapture
models with two inspectors”, IEEE Transactions on Software En-
gineering, vol. 27(9), pp. 851-864, 2001.

[168] J. Miller, “Estimating the number of remaining defects after inspec-
tion”, Software Testing, Verification and Reliability, vol. 9(3), pp.
167-189, 1999.

[169] J. Miller, “On the independence of software inspectors”, Journal of

Systems and Software, vol. 60(1), pp. 5-10, 2002.
[170] F. Padberg, T. Ragg, & R. Schoknecht, “Using machine learning

for estimating the defect content after an inspection”, IEEE
Transactions on Software Engineering, vol. 30(1), pp. 17-28, 2004.

[171] P. Runeson, & C. Wohlin, “An experimental evaluation of an expe-
rience-based capture-recapture method in software code inspec-
tions”, Empirical Software Engineering, vol. 3(4), pp. 381-406,
1998.

[172] T. Thelin, & P. Runeson, “Robust estimations of fault content with
capture–recapture and detection profile estimators”, Journal of Sys-

tems and Software, vol. 52(2-3), pp. 139-148, 2000.
[173] T. Thelin, & P. Runeson, “Confidence intervals for capture–

recapture estimations in software inspections”, Information and
Software Technology, vol. 44(12), pp. 683-702, 2002.

[174] C. Wohlin, P. Runeson, & J. Brantestam, “An experimental evalua-
tion of capture-recapture in software inspections”, Software Test-

ing, Verification, and Reliability, vol. 5(4), pp. 213-232, 1995.
[175] C. Wohlin, & P. Runeson, ”Defect content estimations from review

data”, in Proceedings of the 20th International Conference on
Software Engineering, 1998, pp. 371-378.

[176] M. van Genuchten, C. van Dijk, H. Scholten et al., “Using group
support systems for software inspections”, IEEE Software, vol.
18(3), pp. 60-65, 2001.

[177] F. Lanubile, T. Mallardo, & F. Calefato, “Tool support for geo-
graphically dispersed inspection teams”, Software Process: Im-
provement and Practice, vol. 8(4), pp. 217-231, 2003.

[178] J. Miller, & F. Macdonald, “An empirical incremental approach to
tool evaluation and improvement”, Journal of Systems and Soft-

ware, vol. 51(1), pp. 19-35, 2000.
[179] I. Tervonen, & H. Oinas-Kukkonen, “Reorganizing the inspection

process: Problems encountered and resolved”, Software Process:
Improvement and Practice, vol. 2(2), pp. 97-110, 1996.

[180] P. d'Astous, & P. Robillard, “Empirical study of exchange patterns
during software peer review meetings”, Information and Software

Technology, vol. 44(11), pp. 639-648, 2002.
[181] J. Carver, F. Shull, & V. Basili, “Can observational techniques help

novices overcome the software inspection learning curve? An em-
pirical investigation”, Empirical Software Engineering, vol. 11(4),
pp. 523-539, 2006.

[182] R. Kazman, & L. Bass, “Making architecture reviews work in the
real world”, IEEE Software, vol. 19(1), pp. 67-73, 2002.

[183] J. Kelly, J. Sherif, & J. Hops, “An analysis of defect densities
found during software inspections”, Journal of Systems and Soft-
ware, vol. 17(2), pp. 111-117, 1992.

[184] T. Näslund, & J. Löwgren, “Usability inspection in contract-based
systems development - A contextual assessment”, Journal of Sys-

tems and Software, vol. 45(3), pp. 233-240, 1999.

Received: March 16, 2009 Revised: April 14, 2009 Accepted: April 16, 2009

© Kollanus and Koskinen; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

