
72 The Open Software Engineering Journal, 2009, 3, 72-77

 1874-107X/09 2009 Bentham Open

Open Access

The Introduction of Several User Interface Structural Metrics to Make
Test Automation More Effective

Izzat Alsmadi* and Mohammed Al-Kabi*

Department of Computer Information Systems, Yarmouk University, Jordan

Abstract: User interfaces have special characteristics that differentiate them from the rest of the software code. Typical

software metrics that indicate its complexity and quality may not be able to distinguish a complex Graphical User Inter-

face (GUI) or a high quality one from another that is not. This paper is about suggesting and introducing some GUI struc-

tural metrics that can be gathered dynamically using a test automation tool. Rather than measuring quality or usability, the

goal of those developed metrics is to measure the GUI testability, or how much it is hard, or easy to test a particular user

interface. We evaluate GUIs for several reasons such as usability and testability. In usability, users evaluate a particular

user interface for how much easy, convenient, and fast it is to deal with it. In our testability evaluation, we want to auto-

mate the process of measuring the complexity of the user interface from testing perspectives. Such metrics can be used as

a tool to estimate required resources to test a particular application.

Keywords: Layout complexity, GUI metrics, interface usability.

1. INTRODUCTION

The purpose of software metrics or measurements is to
obtain better measurements in terms of risk management,
reliability forecast, cost repression, project scheduling, and
improving the overall software quality.

GUI code has its own characteristics that make using the
typical software metrics such as lines of codes, cyclic com-
plexity, and other static or dynamic metrics impractical and
may not distinguish a complex GUI from others that are not.
There are several different ways of evaluating a GUI that
include; formal, heuristic, and manual testing. Other classifi-
cations of user evaluation techniques includes; predictive
and experimental. Unlike typical software, some of those
evaluation techniques may depend solely on users and may
never be automated or calculated numerically. GUI structural
metrics are those metrics that depend on the static architec-
ture of the user interface. The main contribution that distin-
guishes this research is that it focuses on the generation of
GUI metrics automatically (i.e. through a tool without user
interference). In this paper, we elaborate on those earlier
metrics, suggested new ones and also make some evaluation
in relation to the execution and verification process. We se-
lected some open source projects for the experiments. Most
of the selected projects are relatively small, however, GUI
complexity is not always in direct relation with size or other
code complexity metrics.

2. RELATED WORK

Usability findings can vary widely when different evalu-
ators study the same user interface, even if they use the same

*Address correspondence to these authors at the Department of computer
Information Systems, Yarmouk University, Jordan;
E-mails: ialsmadi@yu.edu.jo; mohammedk@yu.edu.jo

evaluation technique. Melody et al. surveyed 75 GUI usabil-
ity evaluation methods and presented a taxonomy for com-
paring those various methods [1]. GUI usability evaluation
typically only covers a subset of the possible actions users
might take. For these reasons, usability experts often rec-
ommend using several different evaluation techniques [1].

Highly disordered or visually chaotic GUI layouts reduce
usability, but too much regularity is unappealing and makes
features hard to distinguish.

Some interface complexity metrics that have been re-
ported in the literature include:

• The number of controls in an interface (e.g. Controls’
Count; CC). In some applications [2], only certain controls
are counted such as the front panel ones. Our tool is used to
gather this metric from several programs (as it will be ex-
plained later).

• The longest sequence of distinct controls that must be
employed to perform a specific task. In terms of the GUI
XML tree, it is the longest or deepest path or in other words
the tree depth.

• The maximum number of choices among controls
with which a user can be presented at any point in using that
interface. We also implemented this metrics by counting the
maximum number of children a control has in the tree.

• The amount of time it takes a user to perform certain
events in the GUI [3]. This may include; key strokes, mouse
clicks, pointing, selecting an item from a list, and several
other tasks that can be performed in a GUI. This “perform-
ance” metric may vary from a novice user on the GUI to an
expert one. Automating this metric will reflect the API per-
formance which is usually expected to be faster than a nor-
mal user. In typical applications, users don’t just type keys or
click the mouse. Some events require a response and think-

The Introduction of Several User Interface Structural Metrics The Open Software Engineering Journal, 2009, Volume 3 73

ing time, others require calculations. Time synchronization is
one of the major challenges that tackle GUI test automation.

It is possible, and usually complex, to calculate GUI effi-
ciency through its theoretical optimum [4, 5]. Each next
move is associated with an information amount that is calcu-
lated given the current state, the history, and knowledge of
the probabilities of all next candidate moves.

The complexity of measuring GUI metrics relies on the
fact that it is coupled with metrics related to the users such
as: thinking, response time, the speed of typing or moving
the mouse, etc. Structural metrics can be implemented as
functions that can be added to the code being developed and
removed when development is accomplished [6].

Balbo [7] had a survey about GUI evaluation automation.
He classified several techniques for processing log files as
automatic analysis methods. Some of those listed methods
are not fully automated as suggested. Many web automatic
evaluation tools were developed for automatically detecting
and reporting ergonomic violation (usability, accessibility,
etc) and in some cases making suggestions for fixing them
[7-13].

Complexity metrics are used in several ways with respect
to user interfaces. One or more complexity metrics can be
employed to identify how much work would be required to
implement or to test that interface. It can also be used to
identify code or controls that are more complex than a prede-
fined threshold value for a function of the metrics. Metrics
could be used to predict how long users might require to
become comfortable with or expert at a given user interface.
Metrics could be used to estimate how much work was done
by the developers or what percentage of a user interface’s
implementation was complete. Metrics could classify an ap-
plication among the categories: user-interface, processing
code, editing, or input/output dominated. Finally, metrics
could be used to determine what percentage of a user inter-
face is tested by a given test suite or what percentage of an
interface design is addressed by a given implementation.

In the GUI structural layout complexity metrics, there are
several papers presented. Tullis studied layout complexity
and demonstrated it to be useful for GUI usability [14].
However, he found that it did not help in predicting the time
it takes for a user to find information [15, 16]. Tullis defined
arrangement (or layout) complexity as the extent to which
the arrangement of items on the screen follows a predictable
visual scheme [6]. In other words, the less predictable a user
interface is the more complex it is expected to be.

The majority of layout complexity papers discussed the
structural complexity in terms of visual objects’ size, distri-
bution and position. Other layout structural attributes will be
studied in this paper. Examples of such layouts are: GUI tree
structure, the total number of controls in a GUI, and the tree
layout. Our research considers few metrics from widely dif-
ferent categories in this complex space. Those selected user
interface structural layout metrics are calculated automati-
cally using a developed tool. Structural metrics are based on
the structure and the components of the user interface. It
does not include those semantic or procedural metrics that
depend on user actions and judgment (that can barely be
automatically calculated). These selections are meant to il-

lustrate the richness of this space, but not to be comprehen-
sive.

3. GOALS AND APPROACHES

Our approach uses the following constraints:

• The metric or combination of metrics must be com-
puted automatically from the user interface metadata (i.e.
data about the data).

• The metric or combination of metrics provides a
value we can use automatically in test case generation or
evaluation. GUI metrics should guide the testing process in
aiming at those areas that require more focus in testing.
Since the work reported in this paper is the start of a much
larger project, we will consider only single metrics. Combi-
nations of metrics will be left to future work. A good choice
of such metrics should include metrics that can relatively be
easily calculated and that can indicate a relative quality of
the user interface design or implementation.

• The GUI structure can be represented through a hier-
archical tree. However, there are some many-to-many rela-
tions that exist in some GUI components which may violate
this assumption.

Below are some metrics that are implemented dynami-
cally as part of a GUI test automation tool [17]. This paper is
a continuation of the paper in [18] in which we introduced
some of the suggested GUI structural metrics.

We developed a tool that, automatically, generates an
XML tree to represent the GUI structure. The tool creates
test cases from the tree and executes them on the actual ap-
plication. More details on the developed tool can be found
on authors’ references.

• Total number of controls or Controls’ Count (CC).

This metric is compared to the simple Lines of Code (LOC)
count in software code metrics. Typically a program that has

millions of lines of code is expected to be more complex

than a program that has thousands. Similarly, a GUI program
that has large number of controls is expected to be more

complex relative to smaller ones. Similar to the LOC case,

this is not entirely true because some controls are easier to
test than others.

It should be mentioned that in .NET applications, forms
and similar objects have GUI components. Other project

components such as classes have no GUI forms. As a result,

the controls’ count by itself is irrelevant as a reflection for
the overall program size or complexity. To make this metric

reflects the overall components of the code and not only the

GUI; the metric is modified to count the number of controls
in a program divided by the total number of lines of code.

Table 1 shows the results.

The controls’/LOC value indicates how much the pro-
gram is GUI oriented. The majority of the gathered values

are located around 2%. Perhaps at some point we will be

able to provide certain data sheets of the CC/LOC metric to
divide GUI applications into heavily GUI oriented, medium

and low. A comprehensive study is required to evaluate

many applications to be able to come up with the best values
for such classification.

74 The Open Software Engineering Journal, 2009, Volume 3 Alsmadi and Al-Kabi

The CC/LOC metric does not differentiate between an
organized GUI from a distracted one (as far as they have the
same controls and LOC values). The other factor that can be
introduced to this metric is the number of controls in the
GUI front page. A complex GUI could be one that has all
controls situated flat on the screen. As a result, we can nor-
malize the total number of controls to those in the front page.
1 means very complex, and the lower the value, the less
complex the GUI is. The last factor that should be consid-
ered in this metric is the control type. Controls should not be
dealt with as the same in terms of the effort required for test-
ing. This factor can be added by using controls’ classifica-
tion and weight factors. We may classify controls into three
levels; hard to test (type factor =3), medium (type factor =2),
and low (type factor=1). Such classification can be heuristic
depending on some factors like the number of parameters for
the control, size, user possible actions on the control, etc.

• The GUI tree depth. The GUI structure can be trans-
formed to a tree model that represents the structural relations
among controls. The depth of the tree is calculated as the
deepest leg or leaf node of that tree.

We implemented the tree depth metric in a dynamic test
case reduction technique [19]. In the algorithm, a test sce-
nario is arbitrary selected. The selected scenario includes
controls from the different levels. Starting from the lowest
level control, the algorithm excludes from selection all those
controls that share the same parent with the selected control.
This reduction shouldn’t exceed half of the tree depth. For

example if the depth of the tree is four levels, the algorithm
should exclude controls from levels three and four only. We
assume that three controls are the least required for a test
scenario (such as Notepad – File – Exit). We continuously
select five test scenarios using the same previously described
reduction process. The selection of the number five for test
scenarios is heuristic. The idea is to select the least amount
of test scenarios that can best represent the whole GUI.

The tree depth is relevant to structural testing. It is di-
rectly proportional to the complexity of the GUI. GUI struc-
ture is hierarchical and as a result, the tree depth (i.e. max
height, represents the maximum number of levels that exists
in the application’s user interface. The tool pareses all tree
paths from the start to the end and counts the longest path.

• The structure of the tree. A tree that has most of its
controls toward the bottom is expected to be less complex,
from a testing viewpoint, than a tree that has the majority of
its controls toward the top as it has more user choices or se-
lections. If a GUI has several entry points and if its main
interface is condensed with many controls, this makes the
tree more complex. The more tree paths a GUI has the more
number of test cases it requires for branch coverage.

Tree paths’ count is a metric that differentiate a complex
GUI from a simple one. For simplicity, to calculate the num-
ber of leaf nodes automatically (i.e. the GUI number of
paths), all controls in the tree that have no children are
counted.

Table 2. Tree Paths, Depth and Average Tree Edges Per Level

Metrics

Application Under Test

(AUT)

Tree Paths’

Number

Edges/Tree

Depth

Tree Max

Depth

Notepad 176 39 5

CDiese Test 32 17 2

FormAnimation App 116 40 3

winFomThreading 5 2 2

WordInDotNet 23 12 2

WeatherNotify 82 41 2

Note1 39 8 5

Note2 13 6 3

Note3 43 13 4

GUIControls 87 32 3

ReverseGame 57 31 3

MathMaze 22 13 3

PacSnake 40 22 3

TicTacToe 49 25 3

Bridges Game 16 6 4

Hexomania 22 5 5

Table 1. Controls’ /LOC Percentage

Applications Under Test

(AsUT)
CC LOC CC/LOC

Notepad 200 4233 4.72%

Calculator 58 196388 0.03%

CDiese Test 36 5271 0.68%

FormAnimation App 121 5868 2.06%

winFomThreading 6 316 1.9%

WordInDotNet 26 1732 1.5%

WeatherNotify 83 13039 0.64%

Note1 45 870 5.17%

Note2 14 584 2.4%

Note3 53 2037 2.6%

GUIControls 98 5768 1.7%

ReverseGame 63 3041 2.07%

MathMaze 27 1138 2.37%

PacSnake 45 2047 2.2%

TicTacToe 52 1954 2.66%

Bridges Game 26 1942 1.34%

Hexomania 29 1059 2.74%

The Introduction of Several User Interface Structural Metrics The Open Software Engineering Journal, 2009, Volume 3 75

• Choice or edges/ tree depth. To find out the average
number of edges in each tree level, the total number of
choices in the tree is divided by the tree depth. The total
number of edges is calculated through the number of parent-
child relations. Each control has one parent except the entry
point. This makes the number of edges equal to the number
of controls-1. Table 2 shows the tree paths, depth and
edges/tree depth metrics for the selected AUTs.

The edges/tree depth can be seen as a normalized tree-
paths metric in which the average of tree paths per level is
calculated.

• Maximum number of edges leaving any node. The
number of children a GUI parent can have determines the
number of choices for that node. The tree depth metric repre-
sents the maximum vertical height of the tree, while this
metric represents the maximum horizontal width of the tree.
Those two metrics are major factors in the GUI complexity
as they decide the amount of decisions or choices it can
have.

In most cases, metrics values are consistent with each
other; a GUI that is complex in terms of one metric is com-
plex in most of the others.

To relate the metrics with GUI testability, we studied ap-
plying one test generation algorithm developed as part of this
research on all AUTs using the same number of test cases.
Table 3 shows the results from applying AI3 algorithm [17-
19] on the selected AUTs. This algorithm guarantees a
unique test scenario in every new test case through compar-
ing the new test case with all generated test cases in the file.
Some of those AUTs are relatively small, in terms of the
number of GUI controls. As a result many of the 50 or 100
test cases reach to the 100 % effectiveness which means that
they discover all tree branches. The two AUTs that have the
least amount of controls (i.e WinFormThreading and Note2);
achieve the 100% test effectiveness in all three columns.

Comparing the earlier tables with Table 3, we find out
that for example for the AUT that is most complex in terms
of number of controls, tree depth and tree path numbers (i.e.
Notepad), has the least test effectiveness values in the three
columns; 25, 50, and 100.

Selecting the lowest five of the 16 AUTs in terms of test
effectiveness (i.e. Notepad, FormAnimation App, Weather-
Notify, GUIControls, and ReverseGame); two are of the
highest five in terms of number of controls, tree paths’ num-
ber, and edges/tree depth; three in terms of controls/LOC,
and tree depth. Results do not match exactly in this case. (i.e.
not all expected results came true when we compare this
metric with the earlier ones). However, it gives us a good
indication of some of the GUI complex applications. Future
research should include a comprehensive list of open source
projects that may give a better confidence in the produced
results.

Next, the same AUTs are executed using 25, 50, and 100
test cases. The logging verification procedure [18] is calcu-
lated for each case. In this procedure, executed test cases are
logged and compared with the generated test cases (i.e. the
input). As a result, If the input and output files are not equal,
this can be from the automatic execution process itself, or
they can be actual errors (which are of the most interest,

from a testing perspective). Some of those values are aver-
ages as the executed to generated percentage is not always
the same (due to some differences in the number of controls
executed every time). Table 4 shows the verification effec-
tiveness for all tests.

The logging verification process implemented here is still

in early development stages. We were hoping that this test

can reflect the GUI structural complexity with proportional

values. Of the five most complex AUTs, in terms of this

verification process (i.e. Note2, CDiese, ReverseGame,

Note1, and PacSnake), only one is listed in the measured

GUI metrics. That can be either a reflection of the immatur-

ity of the verification technique implemented, or due to some

other complexity factors related to the code, environment, or

any other aspects. The effectiveness of this track is that all

the previous measurements (the GUI metrics, test generation

effectiveness, and execution effectiveness) are calculated

automatically without the user involvement. Testing and

tuning those techniques and testing them extensively will
make them powerful and useful tools.

We tried to find out whether layout complexity metrics
suggested above are directly related to GUI testability. In
other words, if an AUT GUI has high value metrics, does

Table 3. Test Case Generation Algorithms’ Results

Effectiveness (Using AI3)

AUT

2
5

 T
e
st C

a
se

s

5
0

 T
e
st C

a
se

s

1
0

0
 T

e
st C

a
se

s

Notepad 0.11 0.235 0.385

CDiese Test 0.472 0.888 1

FormAnimation App 0.149 0.248 0.463

winFomThreading 1 1 1

WordInDotNet 0.615 1 1

WeatherNotify 0.157 0.313 0.615

Note1 0.378 0.8 1

Note2 1 1 1

Note3 0.358 0.736 1

GUIControls 0.228 0.416 0.713

ReverseGame 0.254 0.508 0.921

MathMaze 0.630 1 1

PacSnake 0.378 0.733 1

TicTacToe 0.308 0.578 1

Bridges Game 0.731 1 1

Hexomania 0.655 1 1

76 The Open Software Engineering Journal, 2009, Volume 3 Alsmadi and Al-Kabi

that correctly indicate that it is more likely that this GUI is
less testable?!

4. THE GUI AUTO TOOL

A test automation tool is developed that includes all test
automation processes: test case generation, execution and
verification. The tool first generates an XML file from the
tested application executable or binary files. The XML file
represents the application model in a hierarchical tree format.
The main file of the application which includes the entry
method is the top entity of the tree. Each control which is
called directly from the main file is a child for it. All forms
that are called from the main forms are also considered chil-
dren for the parent form. This is recursively repeated for
every control or form children. Along with every control, the
properties of the control and their values are parsed to the
XML file. Several algorithms are developed for test case
generation. The main goal is to generate unique test cases
that may guarantee good coverage of the different paths in
the tested applications.

5. CONCLUSION AND FUTURE WORK

Software metrics supports project management activities
such as planning for testing and maintenance. Using the

process of gathering automatically GUI metrics is a powerful
technique that brings the advantages of metrics without the
need for separate time or resources. In this research, we in-
troduced and intuitively evaluated some user interface met-
rics. We tried to correlate those metrics with results from test
case generation and execution. Future work will include ex-
tensively evaluating those metrics using several open source
projects. In some scenarios, we will use manual evaluation
for those user interfaces to see if those dynamically gathered
metrics indicate the same level of complexity as the manual
evaluations. An ultimate goal for those dynamic metrics is to
be implemented as built in tools in a user interface test
automation process. The metrics will be used as a manage-
ment tool to direct certain processes in the automated proc-
ess. If metrics find out that this application or part of the
application under test is complex, resources will be auto-
matically adjusted to include more time for test case genera-
tion, execution and evaluation.

REFERENCES

[1] I. Melody, and M. Hearst, “The state of the art in automating us-

ability evaluation of user Interfaces”, ACM Comput. Surv. (CSUR),

vol. 33, no. 4, pp. 470-516, 2001.

[2] LabView 8.2 Help. “User interface metrics”, National Instruments.

<http://zone.ni.com/reference/-enXX/help/371361B01/lvhowto/

userinterface_statistics> 2006.

[3] P. Robert, “Human-computer interactions design and practice”,

Course Website. <http://www.csl.mtu.edu-/cs4760-/www> 2007.

[4] G. Philip, “Too many clicks! Unit-based interfaces considered

harmful”, Gamastura. <http://gamasutra.com/features/20060823/

goetz_01.shtml> 2006.

[5] T. Comber, and J. Maltby, “Investigating Layout Complexity”, 3rd

International Eurographics Workshop on Design, Specification and

Verification of Interactive Systems. Belgium, 1996, pp. 209-227.

[6] T. Tullis, “The formatting of alphanumeric displays: A review and

analysis”, Human Factors, pp. 657-683, 1983.

[7] S. Balbo, “Automatic evaluation of user interface usability: dream

or reality”, In Proceeding of the Queensland Computer-Human In-

teraction Symposium. QCHI’95, 1995.

[8] K. Robins, “User interfaces and usability lectures”,

http://vip.cs.utsa.edu/-classes/cs623s2006, Course Website, 2006.

[9] F. Ritter, D. Rooy, and A. Robert, “A user modeling design tool for

comparing interfaces”, In Proceeding of the 4th International Con-

ference on Computer-Aided Design of User Interfaces CA-

DUI'2002. 2002, pp. 111-118.

[10] M. Deshpande, and K. George, “Selective Markov models for

predicting web-page accesses”, ACM Trans. Internet Technol.

(TOIT), vol. 4, no. 2, pp. 163-184, 2004.

[11] Ch. Farenc, Ph. Palanque, and R. Bastide, “Embedding ergonomic

rules as generic requirements in the development process of inter-

active software”, In Proceeding of the 7th IFIP Conference on

Human-Computer Interaction INTERACT’99, 1999.

[12] Ch. Farenc, and Ph. Palanque, “A generic framework based on

ergonomic rules for computer-aided design of user interface”, In

Proceeding of the 3rd International Conference on Computer-

Aided Design of User Interfaces, CADUI’99, 1999.

[13] A. Beirekdar, J. Vanderdonckt, and M. Noirhomme-Fraiture,

“KWARESMI1; Knowledge-based web automated evaluation with

reconfigurable guidelines optimization”, 2002.

[14] T. Tullis, “Screen Design. Handbook of Human-Computer Interac-

tion”, Elsevier Science Publishers: The Netherlands, pp. 377-411.

1988.

[15] T. Tullis, “A system for evaluating screen formats”, In Proceeding

for Advances in Human-Computer Interaction, 1988, pp. 214-286.

[16] C. Thomas, and N. Bevan, “Usability Context Analysis: A practical

guide”, Version 4. National Physical Laboratory, Teddington, UK.

1996.

Table 4. Execution Effectiveness for the Selected AUTs

Test Execution Effectiveness Using AI3 [17,18]

AUT

2
5

 T
e
st C

a
se

s

5
0

 T
e
st C

a
se

s

1
0

0
 T

e
st C

a
se

s

A
v

e
r
a

g
e

Notepad 0.85 0.91 0.808 0.856

CDiese Test 0.256 0.31 0.283 0.283

FormAnimation App 1 1 0.93 0.976

winFomThreading 0.67 0.67 0.67 0.67

WordInDotNet 0.83 0.67 0.88 0.79

WeatherNotify NA NA NA NA

Note1 0.511 0.265 0.364 0.38

Note2 0.316 0.29 0.17 0.259

Note3 1 0.855 0.835 0.9

GUIControls 0.79 1 1 0.93

ReverseGame 0.371 0.217 0.317 0.302

MathMaze NA NA NA NA

PacSnake 0.375 0.333 0.46 0.39

TicTacToe 0.39 0.75 0.57 0.57

Bridges Game 1 1 1 1

Hexomania 0.619 0.386 0.346 0.450

The Introduction of Several User Interface Structural Metrics The Open Software Engineering Journal, 2009, Volume 3 77

[17] I. Alsmadi, and K. Magel, “GUI path oriented test generation algo-

rithms”, In Proceeding of Human-Computer Interaction Confer-

ence. IASTED HCI, 2007.

[18] I. Alsmadi, and K. Magel, “GUI path oriented test case genera-

tion”, In Proceeding of the International Conference on Software

Engineering Theory and Practice (SETP07), 2007.

[19] K. Magel, and I. Alsmadi, GUI Structural Metrics and Testability

Testing, IASTED SEA 2007.

Received: June 11, 2008 Revised: May 19, 2009 Accepted: May 19, 2009

© Alsmadi and Al-Kabi; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

