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Abstract: In recent years a number of de novo sequencing software products became available providing possible partial 

or complete amino acid sequence tags for MS/MS spectra of peptides. However, for a variety of reasons including spectral 

chemical noise and imperfect fragmentation these sequence tags almost always contain errors. Additional difficulties arise 

from actual protein sequence variation and post-translational modifications. We present a search engine named PepTiger 

which is capable of correctly matching de novo sequence tags with errors to protein sequences in a protein database. The 

algorithm is based on approximate string matching followed by a novel scoring procedure which takes into account mass 

differences and the string distance between de novo sequence and matched peptides and similarities between theoretical 

and experimental MS/MS spectra. Comparison of PepTiger with other protein identification software shows that PepTiger 

is better able to assign de novo sequence tags with errors to the correct peptide sequences. 

INTRODUCTION 

 Protein identification is a major focus in proteomics. In 
recent years, tandem mass spectrometry has become a stan-
dard tool for protein identification. Typically, proteins are 
digested with enzymes like trypsin into short peptides by 
breaking at specific sites along the backbone of the protein. 
At the next stage, individual peptides can be isolated and 
further fragmented by collision-induced dissociation (CID) 
to produce information about the mass-to-charge ratios of 
resulting fragment ions (MS/MS of parent peptide). In a sin-
gle experiment, many charged fragments are formed by CID 
of multiple copies of the same peptide. Since peptides usu-
ally break at a peptide-bond when they are fragmented by 
CID, the resulting spectrum contains information about 
amino acid composition of peptide. However, this informa-
tion is typically incomplete due to the chemical structure of 
the peptide to be sequenced. Additionally, some spectral 
peaks may result from breakage of non-peptide bonds and 
from other chemical noise. Finally, co-eluted peptides with 
similar m/z value further complicate the tandem spectrum. 
All the above provide a great challenge for reliable interpre-
tation of MS/MS spectra of peptides. 

 Two approaches are deployed to interpret experimental 
MS/MS data, database searching and de novo sequencing. In 
the database searching approach a protein database is used to 
find a peptide for which a theoretically predicted spectrum 
best matches experimental data. These algorithms differ in 
the scoring schemes which are used to evaluate the detected 
matches between candidate peptides and the given experi-
mental spectrum. Most algorithms incorporate a statistical 
treatment to judge whether the search results are significant. 
The most popular software products using this approach are 
Mascot [1] and SEQUEST [2]. 
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 A significant drawback of database searching algorithms 
is that these methods rely on a peptide mass filter, where 
candidate peptides are selected from the database for com-
parison only if their calculated mass equals the experimen-
tally determined mass of parent ion, within certain error tol-
erance. The algorithms will therefore fail to find a correct 
answer if the sample peptide differs from a canonical version 
in a database due to mutations, posttranslational modifica-
tions (PTMs) or database sequence errors, because the calcu-
lated mass from the database sequence may no longer match 
the measured mass. A list of peptide candidates that do not 
include the correct peptide will provide incorrect answers 
[3]. To overcome this drawback, an exhaustive search ap-
proach was suggested [4] where a virtual database of all 
modified peptides from a small set of potential modifications 
is generated and experimental spectra are matched against 
this enlarged database. This procedure can be extremely 
computationally expensive. Another technique is to search 
for peptides without parent mass filter. In this approach, a 
very short peptide sequence (sequence tag) recovered from 
the raw spectrum is used to filter the candidate peptides from 
the database [5-8]. Unfortunately, this method is not suitable 
for the identification of modified peptides [9] and cannot 
reliably detect multiple modifications to the same peptide 
[10]. 

 The second major approach for protein identification is 
de novo sequencing, which is based on utilization of infor-
mation about amino acid composition of peptides deduced 
directly from MS/MS spectra. A number of algorithms for 
reconstruction of partial or complete sequence of a peptide 
from its MS/MS spectrum (de novo sequencing) have been 
developed [11-17]; among the most popular are Lutefisk [13-
14], Sherenga [15], and PEAKS [16]. After the predicted 
sequences are obtained for peptides by the de novo software, 
a sequence-based database search may be performed. 
Adapted versions of general homology search tools such as 
MS-BLAST [18], MS-Shotgun [19] and FASTS [20] can be 
used in this step. These programs are based on efficient se-
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quence alignment algorithms and use a modified mutation 
matrix to score matches with possible sequence variations. 

 Unfortunately, de novo sequences are likely to contain 
errors due to presence of chemical noise in spectra, the im-
perfect fragmentation of the peptides and the mass accuracy 
of current mass spectrometers. Another source of de novo 
sequencing errors is that the mathematical models used in de 
novo software are greatly simplified to minimize the compu-
tational requirements [9]. Typical de novo errors are simply 
swaps of adjacent residues or replacements of fragments by 
another with the same mass. In addition, incomplete data 
may lead to replacement of several light residues by one or 
more heavier residues and vice versa. Longer segment re-
placements are also possible, though less likely. Use of the 
general homology search programs MS-BLAST, MS-
Shotgun and FASTS is therefore limited, as these do not take 
de novo sequencing errors into account. Nevertheless, there 
are sufficient similarities between sequence candidates that 
an appropriately modified homology-based database search 
program should be able to perform sequence database 
searches using this information [13].  

 Error-tolerant search engines must be used to differenti-
ate sections of the sequence that are inappropriately assigned 
by de novo software from actual amino acid mutations and 
posttranslational modifications [21]. At present, a few tools 
are able to do so; such as CIDentify [13], OpenSea [21] and 
SPIDER [9]. CIDentify is based on the available FASTA 
code that is altered to accommodate some typical de novo 
sequencing errors. With this tool the best initial alignment of 
the candidate sequence to the database is found and then 
evaluated by consideration of cases where the mass of one 
query residue is equivalent to the mass of two database resi-
dues, the mass of two query residues is equivalent to the 
mass of one database residue, or the mass of two query resi-
dues equals the mass of two different database residues. In 
each case, replacements are not penalized in final scoring. 
CIDentify therefore allows replacements of segments with a 
maximum length of 2 residues. 

 The OpenSea tool employs a mass-based approach to 
sequence alignment. de novo and database sequences are 
interpreted as masses of residues, and the masses, rather than 
the amino acid codes are compared. OpenSea resolves both 
de novo errors and homology mutations, but only if they do 
not occur at the same positions [9]. Additionally, OpenSea 
allows only one consecutive substitution, and the alignment 
process is terminated if additional consecutive substitutions 
are required to make a match. This constraint can preclude 
identification of true matches. 

 The SPIDER [9] software package for protein identifica-
tion from de novo sequence tags accounts for both homology 

mutations and de novo sequencing errors. Moreover, it al-

lows the mutations and errors to occur at the same positions 
along the sequence. Two types of distances between se-

quences are introduced: distance that measures the de novo 

sequencing error, and edit distance that measures homology 
mutations. Total distance is then defined as sum of these two 

distances. The sequence tag search approach in SPIDER is to 

find a peptide sequence from the database, such that total 
distance is minimized. A dynamic programming algorithm 

computes the total distance based on specific cost functions 

for de novo errors and for common editing operations han-

dling homology mutations. Cost values for correctly as-

signed letters and incorrectly replaced segments are based on 
empirical assumption that 80% of the letters can be correctly 

assigned by the de novo software. However, for low-quality 

spectra this value can be overestimated [16]. At the same 
time, replacements of segments of arbitrary lengths are al-

lowed. Additionally, only costs for replacements of segments 

not longer than 3 letters are computed exactly, while costs 
for longer segments are approximated. Cost values for ho-

mology mutations are based on well-known BLOSUM90 

[22] table. SPIDER has four match modes with certain as-
sumptions about the data or the database. The simplest match 

mode is SPIDER exact match, assuming that de novo se-

quence has no error except that L and I, Q and K are ex-
changeable. Segment match mode allows replacements of 

segments of arbitrary length, but assumes no homology mu-

tations. In the non-gapped homology match mode it is as-
sumed that all homology mutations are substitutions (no in-

sertion/deletion is allowed), mutations and de novo sequenc-

ing errors do not exist simultaneously in the same block, and 
there are no segment replacements with length greater than 

three. Homology match mode is the most general mode al-

lowing both de novo sequencing errors and mutations of pro-
teins. 

 Both OpenSea and SPIDER allow replacements of seg-

ments of arbitrary length with the same mass. However, the 

number of possible fragments having the same mass in-
creases with length and total weight, leading to increasing 

possibility of matching two fragments by accident, and 

therefore, increasing of the false positive rate. 

 The objective of this work is to develop a search engine 

that is able to perform protein identification from de novo 
sequence tags that may contain errors. The developed search 

engine has been implemented into software PepTiger using 

C++. This alignment method adapted for error-tolerant 
search is described along with our novel scoring scheme and 

benchmarking results with our search engine on experimen-

tal MS/MS data presented. 

ANALYSIS METHOD 

Background and Terminology 

 Similarity searching in a protein database can be refor-

mulated in terms of approximate string matching. This prob-
lem has received a lot of attention in computer science for a 

wide range of applications, but there is a paucity of efforts to 

adapt general algorithms to the specific field of protein iden-
tification. Protein and peptide sequences can be represented 

by strings where each amino acid residue is encoded by letter 

from a twenty-letter weighted alphabet . To measure the 
similarity of two amino acid sequences the distance function 

between strings should be defined. 

 In the following discussion, we use capital letters S, A, B 

to represent strings over alphabet . For any string S we de-

note its length as 
 
S . We also denote   S[i]  the i-th character 

of S, for an integer 
  
i 1.. S . 

  
S i.. j  is a substring of S 

beginning at i th character and ending at j th character. Su-

perscript R denotes the reverse string: for example if S = 
'abc', then S

R
 = 'cba'. 
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 The edit distance   d(S
1
, S

2
)  between strings S1 and S2 is 

defined as minimum total cost of editing operations needed 

to transform S1 to S2. Typical editing operations are: substitu-

tion of one character by another, deletion and insertion of 

characters. Under these three operations, edit distance is of-

ten called Levenshtein edit distance [23]. Since insertions 

and deletions are allowed, edit distance allows one to com-

pare strings of different lengths. The cost of each edit opera-

tion can be defined individually for the particular applica-

tion. The annotations Csub, Cins, Cdel, represent costs of sub-

stitution, insertion and deletion respectively. The most popu-

lar choice for costs is unit cost for each operation. For in-

stance, under this cost the edit distance between 'abc' and 

'ad' equals to    d('abc','ad') = 2 . 

 An enrichment of the edit distance suggested by 
Damerau [24] includes transpositions (swaps) of adjacent 
characters (i.e. a substitution of the form  'ab' 'ba'). 
The cost of this swap operation is denoted as Cswap. We will 
use subscript  D  to denote Damerau distance 

 
d

D
. 

 The first and most flexible algorithm for edit distance 
computation is based on dynamic programming [25]. It al-
lows to use arbitrary costs for editing operations. However, 
this algorithm is also the most inefficient. The value 

  d( A, B)  for two strings of lengths 
 
m = A  and 

 
n = B  can 

be computed by filling a ( 1) ( 1)m n+ +  dynamic pro-
gramming matrix  D , in which the cell   D[i, j]  contains the 
value   d( A[1..i], B[1.. j]) . Detailed description of both algo-
rithms for Levenshtein and Damerau can be found in [29]. 

 The sequence of editing operations transforming S1 to S2 

can be written in the form of alignment. Alignment is a set of 

two strings 
   
S

1
 and 

   
S

2
 of even length over an alphabet 

   = + {'-'} . Strings 
   
S

1
 and 

   
S

2
 are derived from 

  
S

1
 and 

  
S

2
 by insertion of empty characters '-'. Alignment is usu-

ally written as a two-row matrix, where 
   
S

1
 is written in the 

first row, and 
   
S

2
 in the second row. In such a representation, 

each column represents an edit operation: substitution of the 

character 
  
S

1
[i]  by the character 

  
S

2
[ j]  

  

S
1
[i]

S
2
[ j]

, deletion of 

the  i th character of 
  
S

1
 

   

S
1
[i]

'-'

 or insertion of the  j th 

character of 
  
S

2
 

   

'-'

S
2
[ j]

. We assume that no column con-

tains empty characters in both rows, so that the alignment 

may have at most 
  
| S

1
| + | S

2
|  columns. The cost of align-

ment is the total cost of its editing operations. Optimal 

alignment corresponds to the edit (minimum) distance be-

tween strings. Optimal alignment is not unique despite the 

fact that edit distance for every two strings is unique. 

 For example, two different alignments for strings ‘abc’ 
and ‘ad’ are shown in Equation (1). 

   

A
1

=
'abc'

'ad -'

 

   

A
2

=
'abc'

'a-d'

          (1) 

 An optimal alignment can be recovered by tracing back 
from the cell   D[m, n] . At each cell   D[i, j]  adjacent cells 

  D[i 1, j 1] ,   D[i 1, j]  and   D[i, j 1]  are checked, de-

termining which cell gave rise to the current cell, and so on 
back to   D[0,0] . At some cells we can have multiple choice 

of substitution, insertion or deletion. Final alignment de-

pends on which option is given the highest priority. 

PepTiger Distance 

 Due to the possibility of de novo errors a common edit 

distance does not fit well for protein similarity search. To 

accommodate typical de novo substitutions of segments with 
equivalent masses, an extension to Damerau edit distance 

has been defined in PepTiger.  

 Denote as  h  the length of an aligned segment with pos-
sible de novo sequencing error, which is tolerable by PepTi-

ger. Algorithm 1 explains computation of PepTiger distance 

 
d

P
. Algorithm is based on the same dynamic programming 

method as algorithms for Levenshtein and Damerau distance 

calculations. However, in addition to common deletion, in-

sertion and substitution operations, an operation of block 
substitution of length up to  h  is considered. Both strings are 

searched for fragments of possibly different lengths, but such 

that their masses are close within accuracy  (lines 18-26). 
If such substitution block is found, its cost is compared to 

other possible costs of editing operations (lines 28-30). 

 Relative edit distance 
  

(S
1
, S

2
)  is used to compare pep-

tide sequences of different lengths and defined as 

  

(S
1
,S

2
) =

d(S
1
,S

2
)

max{| S
1

|,| S
2

|}
           (2) 

where  d  is either Levenshtein, Damerau or PepTiger dis-
tance. This equation satisfies  0 1. 

 Once distance function is defined we can formulate the 

de novo error-tolerate protein identification problem using de 
novo sequence candidate. 

Problem 1. Given the protein database   {T
q
,q = 1..Q}, de 

novo sequence candidate  P  and threshold value , return 

the set of all q , 
qi , 

qj  such that 
  P

(T
q
[i

q
.. j

q
], P) < . 

 That is, identify all proteins and peptides from the protein 
database that match  P  in the sense of a defined distance 
function. From the problem statement it follows that PepTi-
ger can work only with complete de novo sequences without 
gaps. 

 There exists a number of efficient algorithms for Leven-
shtein edit distance computation and some for 

Algorithm 1 

   

1. D[0, 0] := 0

2. for i := 1 to m do

3.   D[i, 0] := D[i 1, 0] + C
del
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4. end for

5. for j := 1 to n do

6.   D[0, j] := D[0, j 1] + C
ins

7. end for

8. for i := 1 to m do

9.   for j := 1 to n do

10.     if A[i] = B[ j] 

11.       Sub := 0

12.     else

13.       Sub := C
sub

14.     end if

15.     D[i, j] := min

D[i 1, j 1] + Sub

D[i 1, j] + C
del

D[i, j 1] + C
ins

16.     foundBlock := false

17.     if Sub 0

18.       for h
a

:= 1 to h do

19.         for h
b

:= 1 to h do

20.           if Mass( A[i h
a

..i 1]) Mass( B[ j h
b

.. j 1]) <

21.             foundBlock := true

22.             iBlock := i h
a

23.             jBlock := j h
b

24.           end if

25.         end for

26.       end for

27.     end if

28.     if foundBlock = true and D[iBlock , jBlock ] + C
block

< D[i, j]

29.       D[i, j] := D[iBlock , jBlock ] + C
block

30.     end if

31.   end for

32. end for

33. d
P

= D[m,n]

 
 Damerau edit distance computation. Most are based on 
efficient ways of dynamic programming matrix computation 
either by filling only necessary parts of a matrix [26] or by 
exploiting the intrinsic parallelism of the computer when it 
works on bits [27, 28]. Both approaches are based on mono-
tone properties of a dynamic programming matrix due to 
special choices for editing operation costs (unit cost for 
every operation; see [29] for a survey of current techniques 
for approximate string matching). 

 However, dynamic programming matrix for PepTiger 
distance does not hold monotone property due to possible 
block substitutions. Due to this non-monotone behavior of 
PepTiger distance it is impossible to define a threshold for 
selection of candidates for alignment reconstruction. There-

fore we would have to check every peptide. But the main 
constraint is that for the protein identification problem we 
may set editing operation costs based on mutation matrix, for 
example BLOSUM90 [22]. Fast algorithms for edit distance 
computation require unit cost for edit operations. This makes 
applying efficient techniques for approximate text searching 
mentioned above unfeasible. Instead, we extract all possible 
substrings (peptides) from the text (protein) and compute 
PepTiger distance separately for each substring with the 
simple dynamic programming method described. That is a 
large number of small dynamic programming matrices are 
calculated followed by alignment recovery and further proc-
essing. 

Reduction of the Alignment Model 

 The number of all possible substrings in the protein data-
base is too large for complete evaluation of each PepTiger 
distance for the query de novo sequence. Some assumptions 
are made to narrow down the search space. First, a re-
searcher may fix the maximum number of possible insertions 
and deletions thereby limiting candidate peptide lengths. A 
filtering technique is also employed whereby a potential 
match is first detected with a simple procedure and then veri-
fied with more complex distance computation. Specifically, 
for a potential match we require an exact match between 
short substrings of length  l  ( l -mers) in the query and can-
didate database peptides. If such an exact match is detected, 
positions of the beginning and ending of the potential match 
in the protein are determined and PepTiger distance calcu-
lated. This technique improves the search speed greatly with 
only a small sacrifice in sensitivity [9]. Efficient  l -mer exact 
match detection is implemented by first building a tree of all 
the  l -mers in the query and then threading text through the 
tree. Once the terminal leaf is reached, a potential match is 
detected. 

 As long as insertions and deletions are allowed, adjacent 
positions for the beginning and end of the potential match 
should also be checked.  

 The number of adjacent positions to check is defined by 
the total number of insertions and deletions (see Fig. 1). 

Scoring Scheme 

 The scoring scheme used in PepTiger is based on three 
components: a string component based on PepTiger distance 

 
f
P

, a mass component 
 
f

M
 and a spectral component 

 
f
S

. 

 

 

 

 

 

 

 

Fig. (1). Sample peptide alignment procedure in PepTiger. 

X X X X A B C D E F G H S X X X X

A W D E F K S
(a)

dP = 4

X X X X A B C D E F G H S X X X X

A W D E F K - S
(b)

dP = 2 if Mass(GH) = Mass(K)

X X X X A B C D E F G H S X X X X

A W - D E F K - S
(c)

dP = 0 if Mass(BC) = Mass(W) and Mass(GH) = Mass(K)
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All components are normalized to a minimum value of 0 and 
maximum value of 1. Final scoring is determined as a 
weighted sum of all three components. 

  
Score = w

P
f

P
+ w

M
f

M
+ w

S
f

S
          (3) 

 By adjusting the weights 
 
w

P
, 

 
w

M
, 
 
w

S
, the researcher 

is able to fit a scoring scheme to a particular task. The only 

requirement for these weights is that the unit total sum: 

  
w

P
+ w

M
+ w

S
= 1 . Thus, scoring is normalized between 

0 and 1 with larger values corresponding to better match 

quality.  

 The string component is based on PepTiger relative dis-
tance 

 P
, calculated in the previous step. To reduce the 

number of false positive results, a maximum length of ex-
actly matched segments in the alignment is taken into ac-
count in the final scoring. The probability of an accidental 
occurrence of a long exact match is small. For example, con-
sider two alignments with equal PepTiger distance 

 
   
A

1
= (*...*...*..*)  and 

   
A

2
= (........****) . 

Here the dot denotes a match and asterisks denote a mis-
match in the alignment. de novo errors which have been de-
tected are regarded as a match. Alignment 

  
A

2
 is more likely 

to be correct than 1A  if the last four mismatched characters 
represent a de novo error undetected in the computation of 
the PepTiger distance because the mismatch length is greater 
than  h . Denote as  L  the length of alignment, the relative 
maximum length of matched segment is given by 

  
μ =

max length of matched segment

L
          (4) 

 A non-normalized string component is given by a for-
mula 

   
f
P
= 1

P
+ μ . It is our claim that maximum value 

of 
   
f
P

= 2 , and its minimum value depends on the threshold 
value for PepTiger distance , length of alignment  L  and 
length  l  of exactly matched  l -mer on which the potential 
match detection step is based: 

   
min( f

P
) = 1 + l / L . The 

derivations of these formulae are available from authors 
upon email request. Therefore, normalized string component 
of scoring can be obtained by 

   

f
P

=
f

P
min( f

P
)

2 min( f
P
)

           (5) 

which satisfies 
  
0 f

P
1 . 

 At this step, the researcher can also take into account 
protein digestion errors in the query by penalizing non-
tryptic peptides. A small penalty value  p  can be subtracted 
from 

 
f
P

. In reality, there are few peptides in a proteolytic 
digest without at least one correct terminus [30].  

 The mass component of scoring takes into account any 
difference in molecular weight of the matched database and 
experimental peptides:  

 
m = MW

experimental
MW

matched_peptide
. 

 This mass difference should be small and within the 
range of instrument variation. However, it could be very 
large due to unknown and/or ignored modifications of the 
experimental peptide. PepTiger provides a list of possible 

chemical and posttranslational modifications (PTMs) [31, 
32]. PepTiger supports two types of modification, fixed and 
variable. Fixed modifications are applied to every instance of 
the specified residue or terminus by simply changing its 
mass. Variable modifications may, or may not be present. By 
checking all possible variable modification sites in a data-
base peptide sequence, theoretical masses with modifications 
are calculated and compared with the mass of experimental 
peptide. Once optimal variable modifications are identified, 
a special normalization function is applied to the mass dif-
ference according to Equation 6.  

  

f
M

= exp

| m | p
i
m

i

i =1

n
2

2

          (6) 

where  is parameter reflecting instrument tolerance (peak 
width), n is the maximum number of user defined variable 
modifications, 

 
p

i
 is the number of  i th modification applied 

to the matched peptide sequence. If no variable modification 
is necessary, 

  
p

i
= 0 . However, the number of possible con-

ditions grows geometrically with the number of variable 
modifications. When a large number of variable modifica-
tions is expected, a better approach is to reduce the weight 

 
w

M
 of the mass component of scoring. 

 The spectral component (
 
f
S

) is similar to spectral scor-
ing functions used for database search and de novo sequenc-
ing algorithms. Theoretical spectra for matched peptides 
from the database are compared to experimental MS/MS 
spectra. The basic assumption is that the greater the number 
of high abundance peaks that are matched by theoretically 
predicted ions, the more likely the matched peptide from the 
database is correct [16]. For this approach, raw MS/MS data 
is preprocessed to reduce the number of potential false posi-
tive peak matches. Peak centering is performed as previously 
described [33]. This is followed by deconvolution of the 
doubly and triply charged species to singly charged ions ac-
cording to the method of Wehofsky and Hoffmann [34]. For 
each theoretically predicted peak a reward is then calculated 
as suggested by the authors of the PEAKS software [16]. 
The reward depends on many factors including the abun-
dance of corresponding experimental peaks, the mass error 
between theoretical and experimental mass values and co-
existence of the x, y-H2O, y-NH3 (or a, c, b-H2O, b-NH3) 
ions. If there is no peak close to given theoretical mass, the 
reward is a negative constant value. 

 The total reward 
  
f
S

 reflects the similarity between theo-
retical and experimental spectra. The last step is normaliza-
tion of the total reward to 

  
0 f

S
1 . Taking into account 

the fact that the upper and lower boundaries of total reward 
are hard to determine due to their dependence of experimen-
tal spectrum, a simple sigmoid function is used for normali-
zation: 

   

f
S

=
1

1+ exp( f
S
)

           (7) 

 This function satisfies 
  
0 < f

S
< 1  for any 

  
f
S

. The graph 
of this function is shown in Fig. (2). The parameter  
should be determined to satisfy the condition that correct 
peptide matches would obtain a 

 
f
S

 value near 1. For exam-
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ple, if a total reward larger than  Z  is typical for correct 
matches and we require that in this case 

 
f
S

 should be larger 
than  1 , then an approximate value for  can be obtained 
by the formula 

  
= log (1 ) /( ) / Z            (8) 

Fig. (2). Illustration of the normalization function for scoring in 

PepTiger. 

RESULTS AND DISCUSSION 

 PepTiger matches de novo sequence tags with database 
sequences based on approximate string matching followed 
by a novel scoring procedure. This procedure takes into ac-
count string distance between de novo sequence and matched 
peptides, mass differences, and similarity between theoreti-
cal and experimental MS/MS spectra. PepTiger uses infor-
mation of experimental MS/MS spectrum of peptide being 
identified for scoring. This approach leverages the potential 
errors introduced during de novo sequencing. Two datasets 
were used to test the performance of PepTiger. Test Dataset I 
was generously provided by Dr. Richard Johnson, an author 
of Lutefisk [13, 14]. Test Dataset II was provided by Dr. 
Hamid Mirzaei. 

 Test Dataset I contains 144 ion trap MS/MS spectra. 
Most of these spectra are obtained from proteins bovine se-
rum albumin, chicken ovalbumin, mouse myosin regulatory 
light chain 2 and skeletal muscle isoform. All cysteine resi-
dues in these spectra are carbamidomethylated (45 spectra) 
and 7 spectra have oxidated methionine. Therefore, car-
bamido-methylation of cysteine was taken into account as a 
fixed chemical modification, whereas oxidation of me-
thionine was regarded as variable modification. Test se-
quence tags were obtained with the de novo sequencing 
software PEAKS 3.0 [16]. Sequencing parameters for all 
spectra were chosen as default PEAKS values for an ion trap 
instrument: parent mass error tolerance and fragment mass 
error tolerance were both 0.3 Da, “Enzyme and PTM” pa-
rameters were “Trypsin with Cam”. All spectra were auto-
matically centroided and deconvoluted by PEAKS. Only the 
top scoring de novo sequence was selected for further analy-
sis. Swiss-Prot Release 46.5 of 12-Apr-2005 (178 940 pro-
teins) was used for testing the search engine. 

Search Engine Parameters 

 The value  l  for the length of  l -mer in the potential 
match detection procedure was taken as 3. The majority of 
tags in Test Dataset I (119 of 144, 83%) have exact matches 
of 3 consecutive letters with the correct protein and 25 tags 
(17%) don’t satisfy this condition (“bad” tags). These cannot 
be correctly identified by PepTiger due to the reduction of 

the alignment model procedure. Therefore, the upper bound-
ary for the success rate of this test dataset is 83%.  

 The number of matches depends on the threshold value. 
The optimal value of threshold  = 0.7 , was obtained em-
pirically by examination of test dataset, where a tradeoff 
between sensitivity and specificity was considered. PepTiger 
distance was measured between each de novo sequence and 
its corresponding correct database protein (see Fig. 3). Most 
of the tags with 

  P
> 0.7  are included in the 25 “bad” tags. 

The length  h  of a segment containing de novo errors for 
which PepTiger distance is tolerant was taken as 2, as with 
the CIDentify software. Larger values dramatically decrease 
the search speed. Our approach is different from that of 
SPIDER and OpenSea which allow de novo errors of arbi-
trary length. However, the large value for threshold  al-
lows accepting matches with de novo errors longer than two 
residues, and at the same time an accurate scoring scheme 
helps to reject most of false positive matches. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (3). Determination of PepTiger threshold . 

Performance of Direct Search 

 By direct search we mean that all target proteins are pre-
sent in the database. Each sequence tag was searched indi-
vidually with PepTiger, SPIDER and CIDentify against 
SwissProt database. 

 SPIDER was tested in its 4 possible match modes: exact 
match, segment match, non-gapped homology and homol-
ogy. Weights for scoring components of PepTiger were 
taken as: 

  
w

P
= 0.5 , 

  
w

M
= 0.25 , 

  
w

S
= 0.25 . These values 

were determined empirically to maximize the success rate 
over the entire test dataset. Carbamidomethylation was se-
lected as a fixed modification and oxidation of methionine as 
a variable modification. A maximum of two insertions and 
two deletions was allowed for the search. Performance de-
tails for each algorithm can be provided by authors upon 
email request.  

 Table 1 summarizes the performance of PepTiger, SPI-
DER and CIDentify on Test Dataset I. The value of each cell 
in the table represents number of correct answers for de novo 
sequences from the test dataset among the Top 1 and Top 5 
reported matches. In each case, PepTiger assigned the high-
est number of correct peptides as the top candidates, 88 
(61%) and 96 (67%), respectively. The exact match mode of 
SPIDER gave the smallest number of correct matches in 
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each cases, 23 (16%). This is due to the very stringent re-
quirement of the matching criteria. The other three SPIDER 
match modes and CIDentify provided similar performance. 
Separately each match mode of SPIDER performed more 
poorly than PepTiger. However, the combination of matched 
results from all four SPIDER match modes correctly ranked 
more database sequences as the top candidates than did Pep-
Tiger (see supplement material). Ninety-nine peptides were 
ranked as Top 1 sequence candidates by at least one of SPI-
DER’s matching modes, while 88 peptides were ranked as 
Top 1 by PepTiger. It should be noted that these observa-
tions are based on known correct peptide sequences, which is 
not the case in a real experiment. In the experimental setting 
it is often not known which peptide is in the sample. Further, 
factors such as peptide concentration and ionization effi-
ciency can effect MS detection. Therefore, one can not pre-
dict which SPIDER match mode will provide the correct 
sequence. 

 Practically, the success rate of SPIDER ranking the cor-
rect sequence as Top 1 should be calculated as: mean value 
of three SPIDER matching modes: SPIDER segment, SPI-
DER non-gapped homology and SPIDER homology: 

 
SPIDER

total
=mean(53% + 49% + 51%) = 51%  

 We didn’t include SPIDER exact mode success rate into 
this formula because all sequences identified by exact match 
mode can also be identified by SPIDER segment match 
mode, so the exact match mode is a subset of segment match 
mode. 

 The goal of the scoring scheme is to reliably distinguish 
correct matches from the incorrect. The number of correct 
answers having top score value indicates the quality of the 
scoring scheme. The relationship between the matches for 
which PepTiger gave a high score value ( Score > 0.7 ) and 
correct matches having Top 1 score is depicted in Fig. (4).  

 PepTiger has correctly matched 88 database peptide se-
quences as the top candidates. Out of these 88 matches, 77 
matches have a score larger than 0.7 while the other 11 
matches have an average score 0.65. On the other hand, of 
the 96 matches with a score higher than 0.7, 19 did not rank 
the correct database sequences as Top 1 candidate. Out of 
these 19 matches, 3 correct matches were among top 5, and 5 

correct matches were among top 10 reported matches. It can 
be concluded, that large score values indicate a correct an-
swer with high confidence. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Venn diagram illustrating the relationship between PepTi-

ger high scores and highest ranked matches.  

 Most peptides from tandem MS spectra of Test Dataset I 
were doubly charged. Singly charged peptide ions typically 
do not generate information rich tandem MS spectrum and 
are often excluded from CID. Table 1 shows that PepTiger 
did a very good job in analyzing spectra from multiple 
charged ions compared with other software packages. It also 
demonstrated better performance than SPIDER in analyzing 
spectra from singly charged ions, but performed slightly 
worse in this respect than did CIDentify. A concern with this 
result is the small amount of testing data. 

 There were only 17 spectra generated by singly charged 
peptides in the Test Dataset I. To further examine the per-
formance of PepTiger on spectra of singly charged peptides, 
we digested three proteins, transferrin, human serum albu-
min, and cytochrome c. Each digest was analyzed on a ABI 
QStar instrument using the information dependent acquisi-
tion (IDA) mode and selecting the top three abundance ions 
for fragmentation without excluding singly charged ions. 

 All tandem spectra were first analyzed using SEQUEST 
for peptide identification. There were 35 singly charged tryp-
tic peptides identified by SEQUEST from all three experi-

Table 1. Peptide Identification Software Performance 

Test Dataset I Test Dataset II 

Charge > 1 

(127 spectra ) 

Charge = 1 

(17 spectra) 

All charges 

(144 spectra) 

Charge = 1 

(28 spectra) 
Search Engine 

Top 1 Top 5 Top1 Top 5 Top 1 Top 5 Top 1 Top 5 

PepTiger 79(62%) 87(69%) 9(53%) 9(53%) 88(61%) 96(67%) 24(86%) 24(86%) 

SPIDER homology 65(51%) 70(55%) 8(47%) 8(47%) 73(51%) 78(54%) 23(82%) 24(86%) 

SPIDER non-gapped 

homology 
66(52%) 72(57%) 5(29%) 7(41%) 71(49%) 79(55%) 22(79%) 24(86%) 

SPIDER segment 70(55%) 74(58%) 6(35%) 7(41%) 76(53%) 81(56%) 23(82%) 24(86%) 

SPIDER exact 18(14%) 18(14%) 5(29%) 5(29%) 23(16%) 23(16%) 15(54%) 15(54%) 

CIDentify 60(47%) 67(53%) 10(59%) 10(59%) 70(49%) 77(53%) 23(82%) 24(86%) 

77 1119

Score > 0.7 Correct answer
in Top 1

Correct answer
is Top 1 and has

Score>0.7
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ments. For each of these, a tandem spectrum with the highest 
Sequest Xcorr value was selected for Test Dataset II. This 
dataset was first analyzed by PEAKS using the same pa-
rameters as used for the Test Dataset I. There were 28 de 
novo sequencing tags generated by PEAKS satisfying  l -mer 
condition (having 3-mer exact match with correct peptide 
sequence). 

 PepTiger was then used to match these 28 de novo se-
quencing tags with the protein database using the same 
analysis parameters as for Test Dataset I.  

 PepTiger ranked 24 correct sequences as Top 1 while 
CIDentify ranked 23 correct sequences as Top 1 (Table 1). 
The exact mode of SPIDER ranked just 15 correct sequences 
as Top 1 candidate. The segment and homology search mode 
of SPIDER also ranked 23 sequences correctly as Top 1 
while the non-homology search mode of SPIDER ranked 22 
correct sequences as the Top 1 candidate. Comparing these 
results with those from the Test Dataset I, we conclude that 
PepTiger performs same as or better than SPIDER and CI-
Dentify in matching de novo sequence tags with protein da-
tabase sequences. Moreover, PepTiger demonstrates signifi-
cantly superior matching of correct database sequences for 
de novo sequence tags generated from multiple charged pep-
tides. 

 As for SPIDER, PepTiger requires that de novo sequence 
tags satisfy the  l -mer requirement. The typical length of  l -
mer is three amino acid residues. The success rate of PepTi-
ger also depends on the quality of de novo sequencing. With 
increased accuracy of de novo sequencing algorithms to cor-
rectly generate  l -mers, the performance of PepTiger is sig-
nificantly improved. In case of the Test Dataset I, the success 
rate of PepTiger ranking the correct sequence of multiple 
charged peptides as Top 1 will be improved from 62% to 
73% if all de novo sequence tags meet  l -mer requirement. 

CONCLUSIONS 

 PepTiger provides a novel and powerful scoring scheme. 
Our results demonstrate that PepTiger identifies more de 
novo sequences with typical de novo errors from the test 
dataset than do other popular protein identification software 
packages. The advantage of PepTiger is its novel scoring 
scheme, which takes into account not only similarity be-
tween sequences of de novo tags and peptides from the data-
base, but also the similarity between experimental MS/MS 
spectra and theoretical spectra for peptides in the database. 
By allowing de novo errors of arbitrary lengths the other 
packages sometimes produce incorrect matches that are re-
jected by taking into account experimental MS/MS informa-
tion. PepTiger’s approach combines advantages of both da-
tabase search and de novo sequencing approaches for protein 
identification from experimental MS spectra. 
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