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Abstract: Two common bacteria, Streptococcus pyogenes and Pseudomonas aeruginosa, were differentiated based on 

their volatile metabolic waste products. The bacteria were cultured in a closed system and the headspace above the culture 

medium were collected, preconcentrated, and analyzed using a gas chromatography Fourier transform ion cyclotron reso-

nance mass spectrometer (GC/FT-ICR MS). 

INTRODUCTION 

 For thousands of years people have noted that biota and 
their products may produce or have characteristic olfactory 
signatures (smells) that could be correlated with biota status 
or activity [1]. Recently, research efforts in many scientific 
communities have focused on establishing meaningful corre-
lations between their volatile metabolic waste products 
(VMWP) and biota activities. Representative examples of 
contemporary [2, 3] research work on bacteria [4-6] fungi 
and mold [7, 8] or other pathogen VMWP profiles include: 
husbandry waste matter [9], tainted water [4], wine making 
[5, 6], cheese processing [10], putrefying matter [11, 12], 
halitosis [13, 14], waste water treatment [11], human physi-
ology [15], ecology [16], human pathogens [17-20], forestry 
[21], sick building syndrome [7], food spoilage [22] and a 
number of diseases/infections [17, 23]. 

 In this short communication, we chose two bacteria that 
are widely different (S. pyogenes [24] is gram-positive, coc-
cus and a facultative anaerobe while P. aeruginosa [24] is 
gram-negative, rod-shaped and aerobic) to demonstrate a 
proof of concept for the use of GC/FT-ICR MS in the analy-
sis of VMWP samples from each bacterium. With improve-
ments to the GC/FT-ICR MS instrument [25], we expect to 
be able to differentiate between more similar bacteria and 
potentially identify markers unique to each bacterium. 

 For the analysis of volatile compounds, high resolution 
gas chromatography (HRGC) is unsurpassed in separation 
characteristics [26]. In terms of chemical analysis, FT-ICR 
MS has been shown to be superior to other mass spectrome-
ters in the areas of ultra-high resolution, mass measurement 
accuracy (MMA), and multistage mass spectrometry [27-29]. 
A microscale purge and trap (MPT) preconcentrator (PC) 
can be used as the front-end [30, 31] for trace analysis of 
headspace products from bacterial culture media under con-
trolled conditions. With this understanding, the proper inter-
facing of PC, GC and FT-ICR should yield a reliable and 
potent analytical combination [30, 31]. 
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 Volatile organic compounds arising from bacterial infec-
tions have been proposed as diagnostic biomarkers to deter-
mine human health status [32-35]. Zechman and Labows 
[36] used automated headspace concentration gas chroma-
tography to identify Stenotrophomonas maltophilia and were 
able to distinguish this bacterium from P. aeroginosa and 
others. Pavlou et al. [20] reported in discriminating between 
Helicobacter pylori and other bacterial gastroesophageal 
isolates using an odor generating system, an electronic nose, 
and a hybrid intelligent odor recognition system. 

 Frequently, biological and environmental "real world" 
samples are complex mixtures and their complete characteri-
zation requires numerous stages of preparation and analysis. 
In 2002, we reported on potential applications of GC/FT-
ICR MS to analyze complex sample matrices such as auto-
mobile gasoline [37]. The GC/FT-ICR MS utilizes the sepa-
ration capability of a conventional GC as well as MMA and 
ultra high mass resolving power of the FT-ICR MS. In this 
paper, we present PC/GC/FT-ICR MS results that demon-
strate the advantage of MMA for biomarker identification 
and bacterial differentiation. 

MATERIALS AND METHODS 

Specimen or Sample Collection 

 Triplicate BD Bactec
™

 Plus aerobic blood culture bottles 
were aseptically inoculated with 0.5 ml preparations of P. 
aeruginosa (ATCC 27853) and S. pyogenes (ATCC 19615). 
The bacterial inoculum was prepared by making a direct 
trypticase soy broth suspension of P. aeruginosa and S. pyo-
genes colonies selected from an 18 to 24 hour blood agar 
plate. Isolated colonies were transferred to a 4-ml tube of 
trypticase soy broth and the suspension adjusted to visually 
compare to that of the 0.5 McFarland turbidity standard. The 
inoculated blood culture bottles and a sterile control were 
incubated at 35 °C for 24 hours; headspace MS analyses 
were conducted immediately or approximately 24 hours after 
storage at ~ 5 °C. 

Instrumentation 

 Briefly, the analysis system consisted of three major 
components; a 3 stage Entech 7100 series Preconcentrator 
(PC) (Entech, Simi Valley, CA), an SRI GC system (Las 
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Vegas, NV) and an IonSpec 7 tesla FT-ICR mass spectrome-
ter (IonSpec Corp., Lake Forest, CA). Detailed descriptions 
of the GC/FT-ICR MS operation [37] and PC configuration 
[30] have been published elsewhere. 

Preconcentrator (PC) 

 The trapping and preconcentration of static headspace 
VOCs of interest was performed on an Entech 7100 PC us-
ing the MPT technique [38]. A disposable needle was con-
nected to one of the four heated PC sampling lines by a 
length of plastic tubing. The disposable needle, tubing, and 
PC sampling line were flushed with dry N2 prior to head-
space sampling. The disposable needle was inserted through 
the seal on the BD Bactec

™
 Plus aerobic blood culture bottle 

and a static headspace volume (10 ml atm) containing trace 
VOCs was pumped through the first trap (T1) in module 1 
(M1). The remainder of the PC operation was identical to the 
previously reported method [38]. 

GC Operation 

 The purged VOC analytes from the preconcentrator were 
injected onto a 60 m (0.28 mm id, 3 μm crossbonded 100% 
dimethyl polysiloxane stationary phase coating) MXT-1 cap-
illary column (Restek Corporation, Bellefonte, PA) housed 
in an SRI model 8610C GC [37]. 

GC Operational Parameters 

 Appropriate user defined GC temperature programming 
allowed elution of the volatile compounds for FT-ICR MS 
analysis within thirty minutes [37]. The actual mass spectral 
acquisition duty cycle was ~ 0.11 s and 30 mass spectra were 
signal averaged to generate each point on the ion chroma-
tograms. The time interval between each point on the ion 
chromatograms (Figs. 1-3) was about ~ 5 s in total (including 
GC/mass spectral processing time). The column head pres-
sures for the helium carrier gas (the mobile phase) was set at 
24 psi. The temperature programming used consisted of, 
initializing at 40 °C for 2 minutes, ramping at 3 °C per min-
ute to 70 °C, holding at 70 °C for 0 minutes, ramping at 10 
°C per minute to 200 °C, and holding at 200 °C for 5 min-
utes. 

Acquiring EI-Like Mass Spectra 

 We used a jet separator for the interface [37] between the 
GC and FT-ICR MS. The interface was operating under low 
flow conditions such that only an estimated 0.1% of the GC 
effluent was continuously flowed into the ICR cell. Mass 
spectra were acquired using 24 eV EI to suppress ionization 
of the He carrier gas. The combination of a short duty cycle 
(11 ms) and low analyte pressures in the ICR cell minimized 
self-chemical ionization processes [38]; hence, the acquired 
FT-ICR mass spectra closely resembled conventional EI 
spectra [39]. 

FT-ICR MS Data Processing 

 We have assigned the identities of the VMWP mass spec-
tral peaks based primarily on the MMA of our FT-ICR in 
conjunction with the NIST online EI mass spectral database 
[39]. The acquired FT-ICR EI-like mass spectral patterns 
closely matched the VMWP mass spectra shown on the 
NIST online EI mass spectral database [39]. Generally, the 
MMA was 10 ppm with external standards and below 2 ppm 

when internal standards such as the background N2
.+

, O2
.+

, 
Ar

.+
, and CO2

.+
 were used for mass calibration. 

RESULTS 

 Various selected ion chromatograms (SICs) are shown in 
Figs. (1-3) for A) P. aeruginosa and B) S. pyogenes obtained 
from 10 ml headspace samples. A wide mass range, covering 
from m/z 29 to 95, was used in Fig. (1) (the background 
ions, viz., O2

.+
, Ar

.+
, and CO2

.+
 were excluded in constructing 

the SICs). Figs. (2, 3) show narrow mass range SICs at 
43.018 ± 0.002 and m/z 44.026 ± 0.002, respectively. Ex-
amination of the three figures (Figs. 1-3) shows that the two 
bacteria are readily distinguishable from each other. Finally, 
Fig. (4) shows the extracted mass spectra from the SICs dis-
played in Fig. (1); based on accurate mass measurements (2 
ppm or better in most cases) and their EI mass spectral ap-
pearances, the VMWP analytes were assigned as, acetalde-
hyde (1), methylmercaptan (2), ethanol (3) and acetone (4). 

 Acetaldehyde was not detectable in VMWP of P. aerugi-
nosa but a significant amount of it was present in VMWP of 
S. pyogenes (RT ~ 270 s in SIC B of Figs. 1-3). A mass spec-
trum corresponding to the SIC peaks at RT ~ 270 s (B ion 
chromatograms in Figs. 1-3) is displayed in Fig. (4A) (and 
assigned as acetaldehyde). 
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Fig. (1). Wide mass range GC/FT-ICR MS SICs from m/z 29 to 95 

range (excluding background oxygen, argon and carbon dioxide 

contributions) for A) P. aeruginosa and B) S. pyogenes. Both SICs 

A and B have common Y-axis scaling but A has been offset for 

visual comparison. The peak labeled HC denotes a hydrocarbon 

species. The shoulder observed on the ethanol peak for P. aerugi-

nosa (A) is due to tailing resulting from the large ethanol injection 

onto the GC column. 

 Conversely, the observed concentration of methylmer-
captan (RT ~ 330 s in Fig. 1) in P. aeruginosa VMWP (SIC 
A, Fig. 1) was about 6 times higher than that of S. pyogenes 
VMWP (SIC B, Fig. 1); a mass spectrum for corresponding 
to RT ~ 330 s is shown in Fig. (4B) and is assigned as meth-
ylmercaptan. Acetone (RT ~ 440 s in SIC B, Figs. 1, 2) was 
only detectable from S. pyogenes VMWP samples; a mass 
spectrum corresponding to RT ~ 440 s of Figs. (1, 2) is 
shown in Fig. (4D) (assigned as acetone). 

 The SICs of m/z = 43.018 ± 0.002 (shown in Fig. 2) 
demonstrate that P. aeruginosa and S. pyogenes can be read-
ily differentiated from each other. The P. aeruginosa SIC 
has only 1 major peak at retention time (RT) of ~ 380 s (an 
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ethanol fragment ion at m/z ~ 43), whereas the S. pyogenes 
SIC has 3 major peaks at RT of ~ 270 s (acetaldehyde frag-
ment ion, [M – H]

+
), ~ 380 s (an ethanol fragment ion at m/z 

~ 43), and ~ 440 s (an acetone fragment ion, [M – CH3]
+
). 

Similarly, the SICs of m/z = 44.026 ± 0.002 (shown in Fig. 
3) demonstrate that the two bacteria can also be distin-
guished unambiguously using this narrow mass range SIC. 
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Fig. (2). Narrow mass range GC/FT-ICR MS SICs: m/z = 43.018 ± 

0.002 for A) P. aeruginosa and B) S. pyogenes. Both SICs A and B 

have common Y-axis scaling but A has been offset for visual com-

parison. 

DISCUSSION 

 Our headspace results for P. aeruginosa showed many of 
the same VMWP detected by SIFT-MS in the headspace of 
BacT/Alert FA blood culture bottles containing P. aerugi-
nosa incubated for 24 h [40]. One major difference was that 
acetic acid and ammonia were not detected in the present 
work. The difference in the VMWP profiles could arise from 
variations of culturing media. Our observations are consis-
tent with GC/MS results of Labows and co-workers [18]; 
they reported that 10 ml static HS samples (analyzed by a 
GC equipped with a sulfur detector) of P. aeruginosa cul-
tured on Trypticase soy agar for 24 hours at 37 

o
C contained 

only one major component, methylmercaptan, and a few 
other components. Dynamic headspace sampling of P. aeru-
ginosa revealed a number of ketones (including acetone), 
dimethyl disulfide, and dimethyl trisulfide but no meth-
ylmercaptan was observed [18]. Comparisons between the 
SIFT-MS [40], GC/MS [18] and the present work suggest 
that differences in culturing, temporal factors, sampling 
techniques, and analysis methods may lead to potential 
variations in the P. aeruginosa VMWP profiles. 

 Taking advantage of the high MMA and mass resolving 
power of GC/FT-ICR MS, the narrow mass range SICs [37] 
for m/z = 43.018 ± 0.002 and m/z = 44.026 ± 0.002 are dis-
played in Figs. (2, 3), respectively. Displaying the narrow 
m/z range of 43.018 ± 0.002 allows to separate acetyl cation 
(CH3CO

+
 at m/z = 43.01784) from a low level background 

ion (C3H7
+
) at m/z = 43.05423. Similarly,the background 

CO2
.+

 (m/z = 43.98928) can be completely removed from the 
VMWP, C2H4O

.+
 (m/z = 44.02567) in the SIC at 44.026 ± 

0.002 shown in Fig. (3). The VMWP species, C2H4O
.+

 (m/z 
= 44.02567), is either the molecular ion of acetaldehyde or 
an EI fragment ion of ethanol. 
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Fig. (3). Narrow mass range GC/FT-ICR MS SICs: m/z = 44.026 ± 

0.002 for A) P. aeruginosa and B) S. pyogenes. Both SICs A and B 

have common Y-axis scaling but A has been offset for visual com-

parison. 

 Accurate mass measurements and high mass resolving 
power can reduce the number of chemical formula candi-
dates ideally to one [41, 42]. For example, a restricted search 
using double bond equivalent (DBE) range of -1.5 to 3 (ele-
mental composition calculator: version 2.0.0, 2000-2005, 
IonSpec Corp., Lake Forest, CA) for possible chemical for-
mulae within the m/z range of 44 ± 0.1 yielded 14 possible 
hits; the selected elements for this search included C, H, Cl, 
F, N, O, P, S, or Si. A selection of reasonable elemental 
compositions for ions at m/z range 44.0 ± 0.1 include CO2

.+
 

(m/z 43.9893), N2O
.+

 (m/z = 44.0005), C2H4O
.+

 (m/z 
44.0257), CH4N2

+
 (m/z 44.0369), and C3H6

.+
 (m/z 44.0464). 

However, within a ± 45 ppm SIC narrow mass window (i.e., 
m/z range of 44.026 ± 0.002 in Fig. (3), which is within our 
MMA of ± 10 ppm), the only candidate is C2H4O

.+
; all other 

reasonable candidate ions differ in mass by at least 250 ppm. 
Similar arguments were used to assign the chemical compo-
sition for ions in the SIC at m/z 43.018 ± 0.002 as C2H3O

+
, 

an EI fragment ion of acetaldehyde, ethanol, and acetone. 

 Mass spectra extracted from the PC/GC/FT-ICR MS se-
lected ion chromatograms in Fig. (1) were ascribed to acetal-
dehyde, methylmercaptan, ethanol, and acetone are shown in 
Figs. (4A-D), respectively. The MMAs of below 10 ppm in 
conjunction with the NIST mass spectral database [39] were 
used to positively assign the analyte identities shown in Fig. 
(4). 

CONCLUSIONS 

 In the present work, only static HS analyses were per-
formed to simplify and minimize sample collection proce-
dures to demonstrate our minimalist noninvasive approach to 
identify biomarkers. Unambiguous identification of bio-
markers is a vital step for designing small detectors such as 
biomedical devices and or environmental monitoring tools. 
The PC/GC/FT-ICR MS allowed us to assign molecular 
compositions for unknown peaks at a high level of confi-
dence. Our ongoing activities to enhance instrumental sensi-
tivity and sample collection methods [28] should permit de-
tection of additional minor components in VMWP and con-
struction of detailed bacterial-prints for identification and 
characterization of biomarkers. Small devices can be de-
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signed and fabricated to test for the presence of specific 
biomarkers in either static HS or near site air “sniffing” sam-
ple volumes. 
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