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Abstract:

Background:

This paper considers three two-dimensional beta binomial models previously introduced in the literature. These were proposed as
candidate  models  for  modelling  forms  of  correlated  and  overdispersed  bivariate  count  data.  However,  the  first  model  has  a
complicated form of bivariate probability mass function involving a generalized hypergeometric function and the remaining two do
not have closed forms of probability mass functions and are not amenable to analysis using maximum likelihood. This limited their
applicability.

Objective:

In this paper, we will discuss how the Bayesian analyses of these models may go forward using Markov chain Monte Carlo and data
augmentation.

Results:

An illustrative example having to do with student achievement in two related university courses is included. Posterior and posterior
predictive inferences and predictive information criteria are discussed.

Keywords: Bayesian, Bivariate beta binomial, Data augmentation, MCMC, Negative hypergeometric, OpenBUGS, Overdispersion.

1. INTRODUCTION

The univariate beta binomial model allows for extra binomial variation, i.e. overdispersion relative to the binomial
model.  It  is  constructed  by  taking  a  binomial  model  and  assigning  the  binomial  probability  parameter  p  a  beta
distribution with parameters α and β. This model’s probability mass function is

(1.1)

where α > 0, β > 0, and B is the beta function. This beta binomial distribution is known by other names, including
the  negative  hypergeometric  distribution  and  the  inverse  hypergeometric  distribution.  A  summary  of  the  model’s
development and early use is given in Johnson, Kotz, and Kemp [1]. To cite a few examples, Skellam [2] applied the
model to the association of chromosomes and to traffic clusters and Ishii and Hayakawa [3] used it as a model for the
sex composition of families and for the absence of students.

Models that recognise overdispersion in the case of correlated bivariate count data are also naturally useful. The
alternative  of  failing  to  recognise  such  overdispersion  may  lead  to  faulty  statistical  inferences  and  inaccurate
conclusions  due  to  an  underestimation  of  the  variability  of  the  data.  Some  examples  in  the  literature  involving
correlated overdispersed bivariate  count  data  are  Bibby  and  Væth  [4],  who  examined  counts  of  diseased  second 

* Address  correspondence  to  this  author  at  the  Department  of  Mathematics  and  Statistics,  University  of,  Calgary,  2500 University  Drive  NW,
Calgary, Alberta, Canada, T2N 1N4; Tel: 001-403-220-5210; E-mail: scollnik@ucalgary.ca

f(x|α, β) =

(
n

x

)
B(α + x, β + n− x)

B(α, β)
, x = 0, 1, . . . , n,

http://benthamopen.com
http://crossmark.crossref.org/dialog/?doi=10.2174/1876527001708010027&domain=pdf
http://www.benthamopen.com/TOSPJ/
http://dx.doi.org/10.2174/1876527001708010027
mailto:scollnik@ucalgary.ca


28   The Open Statistics & Probability Journal, 2017, Volume 08 David Peter Michael Scollnik

premolars and second molars in Danish children’s upper jaws, and Danahar and Hardie [5], who examined the number
of bacon and eggs purchases made by households and also the joint readership of two magazines.

Bibby and Væth [4] developed a two-dimensional beta binomial distribution based on the two-dimensional beta
distribution introduced in Jones [6], using a construction similar to that in Skellam [2] for the one-dimensional case.
Properties of this distribution were given and its estimation and computational aspects were also discussed. A number
of additional two-dimensional beta binomial models were also presented. However, these additional models did not
have closed forms of probability mass functions and thus were not amenable to analysis using maximum likelihood.
This limited their applicability. Such as, they were not considered in detail nor were they applied to any data.

In this paper, we will consider the Bayesian analysis of all three models appearing in Bibby and Væth [4], including
the two with intractable forms. These models will be applied to a real data set describing student performances on tests
in two related university courses. In Sections 2 and 3, the models under consideration will be presented. In Section 4,
we discuss how a Bayesian analysis for any of these models may proceed on the basis of a Markov chain Monte Carlo
(MCMC) set-up using data augmentation. The real data set will be analyzed in Section 5, where various approaches to
model selection including the use of predictive information criteria will also be illustrated. OpenBUGS code associated
with the numerical example appears in the Appendix.

2. THE TWO-DIMENSIONAL BETA BINOMIAL MODEL

Jones  [6]  introduced  the  two-dimensional  beta  distribution  described  below.  Let  W0  ,  W1,  and  W2  be  mutually
independent random variables such that Wi  χ2(2νi), i.e. Γ(νi, 1), for νi > 0. Now define

(2.2)

Then the resulting Bi is Beta(νi, ν0 )-distributed, for i = 1, 2. The two-dimensional beta distribution describes the joint
distribution of B1 and B2, and its probability density function is given by Γ(ν)

(2.3)

for 0 < b1< 1, 0 < b2< 1, and ν = ν1 + ν2 + ν0 .

Bibby and Væth [1] developed a two-dimensional beta binomial distribution in terms of the two-dimensional beta
distribution in a manner analogous to the one dimensional case.

Let p = (p1, p2) be a two-dimensional beta random variable with parameters ν1, ν2, and ν0 . Given p, let X1 and X2 be
two  independent  binomially  distributed  random  variables,  with  Xi|  p   bin(ni,  pi)  for  i  =  1,  2.  Then  the  joint
distribution of X = (X1, X2) is known as the two-dimensional beta binomial distribution and its probability mass function
is given by

(2.4)

for x1 = 0, 1, . . ., n1 and x2 = 0, 1, . . ., n2. This bivariate distribution will be denoted as

(2.5)

The form of the probability mass function given above in (2.4) is significantly complicated by the presence of a

fB(b1, b2) =
Γ(ν)

Γ(ν1) Γ(ν2) Γ(ν0)

bν1−11 (1− b1)ν2+ν0−1bν2−12 (1− b2)ν1+ν0−1

(1− b1b2)ν

fX(x1, x2) =

(
n1

x1

)(
n2

x2

)
Γ(ν)

Γ(ν1) Γ(ν2) Γ(ν0)

× Γ(x1 + ν1) Γ(n1 − x1 + ν − ν1)
Γ(n1 + ν)

Γ(x2 + ν2) Γ(n2 − x2 + ν − ν2)
Γ(n2 + ν)

× 3F2(ν, x1 + ν1, x2 + ν2;n1 + ν, n2 + ν; 1)

∼

(X1, X2) ∼ biv beta binomial(n1, n2; ν1, ν2, ν0) .

∼

Bi =
Wi

Wi +W0

, i = 1, 2.
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generalized hypergeometric function, denoted by 3F2 . The definition of this generalized hypergeometric function is
given by

(2.6)

where the (a)k are the Pochhammer symbols

with (a)0 = 1. The series in (2.6) is convergent at the point z = 1 if and only if b1 + b2> a1 + a2 + a3. This convergence
condition is always met in the context of the probability mass function in (2.4). See Bailey [7] for additional details.
Bibby  and  Væth  [4]  observed  that  the  calculation  of  the  generalized  hypergeometric  function  at  the  argument  1  is
numerically  unstable.  This  presents  some  problems  when  estimating  the  parameters  of  the  two-dimensional  beta
binomial model using maximum likelihood. The Bayesian method presented later in this paper does not suffer from the
same problems, as it circumvents the calculation of the generalized hypergeometric function entirely.

The two-dimensional beta binomial distribution is such that its marginal distributions are univariate beta binomial,
that is

(2.7)

for i = 1, 2. The marginal mean and variance are given by

(2.8)

(2.9)

From Bibby and Væth [1], the correlation between the two marginals is given by

(2.10)

and this correlation is always positive with a strictly positive lower bound, that is

(2.11)

3. TWO ADDITIONAL TWO-DIMENSIONAL BETA BINOMIAL MODELS

Several other two-dimensional beta binomial distributions were briefly considered in Bibby and Væth [4], two of
which are of interest here and will be reviewed below. Whereas the two- dimensional beta binomial distribution of the
last section has a positive correlation between the marginals that is positive and bounded away from zero, the models
introduced in this section include independent beta binomial marginal distributions as special cases.

The second two-dimensional beta binomial model replaces B1 and B2 in (2.2) with

(3.12)

3F2(a1, a2, a3; b1, b2; z) =
∞∑
k=0

(a1)k (a2)k (a3)k
(b1)k (b2)k

zk

k!

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · (a+ k − 1)

Xi ∼ beta binomial(ni; νi, ν0)

E(Xi) =
niνi
νi + ν0

V ar(Xi) =
niνiν0(ni + νi + ν0)

(νi + νo)2(νi + ν0 + 1)
.

Corr(X1, X2) =

√
n1n2ν1ν2(ν1 + ν0 + 1)(ν2 + ν0 + 1)

ν20(n1 + ν1 + ν0)(n2 + ν2 + ν0)

× {3F2(1, 1, ν0; ν1 + ν0 + 1, ν2 + ν0 + 1; 1)− 1},

Corr(X1, X2) >

√
n1n2ν1ν2

(n1 + ν1 + ν0)(ν1 + ν0 + 1)(n2 + ν2 + ν0)(ν2 + ν0 + 1)
.

B1 =
U1

U1 + V1
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(3.13)

where  Ui  Γ(νi,  1)  and  Vi  Γ(ν0  ,  1),  for  i  =  1,  2,  are  all  mutually  independent.  Let  p  =  (p1,  p2)  be  a  two-
dimensional random variable defined in accordance with (3.12) and (3.13). Given p, let X1 and X2 be two independent
binomially distributed random variables as before, with Xi| p  bin(ni, pi) for i = 1, 2. Then the resulting model for the
joint distribution of X = (X1, X2) includes  the two-dimensional  beta binomial  distribution (2.5) as a  special case  when
θ = 1, and two independent univariate beta binomial distributions as another when θ = 0. As yet, there appears to be no
closed form expression available for this model’s probability mass function and it may be that one does not exist.

The third of the two-dimensional beta binomial models uses

(3.14)

(3.15)

where Ui  Γ(µi, 1) and Vi  Γ(νi, 1), for i = 1, 2, W  Γ(ω, 1), and Ui, Vi, and W are all mutually independent. In
this case, the resulting Bi random variables are Beta(µi, νi + ω)- distributed, for i = 1, 2. Let p = (p1, p2) be defined in
accordance  with  (3.14)  and  (3.15)  and  let  Xi|  p   bin(ni,  pi),  for  i  =  1,  2.  Then  the  resulting  model  for  the  joint
distribution of X = (X1, X2) includes the product of two independent beta binomial distributions as a limiting case when
ω →  0.  However,  the joint  density of B1  and B2  involves an integral  of a product of two confluent hypergeometric
functions leading to an intractable joint probability mass function for (X1, X2). Note, the third model’s construction bears
some similarity to that of the previous two models and so it might casually be described as an extension of the first or
second models. However, technically speaking the first and second models are not special cases of (i.e. are not nested
within) the third.

As noted, the second and third models were introduced and briefly discussed in Bibby and Væth [4]. However,
neither model was used in the context of a numerical illustration. Indeed, these additional models do not have closed
forms  of  probability  mass  functions  and  are  not  amenable  to  analysis  using  maximum  likelihood.  However,  the
Bayesian estimation method presented in the next section for the two-dimensional beta binomial distribution can be
easily modified and applied.

4. BAYESIAN ESTIMATION VIA MCMC AND DATA AUGMENTATION

Estimation  of  the  parameters  appearing  in  the  two-dimensional  beta  binomial  model  (2.5)  using  maximum
likelihood is complicated by the presence of the generalized hypergeometric function in that model’s probability mass
function.  The  additional  two  models  presented  in  the  last  section  pose  even  greater  challenges  for  this  estimation
method. A Bayesian estimation method using MCMC and data augmentation can circumvent these challenges.

Consider a random sample of size N from a  two-dimensional  beta  binomial  distribution.  Denote  this  sample  as
X = (X1, X2, . . ., XN ), where Xi = (Xi1, Xi2) is distributed according to the distribution in (2.4). The probability model

(4.16)

for i = 1, . . ., N and j = 1, 2, can be represented with the use of latent variables P and W as

(4.17)

(4.18)

(4.19)

for i = 1, . . ., N, j = 1, 2, and k = 0, 1, 2, in accordance with the development presented in Section 2.

B2 =
U2

U2 + θV1 + (1− θ)V2

B1 =
U1

U1 + V1 +W

B2 =
U2

U2 + V2 +W

(Xi1, Xi2) ∼ biv beta binomial(n1, n2; ν1, ν2, ν0)

Xij ∼ binomial(nj;Pij)

Pij ←
Wij

Wij +Wi0

Wik ∼ χ2(2νk)

∼

∼∼

∼

∼∼∼
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It remains to assign a prior density specification to the unknown parameters νk , k = 0, 1, 2, and then implement a
MCMC analysis (given the observed data) of the resulting full probability model based on (4.17) to (4.19). This may be
accomplished with the assistance of any of a number of statistical computing packages presently available to implement
Gibbs sampling or other more advanced forms of MCMC. For example in this paper, the OpenBUGS package was
used. The OpenBUGS package is available at www.openbugs.net.

Illustrative  OpenBUGS  code  corresponding  to  the  example  appearing  in  the  next  section  is  provided  in  the
Appendix. With suitable elementary adjustments to the code, the two additional models presented in Section 3 can be
analyzed in a likely manner. Some of the foundational papers on Gibbs sampling include Geman  and Geman [8] and
Gelfand  and Smith [9]. Any  readers  requiring  information on how to implement, monitor, and analyse the results of a
MCMC  simulation  are  directed  to  Congdon  [10],  Gelman et al. [11],  and  the  user  manual  that  accompanies (i.e.
accessible  within)  OpenBUGS.  Manuals  and  additional  resources  are  also  available  at
www.openbugs.net/w/Documentation.

5. EXAMPLE

This example concerns the number of tests passed by 52 students in each of two distinct but related actuarial science
courses at the University of Calgary in the same academic year. The two courses had the same prerequisites and the
same instructor. We have applied the three models discussed in this paper to the data. The data are provided in Table 1.

Table 1.  The number of  students in each combination of  the number of  tests  passed in two related university courses in
actuarial science.

First course Total
0 1 2 3 4

Second course 0 0 0 2 2 0 4
1 0 0 2 2 1 5
2 0 0 2 4 6 12
3 0 0 0 5 26 31

Total 0 0 6 13 33 52

For each model, a Bayesian method of analysis was adopted and implemented as described in the preceding section.
The analysis for each model was performed separately and independent prior densities were assigned to each unknown
(top-level) model parameter. Each of the model parameters νi, µi, and ω appearing in any given model was assigned an
exponential prior distribution with a common mean of 10. This prior assigns a little over 63.2% and 86.4% of its mass
to values below 10 and 20, respectively, and treats an interval of smaller values as being more probable than an interval
of larger values with the same interval width, a priori. Although this prior is not noninformative, it is relatively diffuse
over a large range of parameter values (e.g., values less than 20) containing what we consider to be a reasonable and a
priori probable subrange (e.g., values less than 10). The parameter θ appearing in the first extended model was assigned
a  uniform  prior  on  the  interval  (0,  1).  For  the  problem  under  consideration  the  overall  choice  of  prior  density
specification described above seemed reasonable. However, some other prior density specifications were also tried in
conjunction with these models. Although the resulting posterior inferences changed slightly, the relative ranking of the
models in terms of their fits and predictive performances (as discussed below) was essentially unchanged.

The MCMC based analysis in OpenBUGS used 4 chains, each was burned for 150,000 iterations, and then allowed
to run for an additional 100,000 thus yielding 400,000 kept iterations. Tables 2 to 4 report the posterior means, standard
deviations,  95%  (symmetric)  posterior  density  intervals,  and  95%  highest  (i.e.  shortest)  posterior  density  (HPD)
intervals for the top-level model parameters assuming the prior density specification mentioned earlier. These posterior
summaries are primarily reported for completeness, and the values of the summaries in one table (e.g. for ν1 and ν2) are
not meant to be compared to those in another. We note that the estimated posterior densities were all unimodal and
skewed to varying degrees. The skewness is revealed by comparing a parameter’s symmetric posterior density interval
to its HPD interval. If a parameter’s posterior density was symmetric and unimodal, these two intervals would be the
same.

http://www.openbugs.net
http://www.openbugs.net/w/Documentation


32   The Open Statistics & Probability Journal, 2017, Volume 08 David Peter Michael Scollnik

Table 2. Posterior summaries for parameters in the first model.

Parameter Mean Std. Dev. 95% Interval 95% HPD Interval
ν1

ν2

ν0

5.716
2.728
0.707

2.526
1.201
0.295

(2.383, 11.98)
(1.175, 5.683)
(0.323, 1.433)

(1.843, 10.75)
(0.937, 5.105)
(0.259, 1.291)

Table 3. Posterior summaries for parameters in the second model.

Parameter Mean Std. Dev. 95% Interval 95% HPD Interval
ν1

ν2

ν0

θ

5.879
2.919
0.719
0.862

3.073
1.477
0.3703
0.140

(2.239, 13.52)
(1.208, 6.617)
(0.289, 1.625)
(0.471, 0.997)

(1.695, 11.61)
(0.939, 5.66)
(0.221, 1.39)
(0.572, 1.00)

Table 4. Posterior summaries for parameters in the third model.

Parameter Mean Std. Dev. 95% Interval 95% HPD Interval
µ1

µ2

ν1

ν2

ω

8.594
3.977
0.304
0.257
0.810

5.350
2.247
0.606
0.340
0.430

(2.876, 23.18)
(1.455, 9.722)
(0.017, 2.020)
(0.035, 1.146)
(0.274, 1.907)

(2.07, 20.79)
(0.988, 8.756)
(0.011, 1.644)
(0.0165, 0.925)
(0.163, 1.722)

Recall  that  the  data  set  contains  52  observations.  As  part  of  the  MCMC based  analysis,  a  predictive  replicated
sample of size 52 was generated from the model at each iteration. Summaries of these predictive replicated samples are
reported in Tables 5 to 7. Specifically, these tables report the estimated predicted expected value and standard deviation
of the number of students (assuming a cohort size of 52 students) in each combination of the number of tests passed in
the two related actuarial science courses, under each model. One may observe that each model’s predicted row and
column totals are (for the most part) generally in agreement with those for the original data in Table 1.

Table  5.  The  predicted  expected  value  (and  standard  deviation)  of  the  number  of  students  in  each
combination of the number of tests passed in the two related courses under a Bayesian analysis using the first
model.

Table  6.  The  predicted  expected  value  (and  standard  deviation)  of  the  number  of  students  in  each
combination of the number of tests passed in the two related courses under a Bayesian analysis using the second
model.

First course

0 1 2 3 4 Total

0 0.21 (0.49) 0.45 (0.70) 0.75 (0.90) 1.09 (1.10) 1.32 (1.31) 3.82 (2.42)

Second 1 0.18 (0.44) 0.47 (0.70) 0.94 (0.98) 1.66 (1.32) 2.48 (1.66) 5.74 (2.48)

course 2 0.15 (0.40) 0.44 (0.68) 1.07 (1.07) 2.48 (1.66) 5.68 (2.54) 9.82 (3.37)

3 0.09 (0.31) 0.31 (0.57) 0.96 (1.03) 3.44 (2.00) 27.83 (4.94) 32.62 (4.6)

Total 0.64 (0.91) 1.66 (1.41) 3.73 (2.03) 8.67 (3.15) 37.30 (4.13) 52

First course

0 1 2 3 4 Total

0 0.05 (0.23) 0.18 (0.44) 0.40 (0.66) 0.68 (0.87) 0.84 (1.02) 2.14 (1.77)

Second 1 0.08 (0.29) 0.33 (0.59) 0.89 (0.97) 1.88 (1.42) 2.97 (1.87) 6.14 (2.67)

course 2 0.08 (0.29) 0.39 (0.65) 1.33 (1.20) 3.66 (2.01) 8.51 (3.01) 13.97 (3.73)

3 0.05 (0.23) 0.28 (0.56) 1.23 (1.18) 4.84 (2.36) 23.34 (5.05) 29.75 (4.84)

Total 0.26 (0.56) 1.18 (1.22) 3.85 (2.14) 11.06 (3.49) 35.65 (4.52) 52
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Table  7.  The  predicted  expected  value  (and  standard  deviation)  of  the  number  of  students  in  each
combination of the number of tests passed in the two related courses under a Bayesian analysis using the third
model.

Table 8 summarizes the means and standard deviations of the number of tests passed in each course, along with the
correlation between the two. The first rows of numerical values in this table are the empirical values associated with the
observed  data.  These  are  followed  by  the  Bayesian  predictive  values  associated  with  the  three  models  under
consideration.  In  this  example,  it  appears  that  while  all  three  models  generally  replicate  the  empirical  means  and
standard deviations, the first model does a much better job at replicating the correlation than either the second or third.

Table  8.  The  means  and  standard  deviations  of  the  number  of  tests  passed  in  each  of  the  two  courses,  along  with  the
correlation  between  the  two  courses.  The  first  line  gives  the  observed  values  corresponding  to  Table  1;  the  estimated
predictive values associated with the first, second, and third models follow.

First course Second course Correlation
Mean Std. Dev. Mean Std. Dev.

Observed 3.519 0.699 2.346 0.947 0.667
First model 3.545 0.855 2.370 0.946 0.412

Second model 3.551 0.769 2.371 0.847 0.284
Third model 3.533 0.752 2.355 0.843 0.246

When the goal is to pick a model with the best out-of-sample predictive power then selection can be made on the
basis  of  the  deviance  information  criterion  (DIC),  which  is  a  combined  measure  of  goodness  of  fit  and  model
complexity. The DIC and its calculation are discussed in Spiegelhalter et al. [12]. See also Chapter 7 in Gelman et al.
[11].  The DIC is  implemented in  OpenBUGS and according to  the  OpenBUGS User  Manual,  “the  model  with  the
smallest  DIC is  estimated  to  be  the  model  that  would  best  predict  a  replicate  dataset  of  the  same structure  as  that
currently observed”. The values of the DIC corresponding to the models represented in Tables 5 to 7 are 162.9, 164.7,
and 169.1, respectively. So based on this criterion, the first of the three models under consideration is the preferred
model.

Although the DIC is conveniently incorporated in OpenBUGS, it is not without its problems. For instance, it can
produce negative estimates of the effective number of parameters in its evaluation of a model’s complexity and it is not
defined for singular models. See Celeux et al. [13], Gelman et al. [14], Plummer [15], and Spiegelhalter et al. [16]. The
WAIC (Watanabe- Akaike or widely applicable information criterion; Watanabe [17]) is another measure of a model’s
predictive  accuracy.  This  criterion  is  fully  Bayesian  and  works  for  singular  models  and  may  be  viewed  as  an
improvement  on  the  DIC  (however,  the  WAIC  is  not  without  its  own  difficulties;  see  Gelman  et  al.  [14]).
Unfortunately, the WAIC is not directly calculated by OpenBUGS, but it is not too difficult to evaluate it using output
from OpenBUGS. We did so, using the definition for the version of WAIC found in Gelman et al. [14] The values of
the  WAIC  corresponding  to  the  models  represented  in  Tables  5  to  7  are  173.5,  177.4,  and  185.7,  respectively.
Therefore, of the models under consideration, the  first  again  exhibits  the  best  predictive  accuracy  for  the  data  in
 Table 1, this time according to the WAIC. We note that other predictive information criteria for Bayesian models do
exist, several of which are reviewed by Gelman et al. [14].

Another approach to checking model fit  involves focusing attention on a particular test  quantity or discrepancy
measure of interest. This test quantity may be a function of the known and unknown parameters as well as of the data.
Let such a test quantity be denoted as T (D, φ), with D denoting the data and φ the model parameters. If D pred denotes a
predicted replicated data set generated from the model, then the predictive Bayesian p-value is defined as

First course

0 1 2 3 4 Total

0 0.03 (0.18) 0.12 (0.37) 0.33 (0.60) 0.65 (0.86) 0.89 (1.06) 2.03 (1.73)

Second 1 0.05 (0.23) 0.26 (0.53) 0.84 (0.95) 1.99 (1.46) 3.29 (1.96) 6.44 (2.74)

course 2 0.06 (0.25) 0.35 (0.61) 1.36 (1.22) 4.02 (2.10) 8.80 (3.07) 14.59 (3.82)

3 0.04 (0.21) 0.31 (0.58) 1.47 (1.31) 5.74 (2.63) 21.38 (4.95) 28.94 (4.86)

Total 0.18 (0.46) 1.05 (1.14) 4.00 (2.20) 12.41 (3.68) 34.36 (4.64) 52
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(5.20)

where the probability is taken over the posterior distribution of φ and the posterior predictive distribution of D pred.
Extreme values of T (D pred, φ) relative to T (D, φ) are evidence of discrepancy between the model and the data. Thus, a
Bayesian  p-value  near  0  or  1  provides  evidence  of  model  discrepancy.  See  Gelman et  al.  [11]  for  a  more  detailed
discussion of Bayesian p-values.

In the present context of an example involving correlated bivariate data, a sensible and meaningful discrepancy
measure is the sample correlation. In the original data set, the sample correlation r = T (D, φ) is equal to 0.667. Recall,
as part of our MCMC based analysis, a predictive replicated sample of size 52 was generated from the model under
study at each iteration. For each model, we monitored the posterior predictive distribution of the sample correlation for
the replicated data, i.e. r pred = T (D pred, φ), and monitored its relation to the sample correlation of the original data. The
results  are  presented in  Table 9,  and lend further  support  to  the conclusion that  the first  of  the three models  under
consideration is a better fit to the data than either of the two extended models.

Table 9. Posterior predictive summaries for the sample correlation coefficient r pred for the replicated data associated with
each of the two-dimensional beta binomial models.

Model Mean Std. Dev. 95% Interval Bayesian p-value
First model 0.412 0.152 (0.097, 0.688) 0.037

Second model 0.284 0.163 (−0.043, 0.589) 0.005
Third model 0.246 0.159 (−0.070, 0.547) 0.002

One final check of predictive model performance was performed. For each predictive replicated sample, the sum of
squared deviations between the predicted and observed cell counts was calculated over the original non-empty cells.
Denote this statistic as SS pred. When comparing models, smaller values of this statistic are indicative of a better fit. The
estimated posterior predictive summaries for SS pred are reported in Table 10. Once again, the first of the three models
under consideration comes out on top.

Table 10. Posterior predictive summaries for SS pred for the replicated data asso- ciated with each of the two-dimensional beta
binomial models.

Model Mean Std. Dev. 95% Interval
First model

Second model
Third model

61.11
76.56
96.1

43.92
58.89
73.03

(15, 182)
(17, 238)
(19, 291)

CONCLUSION

This paper considered three two-dimensional beta binomial models. Two of these models do not have closed forms
of probability mass functions and are not amenable to analysis using maximum likelihood. Instead, a Bayesian analysis
of each model was implemented using MCMC with data augmentation.

In the example contained within this  paper,  the first  of  the two-dimensional  beta binomial  models was the best
performing model of the three considered. Of course, this does not necessarily mean that it will always perform better
than the other two. However, as yet we have not run across an actual data set for which the first model did not perform
at least as well as one of the others.

APPENDIX

This BUGS code can be used with OpenBUGS to implement a Bayesian analysis of the two- dimensional beta binomial
model presented in Bibby and Væth [4]. The manner of variable indexing and data formatting used in this code is such
that tables containing cells with zero counts may be conveniently analysed. Only cells with non-zero counts are read in
as data.

Pr(T (D pred, φ) ≥ T (D,φ) |D ) ,
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model{

# Define the model including the prior.

for( cell in 1:cells ) {

for( k in 1:N[cell,3] ) {

for( l in 1:2 ) {

x[cell,k,l] <- N[cell,l] - 1

x[cell,k,l] ~ dbin(p[cell,k,l],n[l])

p[cell,k,l] <- w[cell,k,l] / (w[cell,k,l] + w[cell,k,3])

}

for( l in 1:3 ) {

w[cell,k,l] ~ dchisqr(df.w[l])

}

}

}

for( l in 1:3 ) {

df.w[l] <- 2 * nu.w[l]

nu.w[l] ~ dexp(0.1)

}

# Replicated sample for posterior predictive inference.

for( rep in 1:nobs ) {

for( k in 1:2 ) {

xp[rep,k] ~ dbin(pp[rep,k],n[k])

pp[rep,k] <- wp[rep,k] / (wp[rep,k] + wp[rep,3])

}

for( l in 1:3 ) {

wp[rep,l] ~ dchisqr(nu.w[l])

}

}

for( i in 1:n[1] + 1 ) {
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for( j in 1:n[2] + 1 ) {

for( rep in 1:nobs ) {

np[rep,i,j] <- equals(i,xp[rep,1] + 1) * equals(j,xp[rep,2] + 1)

}

nc[i,j] <- sum(np[1:nobs,i,j])

}

}

for( i in 1:n[1] + 1 ) {

col[i] <- sum(nc[i,1:n[2] + 1])

}

for( j in 1:n[2] + 1 ) {

row[j] <- sum(nc[1:n[1] + 1,j])

}

# Posterior predictive model check.

r.obs <- 0.6672033

r.pred <- ( inprod( xp[,1],xp[,2] ) -

nobs * mean( xp[,1] ) * mean( xp[,2] ) ) /

( ( nobs - 1 ) * sd( xp[,1] ) * sd( xp[,2] ) )

post.pred <- step( r.pred - r.obs )

# Another posterior predictive model check statistic.

for( cell in 1:cells ) {

nc2[cell] <- pow(N[cell,3] - ncsub[cell],2)

ncsub[cell] <- nc[N[cell,1],N[cell,2]]

}

# nc2[cells + 1] is referred to as SS.pred in the main body of the paper.

nc2[cells + 1] <- sum(nc2[1:cells])

ncsub[cells + 1] <- sum(ncsub[1:cells])
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