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Abstract: We summarize the basic concepts beneath the idea of superparamagnetism and introduce the Monte Carlo 

(MC) method as a powerful tool for studying superparamagnetic (SPM) properties. Starting with the description of the 

physical features of the single-domain SPM entities, we concentrate on their special magnetic properties as a function of 
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1. INTRODUCTION 

 Nanosized magnetic materials exhibit a rich variety of 
magnetic phenomena in comparison with the bulk 
counterparts, what gives place to a novel range of 
applications of great importance to improve daily human 
activities as high-density magnetic recording storage or 
biomedical applications [1]. The origin of these special 
magnetic properties is found on the reduced dimensionality 
[2]: when the size of the material reaches the order of 
nanometers the influence of the surface atoms becomes 
comparable (or even more important) than the bulk 
contribution; the defects associated to the broken crystalline 
symmetry may be of significant importance, and other 
physical effects may also become very relevant when the 
size reaches the order of characteristic length scales of the 
material. The physical properties observed at such reduced 
dimensions are strongly sensitive to slight variations of size, 
shape, and composition. Therefore, different magnetic 
structures (nanoparticles, nanoparticle arrays, nanowires, 
thin films, etc.) constitute differentiated research fields with 
singular characteristics [3]. 

 In the first part of this article we revise the concept of 
superparamagnetism, one of the most remarkable magnetic 
properties that arises in these reduced dimensions. 
Superparamagnetic (SPM) phenomenon stands for the 
paramagnetic-like behavior displayed by single-domain 
magnetic entities above a characteristic threshold named 
blocking temperature, which is determined by a complex 
interplay between the intrinsic physical characteristics of the 
material (magnetic moment, anisotropy, etc.) and the 
experimental conditions (measuring time, applied magnetic 
field, etc.). Understanding the SPM properties of nanosized 
systems is of primordial importance both for the basic  
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theoretical knowledge [4] and for specific-designed 
applications (as for example the increase of the storage 
information capacity of hard drives [5], or the development 
of well-controlled biomedical applications [6]). Due to the 
above reasons, a big effort has been devoted to the study of 
SPM systems in the last years, aimed to understand its 
underlying physical mechanisms. 

 However, the investigation of SPM properties is a 
complex task due to its strong dependence on several 
uncontrolled parameters, which mask the physical origin of 
the magnetic behavior and hence make very difficult to 
achieve a precise characterization. The large dispersion in 
the value of the parameters (particle size, anisotropy, shape) 
found in real systems, and the presence of uncontrolled 
interparticle interactions, results in a complex physical 
problem non-solvable by analytical methods. To investigate 
such scenario it is very common the use of computational 
techniques, which allow a precise control of the physical 
parameters governing the system: by means of a 
computational technique it is possible to set up ideal systems 
(e.g. monodisperse size and/or anisotropy) specially 
designed to ease the comprehension of a particular physical 
mechanism. In the second part of this work we introduce the 
basic characteristics of a a Monte Carlo (MC) method based 
on the Metropolis algorithm to undertake the study of SPM 
properties. 

2. SUPERPARAMAGNETISM 

 The term superparamagnetism refers to the magnetic 

phenomena observed in fine magnetic particle systems 

exhibiting close similarities to atomic paramagnetism. 

Basically, single-domain magnetic nanoparticles can be 

characterized by their large total magnetic supermoment, 

which exhibits a paramagnetic-like behavior above a 

characteristic temperature threshold named blocking 

temperature, TB . This particular temperature, in 

contraposition with the Curie temperatureTC , is extremely 

dependent on the experimental observational time-window 

and this characteristic gives place to a complex theoretical 
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frame with especial experimental features. In what follows 

we briefly introduce the conditions for the existence of 

superparamagnetism and its basic characteristics. For more 

information in this topic see for example the reviews by D. 

Kechrakos [7], O. Petracic [8], M. Knobel et al. [9], J.L. 

Dormann et al. [4]. 

2.1. Single-Domain Particles 

 SPM phenomenon is observed upon reduction of the size 

of ferromagnetic (FM) materials
1
 down to the single-domain 

range. In a FM magnetic material, multiple magnetic 

domains exist as a result of the balance between the 

exchange interaction energy that favors the parallel 

alignment of neighboring atomic moments (thereby forming 

magnetic domains), and the magnetostatic interaction energy 

that tries to break them into smaller domains oriented 

antiparallel to each other. The domain size is determined by 

the relative counterbalance between both energies. With 

decreasing size of the magnetic system, there is a critical 

value ( rc  for the radius of a spherical particle) below which 

the magnetostatic energy no longer allows for the breaking 

of the system into smaller domains and so the system is 

composed of a single domain, as illustrated in Fig. (1). 

Typical values for rc are of the order of tens of nanometers. 

 

Fig. (1). Scheme illustrating the transition from the multi-domain 

configuration to the single-domain one upon size reduction. 

 Assuming coherent rotation of the atomic magnetic 

moments within the single-domain structure, the particle can 

be characterized by its total magnetic supermoment, 
 
μp . In 

first approximation, considering uniform magnetization 

(neglecting surface effects) it can be described as 

proportional to the particle volume V  and saturation 

magnetization MS  as 

 
μp =MSV  (1) 

 As mentioned above, the SPM response in magnetic 

nanoparticles is observed above the blocking temperature, 

TB , a proper feature of SPM systems that differentiates them 

from atomic paramagnetism. The origin of TB  relays on the 

magnetic anisotropy present within the nanoparticles (unlike 

isolated atomic moments), which tends to orientate the 

particle supermoment along some preferential direction. The 

                                                             
1 The term “ferromagnetic” refers here to any magnetic configuration 

resulting in a net total magnetic moment, regardless the atomic arrangement, 

to be ferro-, ferri-, canted, etc. The important characteristic is the existence 

of a non-zero magnetic moment configuration in absence of applied 

magnetic field. 

magnetic anisotropy appears due to the finite size of the 

particles, which are made up of several atoms (usually up to 

thousands of atoms for single-domain particles), and thus 

spin-orbit coupling and dipolar interaction dictate 

preferential orientation directions for the magnetic moments. 

Depending on the specific characteristics of the particles 

(electronic structure, shape) the role played by each 

anisotropy source will change and give rise to complex 

anisotropy pictures. Often, the magnetic anisotropy energy 

EA  of the particles can be described by a simple model with 

two main contributions, crystalline and shape, which are 

associated to the core and surface atoms, respectively (for 

details about different anisotropy sources see for example 

ref. [4]). For the sake of simplicity, we have focused on the 

simplest uniaxial anisotropy case, very reasonable 

assumption for a spherical particle with uniaxial crystalline 

anisotropy [11]. From now on we consider the different 

anisotropy contributions as comprised in an effective uniaxial 

anisotropy term, 
 
Keff , as illustrated in Fig. (2a). 

 If we consider the magnetic anisotropy to be proportional 

to the particle volume as Keff = KVn̂ , with K  the effective 

uniaxial anisotropy constant (per unit volume) and n̂  the 

unitary vector describing the easy-magnetization anisotropy 

direction, then the energy term for the i-particle can be 

written as 
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where i  is the angle between the magnetic supermoment of 

the particle and the easy anisotropy axis. The moment of the 

particle has therefore two preferred orientations, 

energetically equivalent, along the easy-magnetization 

anisotropy axis direction. Both directions are separated by an 

energy barrier EB  of height KiVi . The energy spectra 

corresponding to this uniaxial anisotropy energy is illustrated 

in Fig. (2b). 

 The system we have constructed up to now is that of 

homogeneous magnetic nanoparticles characterized by their 

sizeV , saturation magnetization MS , and uniaxial magnetic 

anisotropy energy K . This very simple scenario describes 

reasonably well many experimental situations, and therefore 

from now on we focus on the analysis of the magnetic 

properties of such particle system as a function of 

temperature (T ) and magnetic field ( H ). Real systems are 

usually characterized by randomness in their spatial 

distribution and in the easy-axes orientation that strongly 

influence the properties of the system as determined by 

interparticle-interactions and applied magnetic field, what 

results in a complex problem. For the sake of simplicity we 

consider for the moment a non-interacting system with 

parallel aligned anisotropy easy axes, so that the particles are 

equivalent to each other and the system can be studied under 

a single-particle perspective. 

 

 

crr
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2.2. Thermal Relaxation and Blocking Temperature (TB ) 

 The thermal energy promotes the fluctuation of the 

magnetic moments, and therefore to understand the role that 

the temperature plays on the magnetic behavior of the 

particles it is necessary to investigate the dynamics of the 

particle moments as a function of T. The high- and low-T 

limit cases can be easily figured out: at very high T, the 

thermal energy is much larger than the anisotropy energy 

barrier ( kBT >> EB , with kB  the Boltzmann constant) and so 

the magnetic anisotropy plays a negligible influence on the 

orientation of the magnetic moments of the particles, which 

fluctuate freely with temperature. In this case, a 

paramagnetic-like behavior is observed and the particles are 

in the superparamagnetic state (SPM state). On the contrary, 

at very low T the particle moment remains confined along 

the anisotropy direction (local energy minimum) because 

thermal fluctuations are unable to switch its orientation out 

of that minimum ( kBT << EB ). When this happens the 

particles are said to be in the blocked state (BL state). 

 It is much more complicated to describe the influence of 

thermal fluctuation on the orientation of the particles' 

supermoments for the intermediate-T cases. This was first 

described by Néel [10], who proposed that the thermal 

fluctuations could promote the jumping of the magnetic 

moment of the particles from one anisotropy well to the 

other, introducing the average time  for thermal activation 

(often called relaxation time) over the anisotropy barrier to 

follow an Arrhenius law 

= 0e

EB
kBT  (3) 

where 0  directly depends on the material parameters (K , 

MS , etc) and is of the order of 10 11 10 9 s . Under this 

description, it points out that the measuring time m  will be 

a key-point on determining the magnetic state of the system: 

if the measuring time is large in comparison with the 

characteristic reversal time of the particles, m >> , then 

the particle moment will fluctuate freely from one well to the 

other in a paramagnetic-like manner, i.e. the particle will be 

in the SPM state. However, if m << , during the 

measuring time the particle moment will be unable to jump 

over the anisotropy barrier and hence will remain blocked 

along one anisotropy well, i.e. the particle will be in the BL 

state. Macroscopically, the SPM state is completely 

reversible upon temperature and field variations, whereas the 

BL one is characterized by its ferromagnetic-like hysteretic 

behavior. The limit between both states is found at m , 

and serves for the definition of TB , as illustrated in Fig. (3) 

and obtained from Eq. (3) 

TB =
KV

kB ln( m / 0 )
 (4) 

 Eq. (4) shows how TB  depends both on the intrinsic 

particle parameters and on the measuring time. By varying 

the external influences of the systems (temperature, 

measuring time, magnetic field) we may tune its response 

and can extract information about the characteristics of the 

system from the trends obtained. 

 

Fig. (3). Relaxation time  vs T, and indication of TB  for a certain 

m . 

 Eq. (4) highlights that the value of m  is decisive in 

determining TB  and hence the magnetic response of the 

system in a given time-scale (for example, for information-

storage purposes very large time scales are necessary, 

contrary to the very short times required for magnetic 

recording). Therefore, the choice of the experimental 

 

Fig. (2). (a) Schematic drawing of the uniaxial magnetic anisotropy K  and magnetic supermoment of a single-domain nanoparticle, and  
(b) the corresponding uniaxial anisotropy wells. 
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technique will vary depending on the particular objective, 

since it determines the value of m . In this work we have 

focused on quasistatic processes, and so associate TB  with 

the one obtained in dc-thermomagnetizatic measurements, in 

which the measuring time is very large ( m 100s ) in 

comparison with the characteristic time 0  of the particles. 

Other measurement techniques involving much shorter 

measuring times are associated to dynamic measurements, 

not considered in this work (for a recent review on the 

dynamic properties of SPM systems see for example ref. 

[11]; other measurement techniques associated to different 

time scales are analyzed in ref. [4]). We have mainly focused 

on data obtained following the standard zero field cooling 

(ZFC) and field cooling (FC) protocols, in which the system 

is perturbed under a low magnetic field for measuring the 

evolution of its magnetization with temperature. Before that, 

we analyze the effect of the magnetic field on the magnetic 

properties of the single-domain nanoparticles. 

2.3. Field Dependence 

 When an external magnetic field is applied over the 

nanoparticles, it tries to align their magnetic moments along 

its direction. Therefore, except if applied perpendicularly to 

the easy anisotropy axis, it will favor the occupancy of one 

of the anisotropy energy wells over the other. The orientation 

of the magnetic moment of a particle i is then governed by 

the competition among its anisotropy (uniaxial in the present 

case) and Zeeman energies, EA  and EZ , respectively: 
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 The influence of the external field in the orientation of 

the magnetic supermoments is known as the Stoner-Wohlfart 

model [12] after the authors who first considered and solved 

this problem. They assumed coherent rotation of the atomic 

magnetic moments and that the field was applied at a certain 

angle 0  with respect to the easy anisotropy axis. By 

ignoring thermal effects they could solve the problem from 

minimal energy arguments, not taking into account time-

dependence as related to temperature. The aim of this 

introduction section is to give an overall description of the 

SPM features regarding the evolution of the magnetic 

moments with temperature in relation to the anisotropy 

energy barrier and TB . Therefore, in the current section we 

do not discuss now the orientation of the field at different 

angles and focus, for the sake of simplicity, on the simple 

case of the field applied parallel to the easy anisotropy axis. 

Note that in this context of non-interacting particles, 

applying the magnetic field at a certain angle with respect to 

the easy axis is equivalent to consider only its projection 

along the axis. Since we are under the assumption of non-

interacting and equivalent particles, we can apply single-

particle considerations and simplify the i subindex in Eq. (5), 

which taking into account Eq. (1), reads 

E = KV 2cos MSVH cos  (6) 

 For fields H < 2K /MS , Eq. (6) has two local energy 

minima (easy magnetization directions) at = 0,  with 

values Emin = KV ±MSVH , and a maximum (hard 

magnetization direction) at = arccos(HMS / 2K ) , with 

value Emax = KV (HMS / 2K )
2

. For the case H = 0 , the hard 

direction is the perpendicular to the anisotropy axis. The 

= 0  value stands for the parallel orientation of the particle 

moment with respect to the magnetic field ( ), whereas 

the =  value stands for the antiparallel one ( ). This 

difference in the shape of the energy wells, illustrated in Fig. 

(2), corresponds to different energy barriers depending on 

the orientation of the particle moment with respect to the 

applied field, which we name as EB  and EB  for the 

antiparallel and parallel cases, respectively. Introducing the 

anisotropy field of the particles as 

HA =
2K

MS

 (7) 

we calculate these energy barriers as the difference between 
the minima and maximum energies, obtaining 

EB = KV 1
H

HA

2

 (8) 

and 

EB = KV 1+
H

HA

2

 (9) 

 The difference in the height of the energy barriers 
indicates also a change in the characteristic relaxation time 
of the particles, since it depends now on the relative 
orientation of the magnetic dipoles with respect to the field: 
particles antiparallel-oriented with respect to the field have a 
smaller energy barrier in comparison to the solely-anisotropy 
one and so a smaller thermal energy is enough to overcome 
it, whereas the parallel-oriented particles are now confined 
into a deeper anisotropy well and so a higher thermal energy 
is necessary to promote the jumping of its magnetic 
moments. This influence of the magnetic field on the energy 
wells of Fig. (2) is shown in Fig. (4, left panel), as well as its 
implications regarding the relaxation time of the particles 
(right panel). 

 Fig. (4) illustrates the importance of the strength of the 

applied magnetic field on determining the magnetic 

properties of SPM systems, and also serves as a definition of 

small field as referred to magnetic nanoparticles in 

comparison with their anisotropy field: the ratio H /HA  

must be as small as possible so that the system keeps as close 

as possible to the ideal SPM conditions. 

2.4. Thermomagnetic Measurements 

 Once we have gone through how a magnetic field  H  

influences the properties of the particles, we can undertake 

the description of the ZFC and FC measurements. In both 

processes the temperature evolution of the total 

magnetization of the system is recorded following different 
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thermomagnetic histories, and it is this different history what 

highlights reversibility (no-hysteresis) and irreversibility 

(hysteresis) for differentiating the anhysteretic SPM state 

from the hysteretic BL state
2
. In a ZFC process, the system is 

first cooled down in zero field until a very low T is reached, 

and afterwards a small field is applied and the magnetization 

is recorded while heating the sample up. The FC curve is 

obtained by measuring the magnetization of the sample 

while cooling under low magnetic field (same field strength 

for both ZFC and FC processes). Typical ZFC/FC curves are 

shown in Fig. (5). 

 

Fig. (5). Typical ZFC and FC magnetization curves vs temperature, 

presented in usual normalized units of M /MS  and kBT / 2KV  (see 

Subsection 3.4). Vertical dotted line stands for the maximum of the 

ZFC curve, usually associated to TB .  

 The ZFC and FC curves shown in Fig. (5) display the 

usual features found in SPM systems: i) both curves coincide 

at high temperatures in a PM-like dependence; ii) with 

decreasing T both curves grow until a certain temperature 

range is reached where the curves start to diverge, the FC 

curve still growing although at a lower rate while the ZFC 

exhibits a maximum and decreases below it. This maximum 

                                                             
2
 Although for evaluating magnetic hysteresis, to perform measurements of 

M(H) cycles could seem a better choice, they are not appropriate for 

determining the value of TB, since it would be necessary to record M(H) 

curves at several temperatures in order to obtain its value with enough 

precision. On the contrary, M(T) measurements give a continuous 

temperature range that allows to obtain TB easily,  from a single curve. 

in the ZFC curve is generally associated in the literature to 

TB  [7], as indicated in the figure, since such maximum 

roughly differentiates two main temperature regimes: a high-

temperature one where both curves essentially coincide and 

exhibit PM-like temperature dependence, from a low-

temperature regime where both curves clearly diverge. 

However, a detailed view of the curves reveals that a 1 /T  

PM-like decrease right above TB  is not observed in the ZFC 

curve, and a slight difference between the ZFC and FC one is 

perceived. These features indicate that a true SPM behavior 

is not exhibited right above the maximum, but at higher 

temperatures at which the ZFC curve perfectly overlaps the 

FC one and exhibits well defined PM-like temperature 

dependence. The reason why the ideal SPM behavior is not 

observed right at T > TB  is found on the inverse of the 

relaxation time , which gives the probability per unit time 

for the particle to overcome the anisotropy energy barrier 

along the temperature 

p(T ) = 0
1e

EB
kBT  (10) 

 Considering the different energy barriers EB  and EB  

and so different relaxation times (see Fig. 4), Eq. (10) 

indicates that SPM behavior will be only observed (ideally) 

above TB , which is bigger than the maximum of the ZFC 

curve. Therefore, the features displayed in Fig. (4) 

concerning the different height of the anisotropy wells as 

influenced by the external field, must be taken into account 

too when analyzing the physical trend followed in the ZFC 

magnetization curve. The initial state of the ZFC process 

starts with no net magnetization after cooling in zero field. If 

naming parallel particles those with EZ < 0 , and 

antiparallel particles those with EZ > 0 , then when the field 

is applied the parallel particles will rapidly align with the 

field, while the antiparallel ones will progressively overcome 

the energy barrier with the increasing thermal energy and 

also align with the field. This process leads to a continuous 

increase of the magnetization, as illustrated in Fig. (5), until 

the thermal energy overcomes EB , and so no longer 

reversal magnetization takes place. Since the thermal energy 

is now comparable to the energy of the deeper anisotropy 

well, the particles start to fluctuate freely with increasing the 

 

Fig. (4). Anisotropy energy wells (left panel) and relaxation time (right panel) of the particles as influenced by the magnetic field. 
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temperature and thus a decrease in the magnetization is 

observed. This decrease is of PM-like type not right above 

TB, but at larger T ( kBT >> EB ). Because of the above 

reasons, some authors do not associate directly the maximum 

in the curves to TB  and prefer a different definition [9]. 

Although we understand such discrepancy and share the 

necessity of finding a more precise formalism for relating the 

shape of the ZFC curves to the particles' characteristics, we 

associate in this work the maximum of the ZFC curve with 

TB  because it is the usually preferred when dealing with 

experimental data. It is important to emphasize these aspects 

when dealing with the magnetic properties of SPM systems, 

remarking that TB  defines only a characteristic temperature 

value, of enormous interest for characterizing the system but 

not equivalent to a phase transition. In this regard, it has 

been intensively discussed in the literature whether strong 

dipolar coupling among the particles could lead to a phase-

transition character at TB [13]. However, this is not the 

present case since we are dealing with a non-interacting 

system. 

 All the properties described up to now correspond to the 
simplest single-particle scenario, where all the particles have 
been treated as equivalent to each other because of being 
non-interacting and with parallel-aligned easy anisotropy 
axes, as illustrated in Fig. (6). However, a simple and ideal 
case as described above is rarely found in real systems, very 
often characterized by a random orientation of easy 
anisotropy axis and that only in a few cases can be regarded 
as non interacting. In this context, distribution of easy axis 
directions results in a reduction of the effective energy 
barriers seen by the respective magnetic moments along that 
direction, as schematized in Fig. (7). In addition, interparticle 
dipole-dipole interactions, which are long-range and 
anisotropic, also modify the anisotropy energy barrier of 
each particle. These features give place to a much more 
complex scenario than the one described above. Low-
interacting conditions can be described by mean-field 
approximations in which the single-particle barriers are 
slightly modified by the interaction energy. However, 
strongly-interacting conditions ruled by collective effects 

cannot be accounted by that approach, and so the use of 
computational techniques becomes an indispensable tool for 
treating systems with so many degrees of freedom. 
Computational techniques allow us to deal with perfectly 
controlled systems and a good treatment of the interactions 
among particles. There are two main computational 
approaches for dealing with the magnetic properties of 
interacting nanoparticle systems, namely the Monte Carlo 
(MC) and Langevin Dynamics (LD) methods. Both methods 
are complementary for the study of a nanoparticle system: 
MC simulations are very adequate to treat long-time (static) 
magnetic properties in complex interacting systems [13] but 
do not have associated a physical time; LD methods, on the 
contrary, are very precise for modeling the dynamics of the 
magnetic moments [14] but are not adequate to simulate 
static processes. Promising approaches trying to relate the 
more physical LD-time to the MC time steps have been 
developed in recent years, see for example the works by U. 
Nowak et al. [15] and X.Z. Cheng et al. [16].  

 Finally, it is worthy to recall again the several 

simplifications assumed in this introduction to 

superparamagnetism, where we have considered very simple 

and ideal characteristics for the particles. In real systems 

there are always several dispersive -often uncontrolled- 

characteristics (inhomogeneities in the particles' composit-

ion; temperature-dependent K  and MS ; size/anisotropy 

distribution; etc), characteristics all that confer additional 

uncontrolled degrees of freedom to the already very complex 

system, and so make very hard to interpret the magnetic 

measurements in order to characterize their properties.3 That 

is the reason why we have focused on a very simple scenario 

which, on the other hand, it is already complex enough to 

make absolutely necessary the use of computational 

techniques for its study. 

                                                             
3A particularly relevant difference between superparamagnetism and 

paramagnetism is found on the strong temperature-dependence of the 

particles' magnetic moments in contrast with the essentially temperature-

independent atomic magnetic moments. Thus, PM systems are usually 

characterized by a linear evolution of the inverse of the magnetic 

susceptibility vs temperature, whereas SPM systems can deviate 

significantly from this linear behavior (see for example D. Serantes et al., 

Chem. Mater. 22 (2010) 4103, and references therein for further details). 

 

Fig. (6). Schematic drawing of the ideal simplest model of non-interacting and parallel aligned easy axes along the applied field. 
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3. MONTE CARLO METHOD 

 Monte Carlo (MC) methods are a type of numerical 

simulation techniques based on the generation of random 

numbers [17]. MC methods are utilized to solve complex 

problems with large degrees of freedom: the features of a 

particular problem are represented by probabilities, and the 

MC technique generates large amounts of random numbers 

and counts the fraction of them obeying some conditions. 

The way of counting and the conditions imposed define the 

numerical algorithm. A simple example to illustrate the 

functioning of a MC method is the calculus of  from the 

area of a circle. If placing a circle of radius r  into a square 

of side 2r  and randomly generating N -points into the 

square, the fraction of them laying inside the circle ( ncircle ) 

will be equal to the proportion between areas, and so it is 

easy to obtain = 4
ncircle
N

. The MC calculation of the area 

will be more precise the larger the amount of points (events) 

generated, as illustrated in Fig. (8). 

 The two drawings plotted in Fig. (8), stand for two examples 

of random generation of events (N=100 and N=1000) into the 

square with the circle held inside. The graph shows the fraction 

between points laying in each geometrical figure as a function 

of the amount of random events generated, pointing out that the 

approximation to determine  from the random points areal 

ratio improves with N. 

3.1. Metropolis Algorithm 

 We aim in this work to describe how to use a MC method 
to simulate the magnetic properties of a magnetic 
nanoparticle system with a large amount of degrees of 
freedom, as described in the previous Section 2. Specifically, 
we want to know how the orientation of the magnetic 
moments of the particles evolves as a function of different 
parameters (temperature, applied magnetic field, etc), i.e. 
how they behave as a function of the different energies 
involved. To simulate such processes we impose to the 
system some known conditions and determine its 
configuration from a random generation of events as 
evaluated under those conditions. The processes we want to 
simulate are essentially quasistatic, and so the conditions 
ruling the system can be based on minimum energy 
arguments on the following manner: i) the energy of the 
system under certain conditions is evaluated, ii) under the 
variation of an external parameter the internal degree of 

 

Fig. (8). Use of random events to calculate the value of  from the area of a circle, illustrating the role of the amount of events in the 

precision of the result. 

 

Fig. (7). Left panel: schematic drawing of a random easy axes distribution. Right panel: effective energy barriers seen by the magnetic 

moments along a given direction, depending on the angle between the easy axis and such direction. 
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freedom changes, and thus the energy is reevaluated, and iii) 
the difference in energy is used to construct a probability 
function, and the change of configuration of the system is 
accepted or not from the random generation of events 
applied to such probability under a given algorithm. 

 It turns out that this problem is much more complex than 

calculating  from the ratio between the areas of the circle 

and square as described above, where the randomly generated 

events are equally probable and so the algorithm for solving 

the problem is just to count 1 if the points lay inside the circle 

and 0 otherwise. If we apply the same procedure to simulate 

the orientation of the magnetic moments with temperature, i.e. 

if we randomly generate new possible orientations and 

evaluate its feasibility to occur, we will find that most of the 

trials are highly improbable and so rejected, and only those 

with energy comparable to the previous state will have some 

chance of being accepted. For example, for simulating the new 

possible orientation of a particle' magnetic moment, initially at 

an angle i  (Eq. (6)), the new trial configuration f  can be 

chosen totally at random, unrelated to i , or by considering a 

slight variation after the actual configuration, so that 

f = i +  with  small. In the first case many trials will 

be very unfavorable and therefore rejected; while for the latter 

a higher acceptance ratio is expected. It becomes therefore 

crucial, in order to avoid the wasting of computational time 

and for optimizing the simulation, to be able to select the new 

trial configurations among the most likely probable paths. This 

can be done if considering a Markov chain of events 

(configuration of one state depends only on the previous one), 

with the trial state being close in energy to the current one. 

 The key-points for treating the present problem are, 

therefore, i) the selection of the trial configurations in an 

efficient way, and ii) the choosing of an adequate 

implementation of the change from the initial state with 

energy Ei  to the trial next state with energy Ef . Assuming 

classical Boltzmann distribution, the probability of a 

magnetic moment to have energy E  at a temperature T  is 

proportional to exp( E / kBT ) , i.e. p(E) e
E /kBT . 

Consequently, if considering the orientation of the magnetic 

moments to be markovian the evolution from state Ei  to 

state Ef  will be proportional to the rate between final and 

initial states probabilities, ri f = p(Ef ) / p(Ei ) = e
E /kBT , 

with E = Ef Ei( ) . This way of choosing the possible next 

configuration of the system as being energetically close to 

the actual one is named importance sampling, and is based 

on the detailed balance reversibility condition. This 

approach works very well for describing quasi-static 

thermodynamic processes, as intended in this work, although 

much care has to be taken if dealing with dynamic 

properties. For further details about this topic, see for 

example: O. Iglesias Doctoral Thesis [18], Chapter 5. 

 The motion of the magnetic moment of a nanoparticle 

from the initial state with energy Ei  to the final state with 

energy Ef  is often described by means of the Metropolis 

algorithm [19]: if E < 0  (the new configuration is more 

stable energetically), the move to the new state is accepted 

and its energy changes to Ef , whereas if E > 0  (new 

configuration is less stable than the current one), the move 

has still some probability e
E /kBT  to occur. To compute this 

probability a random number n  with value between 0 and 1 

is generated and, if n < ri f  the new conformation of the 

system is accepted and so it has now energy Ef , while if 

n < ri f  it is rejected and the energy remains still Ei . The 

Metropolis algorithm is expressed as 

min 1,e
E /kBT  (11) 

The choice of this algorithm was motivated by its suitability 
to describe static properties of magnetic nanoparticle 
systems, as intended in this work. Other transition 
probability algorithms as Glauber dynamics could provide 
similar results for simulating ZFC/FC magnetization curves 
[20]. Glauber dynamics, originally applied to the 1D-Ising 
model, mainly differs from Metropolis in that minimizing 
the energy is not always accepted as change. For more 
details on this and other algorithms as heat-bath see for 
example the work by K. Binder [17]. It is also interesting to 
note ref. [21], where the governing algorithm is constructed 
as a combination of different MC trial-step choices. 

 The Metropolis MC method can be used to simulate the 

evolution of the magnetization of a system of magnetic 

nanoparticles as a function of different parameters. We 

describe here a MC method based in this procedure (see for 

example refs. [21-32]): the simulated system consists on an 

assembly of N-particles contained inside a unit cubic cell 

(side L ), which is replicated by using periodic boundary 

conditions in order to resemble a large and homogeneous 

system. The simulations are always done in two parts: in the 

first one the spatial distribution of the particles is set, and in 

the second part the particles are characterized by their 

attributes (size, anisotropy, magnetic moment) and the 

evolution of the system is simulated as a function of the 

desired parameters. The positions set in the first part are kept 

fixed during the simulation of the magnetic properties. Next 

we give a brief description of the generalities of the MC 

method. 

3.2. Spatial Arrangement 

 The procedure used to achieve the spatial distribution of 
the particles varies depending on the type of system we want 
to simulate: for ordered structures (chains of particles, 
crystalline structures, etc) the particles are directly placed 
into the unit cubic cell under the desired structure, whereas 
for setting the spatial arrangement of liquid-like systems 
(e.g. a frozen ferrofluid) a relaxation algorithm has to be 
used. 
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 In Fig. (9) we show some chain-like structures obtained 
by directly placing the particles into desired regular 
positions. They resemble one-dimensional columnar parallel 
chains of magnetic nanoparticles under different spatial 
arrangement (square, hexagonal) and different lengths along 
the X-axis. The study of such type of structures is at the 
center of much research nowadays for the basic study of the 
competition between the enhanced anisotropy and 
magnetostatic interactions [31-35]. The magnetic properties 
of such chain-like systems exhibit a good analogy to the 
behavior of ferromagnetic nanowires [36]. 

 For simulating disordered systems as ferrofluids with 

liquid-like structure [37] the positions of the particles are not 

directly generated and so we use a Lennard-Jones pair 

potential ( LJ ) to distribute the particles. During the 

simulation the particles can move freely in space, but their 

trial positions are markovian-linked to the actual one and so 

the liquid-like structure is more quickly obtained. An 

example of liquid-like structure is shown in Fig. (10), 

together with the corresponding correlation function g2. 

 For treating the long-range dipolar interactions the Ewald 
summation is used as in ref. [13], using for the simulations 
periodic boundary conditions based on the repetition of the 
unit cubic cell. Once attained the desired spatial distribution, 
the interparticle distances and their positions are used as 
inputs for the next part of the simulations, in which they are 
kept fixed. 

3.3. Superparamagnetic (SPM) Properties 

 Once the spatial distribution of the particles is achieved 
the next step is to characterize them with their main physical 
properties, namely volume, magnetic moment and magnetic 
anisotropy. Following the model described in Section 2, 
magnetic anisotropy is considered of uniaxial type, and both 
magnetic moment and anisotropy are assumed to be 

proportional to the particle volume. Therefore, the important 
parameters to characterize the particles are their volume and 
the orientation of the anisotropy easy axis. 

 The volume is taken into account by means of the related 

sample concentration of the system, c , preferable to 

determine experimentally and so better to compare with 

experimental results. For the sake of simplicity we assume 

the same monodisperse system as in the previous section, in 

order to have the less uncontrolled parameter-dispersity as 

possible. If defining c  as the fraction of the volume 

occupied by all the particles (
i

N
Vi ) over the total system 

volume (VT = L
3
), then the relationship between particle size 

and volume sample concentration is 

c = i

N

Vi

L3
NV

L3
 (12) 

 The orientation of the anisotropy easy axes of the 

particles is a parameter that remains fixed along the whole 

simulation process, and hence its value must be carefully 

selected due to its strong influence on the magnetic 

properties of the system. For studying SPM properties we 

have assumed a random easy-axes distribution as 

schematized in Fig. (7), constraint that works quite well for 

describing real systems as frozen ferrofluids or solid 

matrices [38]. Once the easy axes are placed, the simulation 

of the magnetic evolution of the magnetic moments of the 

particles can start, whose initial orientation can also be 

randomly distributed. The magnetic properties of the 

particles are accounted by their magnetic moment 
 
μ  and 

magnetic anisotropy  K , under the temperature/magnetic 

field constraints applied to the system, which determine its 

energy. In real systems, the evolution between an initial state 

 

Fig. (9). Scheme of parallel-aligned chain-like structures hexagonally and squared distributed, and different lengths. 
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with energy Ei  and a final state with energy Ef  occurs at a 

certain time interval, in which the event (reorientation of the 

magnetic moments in this case) can be described by a 

probability distribution function. These time-dependent 

processes can be simulated by giving the system a certain 

amount of opportunities to occur, i.e. attempts to change the 

configuration. These attempts define the computational time 

and are called Monte Carlo steps. The MC step constitutes, 

therefore, the computational equivalence to real time units. 

In our simulations one MC step is defined as N  trials given 

to a system of N -particles to change its configuration. 

 The simulation of a physical process consists in varying a 

desired magnitude (temperature, magnetic field, etc) under a 

certain protocol and evaluating the energy in the new state 

after a certain number of MC steps, accepting or neglecting 

the new configuration under the chosen algorithm. For 

example, to simulate a ZFC process for a N -particle system, 

the system is first cooled down in zero field from a high 

temperature by following a constant temperature vs MC 

steps variation ratio down to a very low temperature. In 

every MC step, one particle is selected at random and a new 

orientation of its magnetic moment is generated and accepted 

under the Metropolis algorithm min 1,e
E /kBT . This 

scheme is repeated N-times in each MC step. Once the very 

low temperature is reached, a small magnetic field is applied 

and the process continues now while heating the sample
4
. 

                                                             
4 A thermalization is performed previous to any thermomagnetic simulation 

(ZFC, FC, magnetization vs. field) in order to rapidly reach a stable 

configuration. The reason for doing this is to reduce the initial instability of 

the system right after randomly generating the orientation of the magnetic 

moments and easy-anisotropy axes, which would take a vary large amount 

of MC steps to stabilize during the simulation process. Instead, if the system 

is initiated at a very high temperature and cooled in large temperature jumps 

down to the starting process temperature the system relax rapidly and 

reaches a energetically stable configuration 

The same procedure applies for simulating the magnetization 

vs magnetic field M(H) curve, just being different the 

parameter to vary after a certain amount of MC steps. A 

M(H) curve is simulated by initially cooling the system 

down to the desired temperature (in zero field for our 

simulations), and once it is reached, a small field is applied 

and increased in regular intervals of field/MC steps up to a 

high field Hmax . Then, the field is decreased in the same 

manner until Hmax  is reached; and finally increased again 

until reaching once more Hmax  and having completed the 

cycle. To illustrate the features of the MC steps resembling 

real time units, we show in Fig. (11) some ZFC (left panel) 

and M(H) (left panel) curves for fixed temperature and 

magnetic field variations, but different MC steps, 

corresponding to a system of non-interacting particles as that 

shown in Fig. (10). 

 Fig. (11a) illustrates the shift of the ZFC curve peak to 

lower temperatures with larger amount of MC steps, what 

reproduces the physical behavior described by Eq. (4): if 

relating the amount of MC steps with the experimental 

measuring time m , the longer the time interval (amount of 

MC steps), the smaller TB . The M(H) curves of Fig. (11b, c) 

illustrate the influence of the thermal fluctuations on the 

hysteresis curves. For the low-temperature case, (a), the 

system is in the blocked state and exhibits FM-like hysteresis 

losses that originate from the overcoming of the anisotropy 

energy barrier. For the high temperature case (b), however, 

thermal excitations are large enough to promote the 

reversible jumping over the anisotropy barrier without 

energy losses. In both cases, it is observed a decrease in the 

value of the coercive field for larger time intervals (higher 

amount of MC steps). This tendency is also expected based 

on the time-dependence of the FM-like hysteretic behavior 

represented by the area in the M(H) curves, as discussed in 

 

Fig. (10). Liquid-like distribution of N=1000 particles into a unit cubic cell and correlation function g2 (r) . The correlation function and the 

Lennard-Jones pair potential are also indicated.  
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Section 2, which tends to disappear for very large times (MC 

steps). It is worthy to note that for the t = 0.01  case, the 

anisotropy energy is already large enough in comparison 

with the thermal one as to observe coercivity and remanence 

values characteristics of the idea Stoner-Wohlfarth case 

( HC 0.48HA , MR = 0.5MS ) [12]. In fact, Stoner-Wohl-

farth features can be reproduced by choosing an appropriate 

amount of MC steps (see ref. [28] for further details). 

 

Fig. (12). Schematic drawing of the -cone  used to generate the 

new trial orientation 
 
μtrial . 

 Despite the physical tendency coincides with the 
expected for both kind of simulated M(T) and M(H) 
processes, a well-established relationship between MC steps 
and real time units needs still to be developed in order to 
establish a precise connexion between both types of 
measurements. Different approaches have been reported in 
the literature with the purpose of connecting real time with 

computational MC steps, as for example by using a 
constrained acceptance rate [22]. In latter years, an 
alternative approach that connects real time and MC steps by 
correlating Langevin dynamics and MC steps is receiving a 
huge attention [15, 16]. This approach will be further 
analyzed in the next section. 

3.4. Trial Computational Time Steps 

 It turns out from the above description of the MC 

technique that the choosing of the trial new configuration 

with energy Ef  is of utmost importance: its value 

determines the acceptation rate of the algorithm and so the 

velocity and feasibility of the simulations. In our simulations 

we use the solid angle restriction scheme [20]: the new trial 

orientation 
 
μtrial  is randomly generated inside a cone of 

angle  around the current orientation 
 
μ . Fig. (12) 

illustrates this choice of the new trial orientation inside a 

cone of angle  around the current orientation of the 

magnetic moment [47]. For more information about other 

MC-step trial schemes and its influence on the simulation 

results see for example refs. [25, 26]. 

 The -value  directly rules the speed of the magnetic 

moments' movement, and therefore its magnitude must be 

carefully selected in order to ensure the adequacy of the 

simulations to resemble physical processes. If  is too 

small, the system will evolve very slowly to the quasi-

equilibrium configuration and we could be unable to 

resemble the physical process (too many MC steps would be 

necessary). On the contrary, if  is too large the system 

may relax too rapidly and make the features we want to 

 

Fig. (11). (a) ZFC processes simulated for a fixed temperature interval variation, but different MC steps (100, 200, and 500). In (b, c) are 

plotted M(H) curves simulated at temperatures below ( t = 0.01 ) and above ( t = 0.30 ) TB , respectively. It was used a fixed magnetic field 

interval variation, but different MC steps (200, 500, and 1000). In all (a ,b, c) cases, top panels show the complete processes, while bottom 

panels shows a magnification of the more remarkable aspects of the simulation (maximum of the ZFC curve and coercive field, respectively). 
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study unobservable. In Fig. (13a), we show the ZFC curves 

of the same system obtained for different values of . It is 

observed a tendency similar to that displayed in Fig. (11), 

with the curves exhibiting a larger peak at decreasing 

temperature for larger -values. These results illustrate 

how the MC steps may perform the role of computational 

time, if using an appropriate choice of the trial angle. 

 The results plotted in Fig. (13) indicate a strong 

dependence of the simulated results on , hence 

emphasizing that much care must be taken if trying to extract 

time-related information about the system from the 

simulations: those depend not only on the amount of MC 

steps, but also on the size of the trial angle chosen. 

 Fig. (13) displays also some simulations in which the 

-value is considered to be temperature-dependent, in the 

same way as described in refs. [15, 16]. The reason for 

including such dependence is not related to any effort 

concerned to use realistic times from the MC steps or to 

reach more accurate time-dependence results (Figs. 11, 13a) 

illustrate that it constitutes a very complex task). Instead, our 

motivation was simply to provide the simulations with a 

more realistic character: it seems to us more physical to 

make the thermal fluctuations to be larger at larger 

temperatures. Our argument is based on the fact that the 

analogy between the time-dependence of real experiments 

and simulations is introduced by means of attempts to 

change the configuration, which are generated randomly into 

the cone of angle . Under this assumption, the movement 

of the magnetic moments is resembled by giving the system 

a certain amount of MC steps to change its configuration. 

 In a real system, the magnetic moments fluctuate because 

of the thermal energy and consequently fluctuations are 

reduced the smaller the temperature. In order to reproduce 

this characteristic in the simulations, it appears very 

reasonable to us to include a temperature-dependence in the 

value of , since it is the tool used to resemble the thermal 

fluctuations found in real systems. It is worth not to mention 

here that although there is no intention of analyzing time-

dependence in our simulations, however the temperature-

dependence expression used has been intensively analyzed 

and discussed in such a context by Nowak et al. [15] and 

Fig. (13). Left panels: ZFC processes as a function of where (a) corresponds to different -values constant with temperature, (b) shows 

different temperature-dependence for , and in (c) we compare the =0.1=cte case, with the temperature-dependent case = (0.05t)1/2 . 

In all cases, panels on the right show the temperature evolution of ; the =0.1=cte case is shown for the comparison. 
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Cheng et al. [16]. The temperature dependence of  can 

be, re-written as = (Ct)1/2 , following refs. [15, 16] and in 

usual reduced reduced temperature units of t = kBT / 2KV , 

where C is a constant value proportional to the particle inner 

characteristics (size, magnetic moment and anisotropy) and 

to the dynamics of the system (gyromagnetic ratio, damping 

parameter, measuring time). The results plotted in Fig. (13b) 

show that for values of C  of the order of 0.050, with the 

results are very similar to those obtained for the 

= 0.10 = const  case, as shown in Fig. (13). 

4. SUMMARY 

 We have introduced the basic features of 

superparamagnetism as the paramagnetic-like behaviour 

observed in single-domain magnetic systems above the 

characteristic blocking temperature, TB . Superparamagnetic 

phenomenon arises from the interplay between the large 

magnetic supermoment resultant from the coherent rotation  

of the atomic magnetic moments in single-domain entities 

and the magnetic anisotropy energy, which defines a 

preferential orientation direction of significative influence on 

the magnetic behavior of the particles when it is comparable 

to the thermal energy. The direction of this anisotropy in 

relation to the applied magnetic field defines the response of  

the magnetic supermoment of the particle with temperature. 

In real systems, the anisotropy easy axes of the particles are 

usually randomly oriented, and very often interparticle 

dipolar interactions are not negligible, what results in a very 

complex scenario. In this context, we introduced the Monte 

Carlo technique based on the Metropolis algorithm as a 

powerful tool for the study of SPM properties. First, we gave 

a general approach to MC methods, and then described the 

suitability of the Metropolis algorithm for the study of SPM 

systems. We paid special attention to the role played by the 

trial angle of the MC step in the simulations. 

ACKNOWLEDGEMENTS 

 We thank the Xunta de Galicia for financial support 
(Project INCITE 08PXIB236052PR), and the Centro de 
Supercomputación de Galicia for the computing facilities. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 
conflicts of interest. 

REFERENCES 

[1] Herzer G, Vazquez M, Knobel M, et al. Round table discussion: 

Present and future applications of nanocrystalline magnetic 
materials. J Magn Magn Mater 2005; 294(2): 252-66. 

[2] Guimarâes AP. Principles of Nanomagnetism. Berlin: Springer 
2009. 

[3] Skomski R. Nanomagnetics. J Phys Condens Matter 2003; 15: 
R841. 

[4] Dormann JL, Fiorani D, Tronc E. Magnetic Relaxation in Fine-
Particle Systems. In: Prigogine I, Rice SA, Eds. Advances in 

Chemical Physics. Hoboken, NJ: John Wiley & Sons, Inc 1997; 
vol. 98: pp. 283-494. 

[5] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, 
Nogués J. Beating the superparamagnetic limit with exchange bias. 

Nature 2003; 423: 850-3. 

[6] Tartaj P, Puerto-Morales M, Veintemillas-Verdaguer S, González-

Carreño T, Serna CJ. The preparation of magnetic nanoparticles for 
applications in biomedicine. J Phys D Appl Phys 2003; 36: R182. 

[7] Kechrakos D. Magnetic nanoparticle assemblies. In: Sattler K, Ed. 
Handbook of Nanophysics. Nanoparticles and quantum dots. UK: 

Taylor & Francis 2010; vol. 3. arXiv: 0907.4417v2. 
[8] Petracic O. Superparamagnetic nanoparticle ensembles. Superlatti-

ces Microstruct 2010; 47(5): 569-78. 
[9] Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, 

Denardin JC. Superparamagnetism and other magnetic features in 
granular materials: a review on ideal and real systems. J Nanosci 

Nanotechnol 2008; 8: 2836-57. 
[10] Néel L. Théorie du traînage magnétique des ferromagnétiques en 

grains fins avec applications aux terres cuites. Ann Geophys 1949; 
5: 99-136. 

[11] Jönsson PE. Superparamagnetism and spin glass dynamics of 
interacting magnetic nanoparticle systems. In: Rice SA, Ed. 

Advances in chemical physics. Hoboken, NJ: John Wiley & Sons, 
Inc 2004; vol. 128: pp. 191-248. 

[12] Stoner EC, Wohlfarth EP. A Mechanism of magnetic hysteresis in 
heterogeneous alloys. Proc R Soc Lond A 1948; 240: 599-642. 

[13] García-Otero J, Porto M, Rivas J, Bunde A. Influence of dipolar 
interaction on magnetic properties of ultrafine ferromagnetic 

particles. Phys Rev Lett 2000; 84: 167-70. 
[14] Usadel KD. Temperature-dependent dynamical behavior of 

nanoparticles as probed by ferromagnetic resonance using Landau-
Lifshitz-Gilbert dynamics in a classical spin model. Phys Rev B 

2006; 73: 212405. 
[15] Nowak U, Chantrell RW, Kennedy EC. Monte Carlo simulation 

with time step quantification in terms of langevin dynamics. Phys 
Rev Lett 2000; 84: 163-6. 

[16] Cheng XZ, Jalil MBA, Lee HK, Okabe Y. Mapping the Monte 
Carlo scheme to langevin dynamics: a Fokker-Planck approach. 

Phys Rev Lett 2006; 96(6): 067208. 
[17] Binder K, Heermann DW. Monte Carlo simulations in statistical 

physics: an introduction. Heidelberg: Springer 2002. 
[18] Iglesias O. Time dependent processes in magnetic systems. PhD 

dissertation. Barcelona: Universitat de Barcelona 2002. 
[19] Metropolis N. The Beginning of the Monte Carlo Method. Los 

Alamos Science Special Issue 1987; pp. 125-30. 
[20] Pereira NJP, Bahiana M, Bastos CSM. Magnetization curves as 

probes of Monte Carlo simulation of nonequilibrium states. Phys 
Rev E 2004; 69: 056703. 

[21] Hinzke D, Nowak U. Monte Carlo simulation of magnetization 
switching in a Heisenberg model for small ferromagnetic particles. 

Comput Phys Commun 1999; 121: 334-7. 
[22] Dimitrov DA, Wysin GM. Magnetic properties of superparamagn-

etic particles by a Monte Carlo method. Phys Rev B 1996; 54: 
9237-41. 

[23] García-Otero J, Porto M, Rivas J, Bunde A. Monte Carlo 
simulation of hysteresis loops of single-domain particles with cubic 

anisotropy and their temperature dependence. J Magn Magn Mater 
1999; 203(1-3): 268-70. 

[24] García-Otero J, Porto M, Rivas J, Bunde A. Influence of the cubic 
anisotropy constants on the hysteresis loops of single-domain 

particles: a Monte Carlo study. J Appl Phys 1999; 85: 2287-92. 
[25] Ulrich M, García-Otero J, Rivas J, Bunde A. Slow relaxation in 

ferromagnetic nanoparticles: Indication of spin-glass behavior. 
Phys Rev B 2003; 67: 024416. 

[26] Serantes D, Baldomir D, Pereiro M, et al. Magnetic field-
dependence study of the magnetocaloric properties of a 

superparamagnetic nanoparticle system: a Monte Carlo simulation. 
Phys Status Solidi A 2008; 205(6): 1349-53. 

[27] Serantes D, Baldomir D, Pereiro M, et al. Interplay between the 
magnetic field and the dipolar interaction on a magnetic 

nanoparticle system: A Monte Carlo study. J Non Cryst Solids 
2008; 354: 5224-6. 

[28] Serantes D, Baldomir D, Martinez-Boubeta C, et al. Influence of 
dipolar interactions on hyperthermia properties of ferromagnetic 

particles. J Appl Phys 2010; 108: 073918. 
[29] Serantes D, Baldomir D, Pereiro M, et al. Magnetocaloric effect in 

magnetic nanoparticle systems: how to choose the best magnetic 
material? J Nanosci Nanotechnol 2010; 10: 2512-7. 

[30] Serantes D, Baldomir D, Pereiro M, Hoppe CE, Rivadulla F, Rivas 
J. Nonmonotonic evolution of the blocking temperature in 



84    The Open Surface Science Journal, 2012, Volume 4 Serantes and Baldomir 

dispersions of superparamagnetic nanoparticles. Phys Rev B 2010; 

82: 134433. 
[31] Serantes D, Baldomir D, Pereiro M, et al. Magnetic ordering in 

arrays of one-dimensional nanoparticle chains. J Phys D Appl Phys 
2009; 42: 215003. 

[32] Serantes D, Baldomir D, Pereiro M, et al. Magnetocaloric effect in 
dipolar chains of magnetic nanoparticles with collinear anisotropy 

axes. Phys Rev B 2009; 80: 134421. 
[33] Lavin R, Denardin JC, Espejo AP, Cortés A, Gómez H. Magnetic 

properties of arrays of nanowires: Anisotropy, interactions, and 
reversal modes. J Appl Phys 2010; 107: 09B504-6. 

[34] Lim J-H, Chae W-S, Lee H-O, et al. Fabrication and magnetic 
properties of Fe nanostructures in anodic alumina membrane. J 

Appl Phys 2010; 107: 09A334. 

[35] Franco V, Pirota KR, Prida VM, et al. Tailoring of magnetocaloric 

response in nanostructured materials: Role of anisotropy. Phys Rev 
B 2008; 77: 104434. 

[36] Prida VM, Vega V, Serantes D, et al. Influence of magnetic 
anisotropy and dipolar interactions on magnetocaloric effect in 

nanostructured materials. Phys Status Solidi A 2009; 206: 2234-9. 
[37] Luo W, Nagel SR, Rosenbaum TF, Rosensweig RE. Dipole 

interactions with random anisotropy in a frozen ferrofluid. Phys 
Rev Lett 1991; 67: 2721-4. 

[38] Hoppe CE, Rivadulla F, López-Quintela MA, et al. Effect of 
submicrometer clustering on the magnetic properties of free-

standing superparamagnetic nanocomposites. J Phys Chem C 2008; 
112(34): 13099-104. 

 

 

Received: March 30, 2011 Revised: May 5, 2012 Accepted: May 11, 2012 

 

© Serantes and Baldomir; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: //creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


