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Abstract: Thermal explosion of volatile energetic materials has been investigated based upon the thermal explosion 
theory of a gaseous mixture. The critical and transition condition expressions for the thermal explosion of these materials 
are obtained. The analytical solutions not only deal with the steady-state solution but also cover the unsteady state 
solution. The different cases and different parameters which affect the critical conditions are investigated in details. Also 
the numerical solution of the energy equation is offered to give the different families of temperature – time histories. The 
relation between the critical parameters as ignition timing, ignition temperature, Semenov number and others with 
different boundary conditions is offered. 
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INTRODUCTION 

 The theory of the thermal explosion of volatile energetic 
materials (liquid explosives widely used in rocket 
engineering, such as highly concentrated H2O2, hydrazine, 
ammonium per chlorate and nitrate, gun propellants, in 
construction and mining, in emergency escape devices and 
automobile air bags, and in material synthesis and others) is 
important. The irreversible decomposition of the condensed 
phases of these materials is accompanied by reagent 
evaporation and the saturation of gaseous reaction product 
with reagent vapor. This effect should be taken into 
consideration when analyzing reaction-related processes. 
The theoretical and experimental studies of thermal 
decomposition and explosion of volatile explosives have 
been investigated by [1-3]. A thermal decomposition of 
energetic materials (NTO and Organic Peroxide) was 
investigated experimentally by [4-6] studied the techniques 
of thermal analysis, in general and differential scanning 
calorimetry to provide the ways of examining such substance 
under relatively safe conditions was studied by [7]. The 
thermal decomposition of the highly energetic materials was 
investigated by the TGA (Thermogravimetric analysis) and 
DSC (differential scanning calorimetry). A calorimetric 
measurement for the thermal decomposition of energetic 
material using APTAC was offered by [8]. A thermal 
decomposition mechanism and kinetic parameters from 50 to 
500 °C were studied under a linear heating rate of potassium 
with DSC by [9]. Combustion of volatile condensed systems 
behind the stability limit of the stationary regime was studied 
numerically by [10]. Also, the thermal behavior and kinetic 
parameters of the exothermic decomposition reaction to the 
title compound were investigated by [11].  
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 In this work, the critical and transition conditions of the 
explosion of the volatile energetic materials through the 
analytical solution to the problem was introduced. The 
numerical solution of the unsteady state equation to the 
problem was offered. The relation between the critical 
parameters was also presented. The effect of evaporation of 
the volatile materials as compared with the non-volatile 
materials on the critical conditions was shown. 

THE GOVERNING EQUATIONS 
 Let us consider the kinetics of the reduction in the weight 
of a liquid at a constant temperature of a thermogravimetric 
experiment. Under quasi-steady conditions, the total rate of 
the weight reduction can be expressed as the sum of the gas 
formation and evaporation rates, 

 (1-a) 
 In standard kinetic experiments, the process rate is 
considerably low, while the mass and heat transfer inside the 
bubbles is extremely high due to their small size. So, one can 
assume the existence of thermodynamics equilibrium inside 
the bubble in which, 

 (1-b) 

 Taken into consideration that Pv + pg = pam and 
p

v
= p

0
e

(!L /RT ) , one obtains; 

 (1-c) 

and the gas formation rate can be expressed by dmg/dt = 
k(T)m for a first order reaction. So, the heat balance can be 
expressed as the sum of the heat released at decomposition 
(gas formation) and absorbed during evaporation in the 
following form 
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 Using Eqs. (1-a) – (1-c), one can obtain an expression for 
the rate of heat evolution: 

 (1-d) 
 If the overall decomposition reaction can be written as: a 
A (liquid) !  b B (gas) + c C (liquid or solid), then Eq. (1-
d) can be transformed identically, yielding 

 (1-e) 
Where dml/dt and Q refer to the decomposing liquid A. 

 Considering Eq. (1-e), one can write an unsteady heat 
balance equation for a thermal gradientless process (a 
uniform instantaneous temperature) of a liquid volatile 
explosive considering a system characterized as a zero-order 
reaction using the Arrhenius form of the rate of the reaction 
in the form [12]; 
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 The first term on the right-hand side of the above equation 
referring to the kinetic of heat evolution is quite complex. As 
temperature grows, its value first increases (not influenced by 
evaporation) and reaches its maximum value, and then it 
decreases due to evaporation-related heat absorption. Equation 
(1-f) can be rewritten in the final form as; 
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 So that it can be considered a heat-balance equation for a 
process with volumetric (the second term in the right-hand 
side in the equation) and surface (the third part in the right-
hand side of the equation) heat emission, similar to chain 
termination in the volume and on the walls in the case of an 
explosive chain reaction.  

Equation (1) can be put in the dimensionless form as; 
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CRITICAL CONDITIONS FOR DIFFERENT CASES 

 Steady-State for a non-adiabatic case: Following 
lermant and Yip [13] whose demonstrated that the existence 
of a jump phenomenon in the steady-state solution indicates 
ignition by examining the variation of the modified Semenov 
number (ψ) with a temperature (θ) for a constant (θa); 
Considering the steady-state case where  

dθ/dτ = 0, Eq. (2) gives 

! =
" #"

0( )

e
#1/" #

Lb

Qa

$
%&

'
()

e
# 1+(L /E )( )/"

P
am

P
0

$
%&

'
()
# e

#L /E"

 (3) 

 Fig. (1) shows ψ as a function of θ for different values of 
θ0, for the process without a volumetric evaporation (solid 
line curves) and with a volumetric evaporation (dashed line 
curves) with certain values of L/E (a dimensionless latent 
evaporation heat), a dimensionless pressure (Pam/P0), and a 
dimensionless thermal effect (Lb/Qa) (ratio between the heat 

 

Fig. (1). ! as a function of "m for nonvolatile liquid and valatile liquid with (La/Qb) = 0.5, (Pam/Po) – 0.005, (L/E) = 0.1, and "0 = 0.16, and 0.25. 
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absorbed during evaporation and heat released by the 
decomposition of liquid). The figure shows the jump 
phenomenon and shows that it disappears at θ0 ≥ 0.25 (θ0tr) 
for nonvolatile liquid and a little bit less than for volatile 
liquid. So, for ignition occurs θ0 should be less than θ0tr and 
ψ>ψ* (the max value reached where θ=θ0 at the beginning). 

To determine the critical condition as a jump phenomenon, 
we examine the condition for which dψ / dθ = 0; 
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 Fig. (2) shows θ* as a function of θ0 with different values 
of the dimensionless heat effect (Lb/Qa). The lower branch 
of the curves shows ignition temperature and the upper 
branch of the curves shows extinction temperature. The two 
branches of the curve meet in the transition point at which 
ignition tends to disappear. The graphs show as (Lb/Qa) 
increases the ignition region (area under the curves) 
decreases. This means that higher values of (Lb/Qa) produce 
high ignition temperature values at a certain value of θ0 and 
lower values for extinction temperature. It can also be seen 
that up to θ0= 0.1, the critical explosion temperature with and 
without evaporation are almost coincided, while the critical 
extinction temperature (cooling) for the evaporating material 
is higher than that of the non-evaporating substance. For θ0 
>0.1, the limiting explosion temperature exceeds the 
temperature characteristics for the process without 
evaporation, (when the liquid vapor pressure is much lower 
than the ambient pressure), while the opposite is considered 
in the case of an extinction process. So the transitional values 

(at which the criticality disappears), for the volatile liquid are 
lower than that of the nonvolatile liquid. Fig. (3) shows θ* as a 
function of θ0 with different values of (L/E). As shown in the 
figure, as the value of (L/E) increases, the ignition temperature 
value decreases. This means that low activation energy of the 
liquid or high latent heat of vaporization of the liquid lead to 
an explosion of the material at low temperatures. So, the safety 
of handling or storage of the volatile materials is more difficult 
than the non-volatile ones. 

 For heat released without the volumetric evaporation (a 
non-volatile liquid explosive), Eq. 4 is reduced to the form of 
the classical Semenov problem of homogenous gas mixture 
(or well stirred reactor) as:  
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 This means that the part of the volumetric evaporation 
term in the Eq. (2) is zero. This gives 
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 So, when the liquid vapor pressure is much lower than 
the ambient pressure and at a low temperature, the heat 
released due to chemical reaction does not show any change. 
The explosion temperature by evaporation exceeds the 
explosion temperature without evaporation. One can see that 
for the same conditions, the critical ψ* (high heat transfer 
loss (h) or high surface/ volume ratio (S/V)) corresponding 
to the explosion initiation limit for a volatile liquid is lower 
than that for a non-volatile liquid (characterized by the 
absence of volumetric heat absorption).  

 

Fig. (2). "* as a function of "0 for (Pam/P0) = 0.005, (L/E) = 0.1, and (La/Qb) = 0.0,0.1,0.2, 0.3, 0.4, and 0.5. 
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 Steady-state of an adiabatic system case: The upper 
limit of temperature of liquid is θad, which corresponds to the 
adiabatic process. Setting dθ / dτ = 0 and ψ = ∞, Equation 
(2) produces 
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Rearranging Eq. (7), gives the adiabatic temperature θad in 
the form 
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 We introduce the theoretical liquid boiling temperature, 
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 It can be seen that θad increases as Pam increases and 
always remain less than the boiling point. 

 Unsteady-state of the adiabatic system (dθ / dτ ≠ 0 and 
ψ = ∞) case : In this case, Eq. (2) can be set in the form  
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 The critical condition is defined as the point at which an 
inflection point occurs in the temperature - time trajectory 
before a maximum is reached [14, 15]). Differentiating Eq. 
(2) with respect to time and equating the result to zero; 
yielding the following  
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 Fig. (4) shows θad as a function of (Lb/Qa) for different 
conditions. This figure shows that the thermal effect depends 
on temperature and pressure (for a constant reaction 
mechanism). It can be seen that at certain (Lb/Qa), as 
ambient pressure increases the adiabatic (critical) 
temperature in adiabatic system increases.  

 For steady-state and inflection point to exist in the 
adiabatic system, that is, for the critical point Eq. (11) 
produces; 
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This equation gives  

 

Fig. (3). "* as a function of "0 for (La/Qb) = 0.1, (Pam/P0) = 0.005, and (L/E) – 0.0,0.1,0.2,0.3,0.4, and 0.5. 
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 One can see that if Pam value decreases, θad value 
decreases. Also, at a certain value of Pam, as (Lb/Qa) value 
increases, θad value decreases.  

 Unsteady-state of the non-adiabatic system ((dθ / dτ ≠ 
0 and ψ ≠ ∞) case: To investigate the inflection point in the 
temperature – time trajectory, Eq. (2) is differentiated with 
respect to time, which gives 
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 For both an inflection point and the steady - state solution 
to exist, that is, for the critical point, Eq. (15) is equated to 
zero where both parts of that equation yields 
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 So at θ0 the pressure of the original liquid vapor is 
significantly lower than the ambient pressure, then the 
explosion limit maximum warm up (θ*- θ0) can be estimated 
from Equation (16) in the form 
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 This expression differs from the Semenov critical 
condition by the second term in the square brackets in the 
nominator and dominator on the right-hand side. According to 
this expression, the critical conditions for a volatile explosive 
can be attained at lower heat removal rates due to partial heat 
removal by the volumetric evaporation. On the other hand, if 
the liquid vapor pressure is much lower than the ambient 
pressure or the thermal effect of the reaction is much higher 
than the phase transition heat [(Lb/Qa)<<1.0], that is the 
critical condition obtained becomes identical to the Semenov 
one [θ*2- θ*+ θ0= 0]. Since for exp(L/E)(Lb/Qa)(1+L/E)~1.0 
for many practically interesting systems, the classical theory, 
which does not take volumetric evaporation into account, can 
be used to estimate the critical parameters for the thermal 
explosion provided Psv(T0)<< Pam. Figs. (5 and 6) show θ* as a 
function of θ0 at different values of thermal effect (Lb/Qa), 
and latent evaporation heat (L/E). All curves are similar at the 
behavior. All figures show that as θ0 increases the ignition 
region becomes wider. Also we can conclude from the figures 
that for θ0 < 0.06, the ignition temperatures (lower branch of 
the curves) almost have the same values. Each curve shows a 
transition point (θ*

tr and θ0t) at which the criticality 
disappears. Table 1 shows the different values of transitional  

 

Fig. (4). "* as a function of (La/Qb) for (L/E) = 0.1, and (Pam/P0) = 0.005,0.01 and 0.015 (Adiabatic case). 
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Fig. (5). "* as a function of "0 for (Pam/P0) = 0.005, 0.01 and 0.015 (L/E) = 0.5, and (La/Qb) = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. 

 

Fig. (6). "* as a function of "0 for (Pam/P0) = 0.005, (La/Qb) – 3.0, and (L/E) 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. 

Table 1. Transitional values for Different (Lb/Qa), (L/E), and (Pam/P0) 

Lb/Qa 1.0 1.5 2.0 2.5 3.0 3.5 

!0tr 0.0947 0.09008 0.08681 0.08431 0.08229 0.08062 

!*
tr 0.1129 0.1065 0.1022 0.0988 0.0961 0.0939 

L/E 0.4 0.5 0.6 0.7 0.8 0.9 

!0tr  0.06937 0.08229 0.09407 0.1049 0.1148 0.1240 
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Table 1. contd… 

Lb/Qa 1.0 1.5 2.0 2.5 3.0 3.5 

!*
tr 0.0791 0.0961 0.1123 0.1278 0.1427 0.1570 

Pam/P0 0.05 0.10 0.15 0.20 0.25 0.30 

!0tr 0.0637 0.07861 0.08519 0.09054 0.09515 0.09925 

!*
tr 0.0791 0.0914 0.1007 0.1083 0.1152 0.1214 

 

Fig. (7). !* as a function of "* for (Pam/Po) – 0.03, (L/E) = 0.2, and (La/Qb) = 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5. 
 

points. Fig. (7) shows ψ* as function of θ*. It can be seen that 
the volatile liquid shows higher values of ψ than the 
nonvolatile liquid due to the absence of the volumetric heat 
absorption. One can also see that increasing the value of 
(Lb/Qa), results in an increase of the critical ignition 
temperature. 

 The relation between the modified Semenov numbers in 
both cases of nonvolatile explosive and volatile explosive 
can be obtained by dividing Eq. (15) with Eq. (5), which 
yields 
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 If (Lb/Qa) = 0 (no evaporation) , then ψv
* = ψ*. For 
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 If we use the Frank-Kamenetskii approximation to the 
rate law where the temperature excess can be defined as 
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 For the steady-state solution ( d! / d" '
= 0 ), Eq. (19) 

gives 
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 The critical conditions can be obtained by differentiating 
Eq. (20) with respect to " and equating the result to zero, 
yielding 
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 This quadratic can be solved for different values of 
(Lb/Qa), (L/E), and (Pam/P0). Fig. (8) shows "* as a function 
of (Pam/P0) for different values of (Lb/Qa). It can be seen that 
at certain value of (Pam/P0), as (Lb/Qa) increases the value of 
"* increases. As (Lb/Qa) increases, the ignition region (area 
under the curve) becomes larger. 

 One can see that for a nonvolatile liquid Lb / Qa( ) = 0 , 
Eqns. (21) and (20); give 
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*

= "
F .K

*  (where!
F .K

 is the Frank-
Kamenetskii number).  

 In the adiabatic case of the steady-state 
solution d! / d" '

= 0  and  # '
= $( ) , Eq. (19) produces 
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 If we consider the boiling temperature of the liquid, 
where p

am
/ p

0( ) = e
!L /E"b = e

#bL /E .e
!L /E"0 , then Eq. (23) gives; 
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where !
b

> !
ad

. 

 In the adiabatic case of the unsteady state 
system d! / d" '

# 0  and  $ '
= %( ) , Eq. (19) becomes 
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 The critical conditions can be obtained by differentiating 
Eq. (25) with respect to time and equating the result to zero 
(inflection point), yielding 
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 The solution of this quadratic equation gives the critical 
temperature #* as a function of different values of the 
(Lb/Qa), (L/E), and (Pam/P0). 

 For the non-adiabatic case of the unsteady - state 
solution, the critical conditions can be obtained by 
differentiating Eq. (19) with respect to time and equating the 
result to zero (inflection point), yielding 
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and  
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 For both inflection point and a steady-state solution to 
exist, that is, for the critical point Eqs. (27-a) and (27-b) 
gives the critical temperature a "* as a function of (Lb/Qa), 
(L/E), (Pam/P0), and θ0. It can be seen that for the non-volatile 
system, (Lb/Qa)=0 the Frank-Kamenetskii solution can be 
obtained in the same form as in Eq. (22). 

 

Fig. (8). "* as a function of (Pam/P0) for (L/E) = 0.5, "0 = 0.05, and (La/Qb) = 0.2, 0.6, 1.0, 1.4, and 1.8. 
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 The relationship between the critical parameters for both 
volatile and non-volatile materials can be put in the form 
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 If Lb / Qa( ) = 0 , then ψv
* = ψ*. For Lb / Qa( ) <<  

p
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>! *  and vice versa. 

NUMERICAL SOLUTION 

 Equation (2) can be integrated directly by using fourth 
order Runga-Kutta method with high precision of 
incremental time. This direct integration produces a whole 
family of curves for different initial conditions and different 
parameters. Fig. (9) shows the temperature -time histories for 
different values of ψ. It can be seen that for self-heating 
(subcritical) curves the temperature increases as the time 
increases till a certain time, then the temperature remains 
constant (maximum temperature). This means that the 
temperature is not enough for sustained ignition of the 
material. For self-ignition (supercritical) curves the 
temperature increases with time till a certain time, then 
thermally runaway occurs and ignition happened. One can 
notice that these supercritical curves show an inflection 
point. At this inflection point (ignition point) the ignition 
temperature and ignition time can be obtained. The boundary 
between non-ignition and ignition curves is called the critical 
boundary at which the critical condition can be obtained as 
shown before in the analytical part. Fig. (10) shows the 
temperature -time histories for different values of (Lb/Qa). 

In this case, one can see that in the thermal runaway curve 
the temperature jumps suddenly to high values, then remains 
constant. The effect of the initial temperature θ0 on the 
behavior of the function is shown in Fig. (11). One can see 
that if the value of the initial temperature is not enough to 
lead ignition, the temperature increases till the maximum 
value then remains constant. As the initial temperature 
values increases the behavior of the curves show thermal 
runaway and ignition occurs and the critical boundary 
between no-ignition and ignition cases is shown in the 
figure. 

CONCLUSIONS 

 From the previous results and discussion, the following 
conclusions can be derived as:  

1. The thermal explosion theory for the non-volatile 
explosive can be applied to the volatile explosives 
producing important results. 

2. Analytical treatments for the problem for both steady  
and unsteady state cases are offered. It was shown  
that the limiting explosion temperature of the  
evaporating liquid is higher than that of the non- 
evaporating liquid. Also the critical extinction  
temperature (cooling) for evaporating liquid is lower  
than that of the non-evaporating liquid. It is shown  
also that, if all other conditions are the same, the  
critical heat transmission (ψ*), corresponding to the  
explosion initiation limit for a volatile liquid is lower  
than that for a nonvolatile liquid (characterized by the  
absence of volumetric heat absorption).  

3. The analytical solution produces different  
mathematical expressions for the critical and  
transition conditions. 

 

Fig. (9). " - $ trajectories for (Pam/P0) = 0.05, (L/E) = 0.5, "0 = 0.045, (La/Qb) = 5000, and ! = 500000, 2000000, 3500000, 5000000, 
6500000, 8000000, 9500000, and 11000000. 
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Fig. (10). " - $ trajectories for (Pam/P0) = 0.05, (L/E) = 0.5, "0 = 0.045, ! = 4000000, and (La/Qb) = 50, 100, 150, 200, 250, and 300. 

 

Fig. (11). " - $ trajectories for ! = 4000000, (La/Qb) = 50, (L/E) = 0.06, (Pam/P0) = 0.06, and "0 = 0.01,0.02,0.03,0.03714,0.04,0.05, and 0.06. 
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Fig. (12). "* as a function of $*. 

 

Fig. (13). "* as a function of (La/Qb). 
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Fig. (14). "* as a function of (Pam.P0). 

 

Fig. (15). !* as a function of "0. 
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Fig. (16). !* as a function of (La/Qb). 

 

Fig. (17). !* as a function of (Pam.P0).  

4. The relationships between the critical modified  
Semenov number and the critical modified Frank- 
Kamnentskii number of both volatile and non-volatile  
energetic materials are offered. 

5. At high pressure (Pam) and low temperature, heat  
losses due to the volumetric evaporation are  
negligible and the material behaves as a nonvolatile  
substance. As the temperature is increased (or the  
pressure is decreased), the effect of volatility  

increases, resulting in a decrease in the total thermal  
effect as shown from the analytical solution. 

6. The numerical solution of the integral equation (2) 
produces the critical parameters ψ*, θ*, τ* as a 
function of the different parameters as shown in  
Figs. (12 to 18). Figures show that high θ* occurs at  
low τ* and vice versa. It can see that as the initial  
temperature θ0 increases, θ* increases and ψ*  
decreases. It can also be seen that as a value of  
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(Lb/Qa) starting from zero (nonvolatile liquid)  
increases, θ* increases and ψ* decreases. θ0 shows  
inversely proportional with ψ*. Lower values of  
(Pam/P0) produce high values of θ* and vice versa.  

7. Also, lower values of (Lb/Q) or (L/E) produce high 
values of τ* and vice versa. These numerical results 
coincide with results obtained from the analytical 
solutions. 

NOMENCLATURE 
A0 frequency factor of the reaction, s-1 

a moles number of liquid in the decomposition reaction. 

b moles number of gas formation during the decomposition 
reaction of liquid 

c heat capacity of the liquid, kJ/kg K. 

E activation energy of the reaction, kJ/kg 

h heat transfer coefficient, W/m2 K 

L latent evaporation heat, kJ/kg 

L/E dimensionless latent evaporation heat 

Pam pressure in the gas bubble = ambient pressure where 
Pv+Pg=Pam 

P0 pre-exponential factor in the expression for the saturated 
vapor pressure (Pv) of the liquid 

expression where Pv = P0exp(-L/RT) 

Q heat of decomposition of the liquid, kJ 

Lb/Qa dimensionless thermal effect 

R gas constant, kJ/kg K 

S heat-exchange surface area, m2 

T temperature, K 

T0 ambient (thermostat) temperature, K 

V volume of the liquid, m3 

GREEK SYMBOLS 

θ = RT/E, dimensionless temperature  

# = density of liquid, kg/m3 

$ = QA0Rt/c# E, dimensionless time 

! = RQA0V/hSE, modified Semenov number 

SUBSCRIPT AND SUPERSCRIPT 

ad adiabatic condition 

m maximum condition 

*critical condition 
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Fig. (18). $* as a function of (La/Qb). 
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