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Abstract: The Shiga toxin family consists of Shiga toxin (Stx) that is produced as a virulence factor by Shigella 

dysenteriae, and the Shiga-like toxins produced by certain strains of enterohemorrhagic E. coli as well as by some other 

types of bacteria. Infection with bacteria producing these toxins is a threat to human health even in industrialized 

countries, as the initial diarrhea caused by the infection might be followed by a complication named hemolytic uremic 

syndrome. The Shiga toxins consist of a binding moiety that in most cases binds to the glycosphingolipid Gb3 on the 

surface of susceptible cells, and an A-moiety responsible for the toxic effect in the cytosol. In order to reach its cytosolic 

target, the toxin must be internalized and then transported via the retrograde pathway to the Golgi complex and further to 

the endoplasmic reticulum. From the endoplasmic reticulum the enzymatically active part of the A-moiety is translocated 

to the cytosol, and cellular protein synthesis is inhibited. Although the Shiga toxins are involved in disease, they may also 

be exploited for medical diagnosis and treatment. Interestingly, the toxin receptor, Gb3, has a limited expression in normal 

tissues, but is overexpressed in several types of cancer. Thus, the use of Shiga toxin, or the binding part of the toxin, has 

great potential in cancer diagnostics and treatment. Furthermore, studies of the various uptake mechanisms and 

intracellular transport pathways exploited by the toxins, provide important insight in basic cell biology processes. 
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INTRODUCTION 

 The Shiga toxins are AB5-toxins consisting of a 
pentameric binding moiety (StxB) and an enzymatically 
active A-moiety (StxA) (Fig. 1). The 5 small B-chains (Mw 
7.7 kD) interact non-covalently, and each B-chain contains 
three binding sites for the glycosphingolipid Gb3 [1]. Thus, 
the pentamer has in theory the ability to cluster up to 15 Gb3 
molecules, which is important for toxin binding (see below). 
Only one type of Shiga-like toxin has been found to bind 
Gb4. The A-moiety, with a molecular mass of 32.2 kD, is 
non-covalently attached to the B-moiety [2] (Fig. 1), and 
contain a loop formed by a disulfide bond between cysteines 
242 and 261. 

 An important step for intoxication with Shiga toxin is the 
cleavage of the A-chain by the protease furin, generating the 
enzymatically active A1 fragment that is able to translocate 
into the cytosol [3]. Furin cycles between the TGN and the 
cell surface, and is involved in cleavage and activation of not 
only Shiga toxin, but also diphtheria toxin and Pseudomonas 
exotoxin A [4]. The pH-optimum for toxin cleavage varies 
with the substrate, and for Shiga toxin, furin-induced 
cleavage has a low pH-optimum [5], indicating that efficient 
cleavage can occur shortly after endocytosis. After cleavage, 
the A1 fragment remains attached to the A2 part via the 
internal disulfide bond [5], and the cleaved toxin is 
transported further via the Golgi complex to the endoplasmic 
reticulum (ER). From the ER, the A1-fragment is  
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translocated to the cytosol and functions as a highly specific 
N-glycosidase that removes adenine from one particular 
adenosine residue in the 28S RNA of the 60S ribosomal 
subunit [6]. The depurinated subunit is unable to interact 
properly with elongation factors, and the protein synthesis is 
halted. This mechanism of action is identical for the Shiga 
toxins and several plant toxins, e.g. ricin and abrin [7], 
indicating that important features of these toxins are 
conserved.  

 The Shiga-like toxins are divided into two 
immunologically distinct groups. Shiga-like toxin 1 (Stx1) is 
virtually identical to Stx produced by Shigella dysenteriae 
and differs in only one amino acid in the A-chain. Shiga-like 
toxin 2 (Stx2) shares the overall toxin structure, but has 
lower amino acid similarity to Stx (~55%). There are several 
subtypes of Stx2, and some bacteria produce several types of 
Shiga-like toxins [8]. Although Stx1 is 5-10 fold more 
cytotoxic in vitro than Stx2 [9], Stx2 is most frequently 
associated with human disease, such as the hemolytic uremic 
syndrome (HUS). This condition is defined by acute renal 
failure, hemolytic anemia and thrombocytopenia, and most 
frequently affects children and elderly (reviewed in [10]). 
Potential sources of the toxin-producing bacteria are 
undercooked ground beef, unpasteurized milk and juice, raw 
vegetables, and contact with infected live animals.  

 In some cell types the Shiga toxins, as a long term effect, 
induce expression and secretion of pro-inflammatory 
cytokines, including TNF- , IL-1, IL-6 and IL-8 [6, 11, 12]. 
Interestingly, the secreted cytokines can induce synthesis of 
Gb3 in other cell types, thereby sensitizing these cells to the 
toxin [13]. The Shiga toxins are also known to induce 
apoptosis either via the ribotoxic stress induced after 
transport of the A-chain into the cytosol, or, as shown in 
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Burkitt lymphoma cells, by rapid signaling induced at the 
cell surface [11, 14-16].  

BINDING OF STX TO CELLULAR MEMBRANES 

 All the members of the Shiga toxin family, except Stx2e, 
bind to the oligosaccharide part of the glycosphingolipid 
Gb3, with the structure Gal( 1-4)Gal( 1-4)GlcCer. Stx2e 
binds to Gb4 and is produced by bacteria that mainly infect 
pigs. Although Stx2 is most frequently associated with 
human disease, in most cases Stx1 has been shown to bind 
more strongly than Stx2 to Gb3 [17-20]. When the crystal 
structure of Stx2 and Stx is compared, some differences are 
found that might influence the ability of the toxins to interact 
with human cells and cause disease [21]. In contrast to Stx, 
the active site of the Stx2 A-moiety is accessible in the 
holotoxin, the orientation of the A-chain with respect to the 
B-pentamer differs in the two toxins, and one of the three 
Gb3 binding sites in the Stx2 B-chain has a different 
conformation than in Stx B-chain.  

 Although the toxin binds to the oligosaccharide part of 
Gb3, it is known that also the structure of the lipid moiety of 
the receptor is important for toxin binding, most likely by 
affecting the presentation of the oligosaccharide part. Both 
hydroxylation, the degree of unsaturation of the fatty acid, 
and the fatty acid chain length are important factors for 
optimal toxin binding [19, 22, 23]. The importance of the 
fatty-acid chain length of Gb3 for Shiga-like toxin binding 
has recently been found to differ for Stx1 and Stx2 [24]. In a 
model membrane system Stx1 bound selectively to C16, 
C22, and C24 Gb3-species, but not to C18 or C20 species. In 
contrast, Stx2 bound to all isoforms of Gb3, irrespective of 
chain length.  

 The structure of Gb3 is not the only parameter that 
affects Shiga toxin binding; also the local membrane 
environment surrounding Gb3, such as the phospholipid- and 
cholesterol-content of the membrane is important [9, 20, 23, 

25]. Also the density of Gb3 in the membrane seems to 
affect Shiga toxin binding, as it was recently found that 
mutant Vero cells with a lower density of Gb3 were unable 
to bind Stx1 [26]. Notably, at least in HeLa cells, toxin 
binding seems to induce recruitment of the toxin/receptor 
complex to lipid microdomains, or rafts, in the plasma 
membrane [27], and this localization has been reported to be 
important for correct retrograde trafficking and toxicity (see 
below). Recently, it was demonstrated that Stx1 and Stx2 
(also called Verotoxin 1 and 2) localized to both shared and 
distinct microdomains on the cell surface, and Stx1 was 
more resistant to detergent extraction than Stx2 both at the 
cell surface and during intracellular transport [9]. From this 
it seems that the toxin homologs bind different Gb3 lipid 
assemblies. Moreover, during their retrograde transport, the 
two toxins showed both overlapping and distinct 
localization, and also the kinetics of their retrograde 
transport differed [9]. These factors might contribute to the 
differential effects on target cells that these toxins display. 

 Interestingly, it has been shown that Stx binding rapidly 
activates several kinases, such as the Src kinases Yes [28, 
29] and Lyn [30], the tyrosine kinase Syk [30, 31], the 
serine/threonine kinase PKC  [32], and the MAP kinase 
p38  [33]. The activity of some of these kinases is important 
for Stx entry and intracellular transport, suggesting that Stx 
is able to induce its own transport (see below). 

ENDOCYTOSIS OF STX 

 Stx is able to exploit several endocytic mechanisms to 
gain entry into the cell, and the toxin was the first lipid-
binding ligand shown to utilize clathrin-dependent 
endocytosis [34]. The Gb3 molecules does not seem to be 
constitutively present in clathrin-coated pits, rather, the 
toxin/receptor complex is recruited into coated pits and 
internalized [34]. Interestingly, Stx seems to be able to 
stimulate its own clathrin-mediated uptake. The B-moiety is 
sufficient to activate Syk and induce phosphorylation of 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The structure of Stx. Stx (PDB protein data bank: 1DMO) consists of an A-chain of ~32 kDa, non-covalently attached to the ring-

shaped, pentameric B-moiety. The five B-chains of 7.7 kDa each, spontaneously assemble into the pentameric form. The A-chain is activated 

by proteolytic processing during the intracellular trafficking in the target cell. The protease furin has been shown to nick the A-chain into an 

enzymatically active A1-fragment (~27 kDa) and a carboxyl terminal A2-fragment (~4 kDa), which remain linked by a disulfide bond. 
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clathrin and uptake by this pathway [31], however, the 
efficiency of clathrin-mediated toxin uptake is dependent on 
the concentration of cell surface-bound toxin molecules and 
the presence of the toxin A-chain [35]. The stimulated 
uptake seen at high concentrations of intact toxin, might be 
explained by increased aggregation of toxin-receptor-
complexes into large clusters that somehow enhance the 
recruitment to clathrin-coated pits. Also, the toxin-receptor 
complex might interact with other plasma membrane 
proteins recruited to clathrin-coated pits. In fact, Stx has 
been shown to associate with surface-proteins in Vero and 
CaCo-2 cells [36], although the identity of these proteins 
remains unknown.  

 Interestingly, both the holotoxin and the B-moiety 
without an A-chain, can induce rapid tyrosine 
phosphorylation of several proteins, including the tyrosine 
kinase Syk and clathrin heavy-chain [31, 37]. Upon stimu-
lation with Stx/StxB a complex between Syk and clathrin 
heavy-chain was detected, and in Ramos cells both the 
phosphorylation of clathrin and the complex-formation 
seemed to require Src family kinase activity [37]. Moreover, 
depletion or inhibition of Syk reduced Stx uptake, suggesting 
a link between Stx-induced signaling and endocytosis. 
Subsequently, Stx binding has been shown to activate other 
key kinases that have roles in its transport, namely PKC  
[32] and p38  [33]. These kinases do not seem to regulate 
the uptake of the toxin, but rather to be involved in the 
endosome-to-Golgi transport step (see below). Moreover, 
Stx has been shown to stimulate microtubule assembly in 
ACHN cells [38] and in Vero cells [39], and both 
microtubules and dynein were found to be required for 
transport of Stx to the Golgi [39]. Notably, it was shown that 
the Stx-induced activation of microtubuli assembly was not 
mediated via Syk, suggesting that multiple signaling 
pathways are induced by Stx. 

 Clathrin-mediated endocytosis can be responsible for a 
large fraction of the endocytic uptake of Stx [40], but also 
other, clathrin-independent, mechanisms have been shown to 
contribute to toxin internalization in different cells [41-45]. 
These clathrin-independent uptake mechanisms show 
different requirements for dynamin and lipid rafts. In HeLa 
cells, we find that ~50% of Stx uptake is independent of 
dynamin [40], however, it is important to bear in mind that 
inhibition of one pathway might lead to upregulation of 
another [46]. It is therefore difficult to determine the exact 
contribution from each pathway in toxin uptake. Recently, a 
novel clathrin-independent uptake mechanism was reported 
for StxB, where the toxin was shown to induce tubular 
membrane invaginations mediating its uptake [45]. It was 
postulated that clustering of up to 15 Gb3 molecules by StxB 
binding generates cluster domains that naturally induce 
negative curvature on the membrane, and that this leads to 
invagination and generation of tubules [45]. The formation 
of the tubules was shown to be energy-independent, but 
dynamin was required for proper fission. To which extent 
this process is important for intoxication is not yet known. 

ENDOSOME-TO-GOLGI TRANSPORT OF STX 

 Retrograde transport from endosomes to the TGN and 
further to the Golgi is important for retrieval and correct 
localization of several endogenous proteins, e.g. Golgi-

resident proteins such as TGN46, mannose 6-phosphate 
receptors (MPRs) and furin (for review see [47]). Some 
pathogen-produced proteins, such as the Shiga toxins, 
cholera toxin, ricin and Pseudomonas exotoxin A, are able to 
exploit this pathway in order to reach their intracellular 
targets. After uptake into early endosomes, a key sorting 
process that determines the fate of the toxin takes place. The 
toxin/receptor complex might be sorted into the degradative 
pathway to the lysosomes or into the retrograde pathway to 
the TGN. Although, the sorting mechanism is currently not 
completely understood, several components that seem to 
play a role in this process have been revealed (Fig. 2).  

 Two main retrograde transport routes to the TGN have 
been identified; a direct pathway from early endosomes or 
the recycling compartment, and an indirect pathway via late 
endosomes [48-51]. Stx has been shown to utilize the direct 
pathway to the TGN, and not the Rab9-dependent pathway 
via late endosomes that transports amongst others, furin and 
a fraction of Pseudomonas exotoxin A [48, 52-55]. 
However, based on the differential requirements for 
retrograde transport of Stx, ricin and TGN38, it seems that 
more than one parallel pathway between early endosomes 
and the TGN may exist [32, 33, 56-62].  

 Several Rab- or Rab-associated proteins have been 
implicated in the transport of StxB from early endosomes to 
the TGN. Rab11 [60], Rab6a  [59, 63], and Rab6IP2 [64] 
have all been reported to positively regulate Stx transport, 
while Rab9 does not seem to be required for transport of 
either ricin or Stx [55, 56]. In a screen for potential Rab 
GTPase activating proteins (RabGAPs) involved in transport 
of Stx to the Golgi, the Golgi-localized Rab43 and its 
RabGAP RN-tre were found to be required [65]. Additional 
5 RabGAPs were identified as regulators of Stx transport to 
the Golgi, however, their target Rabs remain unknown. 

 Interestingly, both clathrin and dynamin play an 
important role not only in Stx uptake, but also in Stx 
transport from early endosomes to the Golgi [40, 44, 66]. 
The clathrin adaptor epsinR was found to be required for 
transport of Stx to the Golgi, while AP-1 did not seem to be 
involved [44]. Moreover, coat-like components other than 
clathrin, such as the retromer complex, has been shown to 
mediate transport of Stx from early endosomes to the Golgi 
[67-69] (Fig. 2). The retromer consists of the components 
hVps26, hVps29, hVps35, SNX1, and possibly SNX2 (for 
review see [70, 71]), and this complex has been shown to 
mediate retrieval of MPRs [51, 72] and several other cargo 
proteins to the Golgi [70]. Importantly, the retromer 
components hVps26 and SNX1, and also SNX2, are required 
for endosome-to-Golgi transport of Stx [67-69]. Sorting 
nexins contain a Phox homology (PX) domain that binds to 
certain phosphoinositides, such as PI(3)P, and a BAR 
(Bin/Amphiphysin/Rvs) domain that senses or induces 
membrane curvature. The presence of PI(3)P and the activity 
of the PI(3) kinase hVps34 is important for efficient 
transport of both Stx and ricin to the TGN [68, 73]. The 
retromer-interacting proteins EHD1 (Eps15 homology 
domain-containing protein 1) and EHD3 are needed for 
proper localization of SNX1 and SNX2 to endosomal tubules 
[74], and both EHD3 and one of its interaction partners, the 
Rab4/5 effector rabenosyn-5, are required for endosome-to-
Golgi transport of Stx [74]. How can we explain the 
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requirement for both clathrin and the retromer complex in 
transport of Stx to the Golgi? One likely explanation is that 
the clathrin coat and the retromer complex are not 
independent of each other, but rather regulate the retrograde 
transport from endosomes sequentially.  

 Several tethering factors seem to be involved in 
retrograde transport of Stx. tGolgin-1 [75], Golgin-97 and its 
effector ARL1 [76, 77], the conserved oligomeric Golgi 
(COG)-complex [78], GCC185 [79], GARP (Golgi-
associated retrograde protein) complex [80], and Rab6-
binding TATA element modulatory factor (TMF) [81] have 
all been implicated in Stx transport, presumably by targeting 
the Stx-containing vesicles to the TGN/Golgi. Moreover, 
two distinct SNARE complexes seem to be involved in the 
fusion of Stx containing vesicles with the TGN. One consists 
of the v-SNARE VAMP3/4 recognizing the t-SNARE 
complex syntaxin-6/syntaxin-16/Vti1a [59, 77] and the other 
fusion complex consists of the v-SNARE GS15 and the t-
SNARE complex syntaxin-5/Ykt6/GS28 [82]. It has been 
speculated that ARL1 is functionally connected to the t-
SNARE complex, possibly by regulating the localization or 
function of the components Vti1a and syntaxin-6 [77]. 

 In several cell-types, exit from early endosomes into the 
retrograde pathway of both cholera toxin and Stx has been 
shown to depend on lipid raft integrity [83-89]. It is 

postulated that these toxins exploit an endogenous pathway 
for recycling of raft glycolipids and that the lipids mediate 
toxin transport all the way from the plasma membrane to the 
ER [87, 89]. In agreement with this, disruption of lipid rafts 
or reduction of cellular cholesterol by drugs such as m CD 
or filipin, was found to strongly reduce transport of Stx to 
the Golgi [55, 87]. However, not only lipid raft integrity, but 
also specific targeting of the Stx/Gb3 complex to these 
domains seems to be important for retrograde transport [87]. 
This was indicated by comparing Stx transport in toxin 
sensitive HeLa cells vs. toxin insensitive monocyte-derived 
cells [87]. The toxin was internalized in both cell types, but 
was only targeted to the Golgi in HeLa cells, corresponding 
to raft localization of Gb3 in these cells and not in the 
monocyte-derived cells. A correlation between raft 
localization and toxicity has also been shown by comparing 
cholera toxin and E. coli heat-labile enterotoxin IIb [89]. 
Both toxins were internalized, but only raft-localized toxin-
receptor complexes were targeted to the Golgi and displayed 
cytotoxicity [89]. Moreover, bovine intestinal epithelial cells 
express Gb3, but are insensitive to Shiga-like toxins [90]. In 
these cells the internalized toxin is routed to lysosomes for 
degradation, like in monocyte-derived cells. Because of the 
insensitivity towards Shiga-like toxins, cattle function as 
reservoirs of Shiga-like toxin-producing bacteria [90]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Overview of components involved in the retrograde trafficking of Stx. Endocytosis of Stx is mediated by several uptake 

mechanisms, with different requirements for components such as clathrin, dynamin, and Syk. From early endosomes (EE) Stx is transported 

to the trans-Golgi network (TGN), either directly and/or via the endocytic recycling compartment (ERC). Several components have been 

implicated in the exit from EE and in the further retrograde transport. These are discussed in detail in the text. 
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 Targeting of the Stx/Gb3 complex from endosomes to the 
Golgi appears to depend on the fatty acid chain length of 
Gb3 [62, 91-93]. Sensitization of cells towards Stx by 
treatment with byturic acid is known to cause a change in 
Gb3 fatty acid chain length, and Gb3 species containing C16 
fatty acids may favor endosome-to-Golgi transport of Stx 
[62, 91, 93, 94]. Recently, it was shown in HEp-2 cells that 
inhibition of glycolipid synthesis with PDMP or fumonisin 
B1 results in loss of the glycolipid species at different rates 
[62]. Gb3 molecules with C16 fatty acids were degraded 
faster and to a larger extent than C24:1 Gb3 molecules. The 

endosome-to-Golgi transport was inhibited and the toxin 
seemed to end up in endosomes or transport vesicles unable 
to fuse with the Golgi complex. Neither treatment with 
PDMP [62] nor fumonisin B1 (Fig. 3) resulted in toxin 
transport to LAMP1-positive late endosomes/lysosomes. 
PDMP treatment changed the cellular localization of SNX1 
and SNX2 from the Golgi area to an endosomal localization. 
A similar phenotype was previously shown for SNX1 after 
EHD3 knockdown [74], and also in these cells StxB 
accumulated in endosomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). StxB colocalization with lysosomes is not increased upon inhibition of Golgi transport with fumonisin B1. The amount of 

receptor-bound Stx transported to the Golgi apparatus is reduced in HEp-2 cells pre-treated with 10 M fumonisin B1 for 48 hours. After 45 

minutes of StxB incubation, the colocalization of StxB with early endosomal marker EEA1 (A) and lysosomal marker LAMP1 (B) does not 

increase in fumonisin B1-treated cells compared to control cells. In the case of LAMP1 the colocalization rather decreases. ((A) n = 27 for 

both control and fumonisin B1, (B) n = 21 for control and n = 14 for fumonisin B1, *P< 0.05, unpaired Student’s t-test). This suggests that in 

cells treated with fumonisin B1, StxB is retained in endosomes or transport vesicles unable to fuse with the Golgi apparatus rather than in 

EEA1- or LAMP1-positive endosomes or lysosomes. 
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 Inhibition of Stx trafficking and accumulation of the 
toxin in endosomes has also been shown when PKC  [32] or 
p38  [33] are inhibited or depleted from cells. Interestingly, 
both kinases are rapidly activated by Stx binding, further 
strengthening the hypothesis that Stx is able to stimulate its 
own trafficking by inducing signaling cascades. Activated 
p38  was shown to translocate to endosomes upon Stx 
stimulation. Recently, potential modulators of the p38 -
dependent pathway were identified, the -arrestins 1 and 2 
[95]. Like p38 , the -arrestins were shown to translocate to 
endosomes upon Stx stimulation. However, the -arrestins 
seem to be negative regulators of retrograde transport, as 
knockdown of these proteins increased the retrograde 
transport of both Stx and the MPRs [95]. It was proposed 
that since -arrestins can form a complex with p38 they may 
sense the activated p38 and attenuate its signaling.  

GOLGI-TO-ER TRANSPORT 

 ER-resident proteins that are missorted to the Golgi 
complex by anterograde transport, are normally retrieved by 
a retrograde transport system through the Golgi cisternae and 
back to the ER. The classical eukaryotic signal for retension 
in the ER lumen is the KDEL-motif, and proteins containing 
this motif are retrieved in COPI-coated vesicles by KDEL 
receptors [96, 97]. The Pseudomonas exotoxin A contains a 
KDEL-like sequence and exploits this pathway [98]. Also 
the cholera toxin A-chain contains a KDEL-motif, however, 
this motif is not strictly required for cholera toxin function, 
but rather improves the efficiency of intoxication [99]. 
Importantly, even the cholera toxin B-moiety can move 
retrogradely to the ER, demonstrating that the GM1-bound 
toxin can be transported independently of the A-chain 
containing the KDEL motif. Studies on Stx transport 
provided the first evidence that a bacterial protein was able 
to move retrogradely all the way from the plasma membrane 
to the ER [91], and a few years later this was also 
demonstrated to be the case for cholera toxin [100]. 
Interestingly, Stx does not have a KDEL motif and reaches 
the ER in a COPI-independent pathway [101]. Golgi-to-ER 
transport of Stx is dependent on Rab6a , actin, Cdc42, 
microtubuli and calcium [63, 102-105], and the vesicle 
trafficking seems to be mediated by myosin motors [106].  

TRANSLOCATION TO THE CYTOSOL 

 In order to inhibit protein synthesis, the catalytically 
active A1-chain of Stx must enter the cytosol, where the 28S 
rRNA substrate is located. Several lines of evidence indicate 
that StxA1, like many other ER-targeted AB or AB5 toxins 
(e.g. ricin, cholera toxin, and Pseudomonas exotoxin A) 
translocates to the cytosol from the ER. ER-to-cytosol 
translocation is presumably achieved by taking advantage of 
a process known as ER-associated degradation (ERAD), 
which normally functions to dislocate misfolded proteins 
from the ER to the cytosol for immediate ubiquitylation and 
proteasomal degradation [107]. Stx, and other ER-directed 
toxins, avoid massive ubiquitylation and degradation at least 
in part due to the extremely low content of lysine residues in 
their A-moieties [108]. 

 In cells containing furin, the Stx A-chain is already 
proteolytically cleaved before ER arrival [3], so that the A1 

fragment is connected to the A2 fragment (which again is 

bound to the pentameric StxB moiety) only by a disulfide 

bridge between cysteines 242 and 261. For full catalytic 

activity, the A1 fragment must presumably dissociate from 

A2, since residues 258-262 of A2 lie adjacent to the active 
site cleft, and the side chain of Met260 protrudes into the 

active site itself [109]. Removal of the disulfide bridge is 

sufficient for the A1 fragment to dissociate from the A2-
StxB-Gb3 complex [5]. How the disulfide bridge is reduced 

is not known, but in analogy with cholera toxin, whose 

active A1 fragment also needs to be cleaved from its 
disulfide-linked A2 fragment, it is possible that the reduction 

also of StxA is carried out by the ER-resident enzyme 

protein disulfide isomerase [110, 111]. In Vero cells (which 
contain furin) it was demonstrated that the vast majority of 

StxA in the cells was not reduced and only the A1 chain 

could be detected in the cytosol [112]. However, it can not 
be excluded that also the whole A-chain can be translocated 

from the ER to the cytosol. Indeed, it has been reported that 

in vitro translated Stx A-chain is able to translocate from the 
lumen of isolated microsomal membranes [113]. Moreover, 

in Vero cells a Stx-mutant that lacks the furin cleavage site 

was shown to be processed in a manner that was sensitive to 
inhibitors of the cytosolic enzyme calpain [114], indicating 

that also in vivo, the whole A-chain may translocate to the 

cytosol. Given that the A-chain stays attached to the 
pentameric B-moiety (which again is most likely still bound 

to Gb3) all the way to the ER [112], it remains to be 

demonstrated how this intoxication process occurs.  

 The molecular mechanism responsible for StxA1-

translocation from the ER to the cytosol is not well defined. 
In yeast, it was shown that the stretch consisting of the 12 

very last C-terminal amino acid residues in A1 (240-251) is 

required for its ER-to-cytosol translocation [115]. Moreover, 
A1 contains a hydrophobic region (residues 224-242) close to 

its C-terminus, which may be recognized by ER-resident 

chaperones mediating ER quality control [108], but 
experimental data to support this idea are lacking. It seems 

evident, however, that both the A- and B-chains of Stx can 

interact with ER-resident chaperones. In vitro translated 
StxA was shown to interact with the ER-resident Hsp40 

chaperone HEDJ/ERdj3 inside the lumen of microsomes 

isolated from Vero cells [113], and interestingly the ER-
resident Hsp70 chaperone BiP, which is likely to play a 

major role in ERAD substrate selection [107], was found to 

coimmunoprecipitate with StxA and HEDJ/ERdj3. More 
recently, a functional interplay between HEDJ/ERdj3 and 

BiP has been uncovered [116, 117]. Intriguingly, it appears 

that not only StxA, but also StxB is able to interact with BiP, 
since StxB has been reported to both colocalize [87] and 

coimmunoprecipitate with BiP [118]. Interestingly, BiP 

seems to play a central role not only in ERAD substrate 
selection, but possibly also in the targeting of ERAD 

substrates to an ER retrotranslocon channel [107]. It remains 

to be determined whether BiP actually both recognizes and 
drives StxA/StxA1 to an ER retrotranslocon channel. 

Furthermore, the nature of the retrotranslocon channel(s) 

used by StxA/StxA1 remains to be defined. One possibility is 
that Stx uses the same retrotranslocon (Sec61) as is 

apparently being exploited by cholera toxin and ricin to gain 

access to the cytosol [119, 120]. However, it is unclear 
whether StxA can interact with Sec61 or not [112, 113]. 

Alternatively, Stx might use other putative ER 
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retrotranslocon channels, such as those constituted by the 

derlin family. 

EXPLOITATION OF STX IN MEDICINE 

 The use of Shiga toxin, or the binding part of the toxin, 
has great potential in cancer diagnostics and treatment (for 
reviews see [7, 121-123]). The Stx receptor Gb3 has a 
limited expression in normal human tissues, being mostly 
restricted to endothelial cells, kidney epithelium and some 
antigen presenting cells, such as subsets of dendritic cells 
and B cells [11]. This facilitates the use of StxB as a vector 
for peptide delivery to the MHC class I pathway for the 
development of vaccines against specific cancer epitopes (for 
reviews see [121, 123]). It has been shown that exogenous 
antigens coupled to StxB is targeted to the MHC class I 
pathway and then presented on the surface of dendritic cells, 
facilitating activation of cytotoxic T-cells and antitumor 
immunity [124-126]. In this way StxB might function as a 
non-live, non-toxic vaccine delivery system in cancer 
therapy.  

 Interestingly, Gb3 is overexpressed in several cancer 
types, such as B-cell lymphomas, and cancers of the ovary, 
breast, testis, and colon (reviewed in [123]). For diagnostic 
purposes and selective imaging of these Gb3-expressing 
cells, visualizing agents, such as radioactive isotopes, 
contrast agents or fluorescent dyes, might be coupled to 
StxB. It has been demonstrated that labeled StxB 
administered systemically in mouse models accumulates in 
tumor regions overexpressing Gb3, thus confirming that 
cancer cells can be targeted in vivo by StxB [124, 127]. 
Although not yet tested in vivo, the coupling of 
chemotherapeutic drugs to StxB may increase the selectivity 
of chemotherapy, and thereby reduce side-effects. When a 
topoisomerase I inhibitor prodrug was coupled to StxB, the 
complex was targeted to the biosynthetic/secretory pathway 
(most likely the ER) and exhibited cytotoxicity only in Gb3-
positive cells [128].  

 There is also a potential use of the holotoxin in cancer 
treatment. It has been shown that ovarian-derived tumor cells 
were effectively killed by Stx1, and interestingly, multidrug 
resistant variants of these tumor cells expressed higher levels 
of Gb3 and were more sensitive to Stx1 [129]. Gb3 was 
expressed also in tumor vasculature, suggesting a potential 
role for Stx as an antiangiogenic agent [130]. Also some 
brain tumor cells, such as astrocytoma cells, are sensitive to 
Stx1 and are killed by apoptosis [131]. Moreover, Stx1 has 
proven useful as an ex-vivo purging agent to eradicate 
malignant cells from autologous stem cell grafts [132]. The 
Stx B-moiety has been demonstrated to reduce tumor growth 
of colon carcinoma cells in a mouse model [133]. 

CONCLUDING REMARKS 

 The fact that many protein toxins follow long 
intracellular transport routes in order to reach the cytosol, 
makes them invaluable tools in the study of cellular 
pathways. The investigations of toxin uptake and 
intracellular transport have given important insight in basic 
cell biology processes and led to the discovery of several 
transport pathways. Clearly, detailed knowledge of the 
regulation and the specific intracellular trafficking 
mechanisms used by the different toxins is crucial both to 

improve the prevention and treatment of toxin-induced 
diseases, and also to exploit the toxins as tools in medicine.  
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