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Abstract: The binary C2 toxin from Clostridium botulinum consists of two separate proteins: the transport component 
C2IIa delivers the enzyme component C2I into the cytosol of eukaryotic host cells. In the cytosol, C2I mono-ADP-
ribosylates actin, thereby inducing depolymerization of actin filaments resulting in delayed caspase-dependent cell death. 
The sophisticated cellular uptake mechanism of C2 toxin, in particular our new results regarding the role of host cell 
chaperones and protein-folding helper enzymes during intracellular membrane translocation of C2I, are focused upon in 
this minireview.  

We discovered earlier that translocation of C2I across endosomal membranes in mammalian cells depends on the 
chaperone activity of the heat shock protein Hsp90. Recently we have demonstrated that cyclosporin A (CsA), an inhibitor 
of peptidyl-prolyl cis/trans isomerase (PPIase) activity of cyclophilins, inhibited intoxication of various mammalian cell 
lines with C2 toxin. The underlying reason for this effect was the prevented uptake of C2I into the host cell cytosol. CsA, 
as well as a specific antibody against cyclophilin A, blocked the pH-dependent translocation of C2I-ADP-
ribosyltransferase activity across membranes of intact cells and of partially-purified early endosomes in vitro. In 
conclusion, our results imply that the activities of Hsp90 and cyclophilin A are crucial for translocation of the C2I ADP-
ribosyltransferase from early endosomes into the cytosol of mammalian cells. This is the first observation that a host cell 
PPIase, in concert with a heat shock protein, facilitates intracellular membrane translocation of a bacterial protein toxin.  
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GENERAL MODE OF ACTION OF BACTERIAL AB-

TYPE EXOTOXINS 

 Bacterial exotoxins are the causative agents for severe 
human and animal diseases. Most of these protein toxins are 
clearly associated with a particular disease as well as a 
certain bacterium, which produces the toxin. Exotoxins from 
the AB-type are extremely potent virulence factors due to 
their ability to enter mammalian cells and to act as enzymes 
in the host cell cytosol. AB-type toxins contain functionally 
different domains: the B- (binding) domain binds to its 
cellular receptor and mediates endocytosis of the toxin and 
the A- (enzymatic active) domain modifies its specific 
substrate molecules in the cytosol. To reach the cytosol, the 
A-domain has to translocate across intracellular membranes 
and in many AB-toxins, this step is facilitated by the B-
domain.  

 It was discovered that bacterial AB-type toxins exploit 
intracellular vesicular protein traffic pathways to deliver 
their A-domain into the host cell cytosol [1-4]. The toxins 
can be divided into two major groups, depending on which 
intracellular route they take. “Short-trip toxins”, such as 
diphtheria or anthrax toxins [5-7], translocate from the 
lumen of acidified endosomes into the cytosol while “long-
trip toxins” (i. e. cholera toxin [8, 9]) undergo a retrograde  
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vesicular transport through their target cells and deliver their 
A-domain from the endoplasmic reticulum into the cytosol.  

BINARY ACTIN-ADP-RIBOSYLATING TOXINS  

 Most often the A- and B-domains are located on the same 
polypeptide chain; however, there are the so-called binary 
toxins from Bacillus and Clostridium species that have the 
A- and B-domains located on two different non-linked 
proteins, commonly called components. The single 
components are individually not toxic when applied to cells 
or animals. The A- and B-components of binary toxins must 
assemble to form a biologically functional toxin complex, 
which is internalized into and intoxicates eukaryotic cells. 
Apart from the two toxins produced by Bacillus anthracis, 
lethal toxin and edema toxin, members of the family of 
actin-ADP-ribosylating toxins possess this particular binary 
structure (for review see [10]).  

 The family of binary actin-ADP-ribosylating toxins is 
comprised of the Clostridium botulinum C2 toxin, C. 
perfringens iota toxin, C. difficile toxin (CDT), C. 
spiroforme toxin, as well as the vegetative insecticidal 
proteins (VIP) from Bacillus cereus. The enzyme 
components of these toxins are mono-ADP-
ribosyltransferases that covalently transfer an ADP-ribose 
moiety from NAD+ onto arginine-177 of G-actin. This 
modification induces depolymerization of actin filaments 
and complete destruction of the actin cytoskeleton in 
eukaryotic cells. Recently, we have discovered that these 
events finally result in delayed caspase-dependent apoptosis 
of epithelial cells and macrophages [11].  
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CLOSTRIDIUM BOTULINUM C2 TOXIN 

 In 1980, Ohishi et al. discovered the binary nature of the 
C2 toxin [12], which is produced by C. botulinum types C 
and D. Production of C2 toxin correlates with spore 
formation by the bacteria [13]. C2 toxin consists of enzyme 
component C2I and binding/translocation component C2II 
[12], which must interact in a synergistic manner to exhibit a 
cytotoxic effect [14]. In 1986, Aktories and co-workers 
demonstrated that the ADP-ribosyltransferase C2I 
selectively mono-ADP-ribosylates G-actin at arginine-177 
[15]. Based on this pioneering work, the new toxin family of 
binary bacterial actin-ADP-ribosylating toxins was 
introduced. Later, Barth and co-workers unravelled the 
cellular uptake mechanism of C2 toxin and took advantage 
of the binary toxin to deliver foreign cargo proteins into the 
cytosol of eukaryotic cells [16]. In past years, cell-permeable 
C2 fusion toxins have been used as valuable tools in 
pharmacological studies with intact mammalian cells [17].  

 Although isolated C2 toxin is a very potent enterotoxin 
that kills mice, rats, guinea pigs, and chickens within 1 hour 
after application of 1-2 pmoles [14] and causes necrotic, 
hemorrhagic lesions in the intestinal wall [18], the role of C2 
toxin in disease is still not known. All strains of C. 
botulinum that synthesize C2 toxin also produce the 
extremely potent neurotoxins, which are the causative agents 
of the very severe disease botulism. Thus, clinical symptoms 
caused by the neurotoxins dominate the disease and 
symptoms caused by C2 toxins might not be recognized in 
these patients.  

 The enzyme component C2I (49.3 kDa) harbours mono-
ADP-ribosyltransferase activity. The catalytic site of C2I, 
containing highly conserved amino acid residues, found 
among all bacterial mono-ADP-ribosyltransferases [19], is 
located in the C-terminal domain of the protein. The N-
terminal domain of C2I (C2IN, amino acid residues 1-225) 
interacts with the activated transport component C2IIa and 
mediates translocation of the C2I protein into the host cell 
cytosol [20]. Thus, the enzyme inactive C2IN domain was 
used as a molecular adaptor for the C2IIa-mediated transport 
of foreign cargo proteins into cells.  

 The transport component C2II (80.8 kDa) requires 
nicking to become biologically active [21]. Proteolytic 
activation of C2II occurs between residues Lys181 and 
Ala182 [22]. Nicked C2IIa rapidly and spontaneously forms 
ring-shaped heptamers (~ 420 kDa), [23]. The structure of 
C2IIa revealed that the narrowest diameter of the hepatmers 
is 2.7 nm [24]. Importantly, only C2IIa but not C2II can bind 
to the cell surface and to C2I [23, 25].  

 The C-terminal region of C2IIa binds to Asn-linked 
complex and hybrid carbohydrates, which are present on the 
surface of all yet tested mammalian cell types, explaining the 
sensitivity of all cell types to C2 toxin [26].  

INTERNALIZATION AND MEMBRANE TRANSLO-
CATION OF C2 TOXIN  

 The first steps during internalization of C2 toxin include 
formation of the C2IIa/C2I complex and binding to its 
cellular receptor. It is supposed that three molecules of C2I 
might assemble with one C2IIa heptamer [27]. Interestingly, 
either the pre-formed C2IIa/C2I complex can bind to the 

receptor or, C2IIa binds to the receptor first, followed by an 
assembly of C2I to now cell-bound C2IIa. It has also been 
suggested that toxin complex formation prior to receptor 
binding might enhance C2 toxin efficiency when low 
concentrations of the toxin are applied to cells.  

 As seen in Fig. (1), receptor-bound C2IIa/C2I complexes 
are internalized by receptor-mediated endocytosis and 
transported by exploiting the vesicular protein traffic system 
of host cells. C2I translocates from early acidic endosomes 
into the cytosol and this step is facilitated by C2IIa. 
Acidification of the endosomal lumen triggers a major 
conformational change of C2IIa. As a consequence, C2IIa 
heptamers expose hydrophobic residues on their surface 
[28], insert into the membranes of the endosomes and 
thereby form pores. Importantly, membrane insertion and 
pore formation of C2IIa is absolutely necessary for 
translocation of C2I across endosomal membranes [28].  

 The C2IIa translocation pore is between 27 and 32 Å 
wide and more than 70 Å long, implying that the pore lumen 
is too narrow to allow passage of C2I [24]. Therefore, C2I 
translocates in a partially unfolded conformation through the 
lumen of C2IIa pores. This was discovered by using a 
dihydrofolate reductase (DHFR)-C2I fusion protein [29]. In 
the presence of methotrexate (MTX), which binds to the 
DHFR portion of that chimera, C2IIa-dependent 
translocation of the fusion toxin was reduced. DHFR has a 
linear conformation but after binding of its substrate MTX, 
DHFR is stabilized into a tightly folded conformation and 
thus can not efficiently pass through the narrow lumen of 
C2IIa pores. These findings strongly suggested that C2I must 
unfold for translocation through C2IIa pores and thus the 
question arose, how was the ADP-ribosyltransferase activity 
of C2I recovered in the host cell cytosol following 
membrane translocation? Thus, we have investigated 
whether host cell chaperones and/or protein-folding helper 
enzymes were involved in membrane translocation and/or 
refolding of the ADP-ribosyltransferase C2I in the cytosol of 
mammalian cells. 

ROLE OF HOST CELL CHAPERONES AND PPIASES 
DURING INTERNALIZATION OF C2 TOXIN 

 In 2003, participation of the cellular chaperon heat shock 
protein (Hsp) 90 on the cellular uptake of bacterial toxins 
was described for the first time. Ratts et al. demonstrated 
that Hsp90 mediates the membrane translocation of 
diphtheria toxin [30]. At the same time it was shown by our 
group that Hsp90 is decisively involved in the translocation 
of C2I [31]. Pharmacological Hsp90 inhibitors, radicicol 
(Rad) or geldanamycin (GA), prevented uptake of C2I into 
the cytosol of mammalian cells and ADP-ribosylation of 
actin in these cells. We could exclude an influence of the 
inhibitors on the enzymatic activity of C2I, receptor binding, 
or endocytosis. The inhibitors prevented escape of C2I from 
early endosomes into the cytosol [31], showing that Hsp90 is 
decisively involved in the membrane translocation of C2I. 
The same was also shown for iota a, the enzyme component 
of the binary Iota toxin produced by Clostridium 
perfringens, which also ADP-ribosylates G-actin [32].  

 Recently we could show that membrane translocation of 
C2I from early acidic endosomes is also dependent on 
cyclophilin A (CyPA) [33], which is a protein-folding helper 
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enzyme. Cyclophilins are peptiyl/prolyl cis/trans isomerases 
(PPIases) which accelerate the cis/trans isomerization of 
peptide bonds after proline residues (for review see [34]). 

 Cyclosporin A (CsA) is a specific pharmacological 
inhibitor of isomerase activity of cyclophilins [35]. It 
prevents the intoxication of different epithelial cell lines 
(HeLa, Vero, CaCo-2) with C2 toxin in a time- and 
concentration- dependent manner (Fig. 2A, B). In the 
presence of CsA, the amount of ADP-ribosylated actin in the 
cells was strongly reduced. CsA did not influence ADP-
ribosyltransferase activity of C2I, binding of the toxin to the 
cell surface, or endocytosis. However, CsA inhibited uptake 
of C2I into the cytosol [33].  

 The reason for such results is the CsA-provided 
inhibition of the membrane translocation of C2I from early 
acidic endosomes (Fig. 2C). In addition to Hsp90, 
cyclophilins are decisively involved in translocating C2I 
across membranes of early acidic endosomes into the 
cytosol. In addition, combined application of the inhibitors 
Rad and CsA showed that cyclophilins and Hsp90 work 
synergistically [33]. 

 The role of host cell proteins regarding membrane 
translocation of C2I was characterized in vitro with the help 
of isolated early endosomes (33). If C2 toxin-loaded early 
endosomes were incubated with fresh cytosol, C2I was 
released from these endosomes. This could be shown by the 
ADP-ribosylation of actin [33]. If cytosol was pretreated 
with CsA before addition to the endosomes, translocation of 
C2I was not detectable [33]. Translocation of C2I from the 

endosomes was also prevented if cytosol was preincubated 
with a specific antibody against already defined CyPA (Fig. 
3). From these results we could conclude that CyPA is 
necessary for membrane translocation of C2I. Pull down 
experiments could finally show that in intact cells the N-
terminal domain of C2I interacts with CyPA [33]. This 
domain mediates translocation of C2I through the C2IIa 
pore. 

OVERVIEW: PARTICIPATION OF CYTOSOLIC 
PROTEINS ON UPTAKE OF BACTERIAL TOXINS 

 Not much is known about the involvement of cytosolic 
factors on the uptake of bacterial toxins into their host cells. 
To our knowledge there have been six publications regarding 
this topic. In 1997 Lemichez et al. showed for the first time 
that a host cell protein ( -COP) participates in the uptake of 
a bacterial toxin (i.e. diphtheria toxin) [36]. In 2003 the 
knowledge about diphtheria toxin was extended, and it was 
shown that Hsp90 and thioredoxin reductase are also 
involved in the translocation process of this toxin [30]. For 
anthrax lethal factor it was shown in 2008 that -COP 
facilitates translocation across vesicular membranes [37]. 
Last but not least there has been the work of our own group, 
showing the participation of Hsp90 on the uptake of C2 and 
iota toxins [31, 32]. Most recently, as described in this 
review, the participation of cyclophilin A on membrane 
translocation of C2I is also important [33]. We expect more 
research in the years ahead on this interesting topic, 
elucidating the ingenious mechanisms that bacterial toxins 
have evolved to exploit the cellular machinery of their host 
cells to mediate their own uptake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Current model of the cellular uptake of C. botulinum C2 toxin. After binding of toxin components to the receptor and endocytosis, 
translocation of the enzyme component C2I from early acidic endosomes occurs to the cytosol. C2I then ADP-ribosylates actin leading to 
depolymerisation of the actin filaments. Translocation of C2I requires the C2IIa pore in the endosomal membrane, as well as the activity of 
Hsp90 and the prolyl isomerase cylophilin A. Hence, the specific inhibitors cyclosporin A and radicicol or geldanamycin inhibit this step.  
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SUMMARY AND PERSPECTIVES 

 The results reported in this minireview show for the first 
time a participation of host cell PPIases on membrane 
translocation of a bacterial toxin and contribute basically to 
an understanding of the cellular uptake mechanisms of 
bacterial protein toxins.  

 The focus of our future work will be i) to prove whether 
additional PPIases, for instance FK506-binding proteins, are 
involved in membrane translocation of bacterial toxins, too 
ii) to investigate whether internalization of other bacterial 
toxins also depends on host cell chaperones and PPIases.  

 Finally, our results might be a potential basis for future 
clinical implications. The targeted pharmacological inhibit-

ion of specific chaperones or PPIases in mammalian cells 
could be therapeutically considered to restrain the inter-
nalization of certain bacterial toxins into body-cells.  
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Fig. (2). Influence of CsA on intoxication of HeLa cells with the C. botulinum C2 toxin. A. Morphology of HeLa cells after a 135-minute 
incubation with C2 toxin in the absence or presence of CsA. B. Quantitative analysis of the C2 toxin-induced cell rounding in the absence or 
presence of CsA (n = 3 ± SD, significance determined with student t test). C. Detection of C2 toxin in the cytosolic fraction of HeLa cells 
which were incubated with toxin in the presence or absence of bafilomycin A1 (Baf) or cyclosporin A (CsA). n = 3 ± SD, with significance 
determined by a student t test.  

 

 

 

 

 

 

 

 

Fig. (3). The translocation of C2I from isolated early endosomes requires Hsp90 and cyclophilin A. The translocation of C2I from the C2 
toxin-loaded endosomes was triggered by the addition of HeLa-cell cytosol. Cyclosporin A (CsA) or a specific antibody against cyclophilin 
A (CyPA) prevented the translocation of C2I. The presence of C2I in the cytosol was registered by ADP-ribosylation of actin. n = 3 ± SD, 
with significance determined by a student t test.  
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Rad = Radicicol;  

GA = Geldanamycin;  

PPIases = Peptidyl/prolyl cis/trans isomerases 
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