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Abstract: Staphylococcus aureus and Streptococcus pyogenes are gram-positive bacteria that possess great pathogenic 

potential in humans, causing numerous maladies such as arthritis, cutaneous infections, endocarditis, enterocolitis, food 

poisoning, pharyngitis, pneumonia, rheumatic fever, surgical site infections, and toxic shock. These prevalent pathogens 

produce various virulence factors that include the staphylococcal enterotoxins (SEs), toxic shock syndrome toxin-1 

(TSST-1), and streptococcal pyrogenic exotoxins (SPEs). Minute (picomolar) amounts of these structurally-similar 

“superantigens” (SAgs) elicit high levels of proinflammatory cytokines and chemokines that can induce fever, 

hypotension, and lethal shock. In vitro and in vivo models have provided important tools for studying the biological 

effects of, and potential vaccines plus therapeutics against, these related protein toxins. This review will delve into the 

known physical and biological properties of the SEs, TSST-1, and SPEs. The reader will hopefully derive a general 

appreciation of these wonderfully-complex, structurally-similar toxins produced by S. aureus and S. pyogenes. 
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INTRODUCTION 

 Staphylococcus aureus and Streptococcus pyogenes are 
non-motile, facultative, -hemolytic bacteria that readily 
colonize skin and various mucosal surfaces via numerous 
virulence factors [1-4]. Discerning physical features in broth 
cultures include grape-like clusters formed by staphylococci 
versus chains for the streptococci. On agar plates, S. aureus 
colonies are usually yellow or orange (due to membrane-
associated carotenoids), whereas S. pyogenes colonies appear 
gray and generally smaller. Typical biochemical differences 
between these bacteria involve catalase production, 
benzidine reaction, acid production in sugar-containing 
(lactose, mannitol, ribose, or salicin) broths, and growth in 
6.5% NaCl.  

 From a virulence perspective, and in addition to the 
staphylococcal enterotoxins (SEs) and toxic shock syndrome 
toxin-1 (TSST-1) described in detail throughout this review, 
S. aureus also produces several other virulence factors, for 
example: capsule, catalase, coagulase, C3-like ADP-
ribosyltransferase (extensively reviewed in another article 
found in this Bacterial Toxin supplement), hemolysin, 
hyaluronidase, leukocidin, protein A, and superoxide 
dismutase [5]. Generation of biofilms by S. aureus, induced 
by anaerobic conditions plus low iron concentrations, adds 
yet another degree of difficulty in human attempts at 
thwarting this bacterium and related species [6]. Due to 
access issues, S. aureus within biofilms of tissue or 
implanted medical devices prove particularly resistant to 
antibiotics and the host’s immune system, versus planktonic  
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bacteria. Additionally, thirty percent of healthy humans host 
S. aureus and nasal colonization represents a major risk 
factor for subsequent infections [7, 8].  

 A real problem for now, and the future, involves ever-
increasing resistance of S. aureus against commonly used 
antibiotics like methicillin (MRSA or methicillin-resistant S. 
aureus) [9] and vancomycin (VRSA or vancomycin-resistant 
S. aureus) [10, 11]. Such trends toward antibiotic resistance 
among clinical isolates of S. aureus were first noted during 
the 1940’s, shortly after penicillin’s introduction to the 
general population [12]. In Canada, it is estimated that 
approximately one hundred million dollars are spent every 
year for managing antibiotic-resistant S. aureus in hospitals, 
and costs for the dairy industry are even higher [13, 14]. The 
United States spends nearly fourteen billion dollars a year to 
fight S. aureus, of which sixty percent of isolates from 
intensive care units are MRSA [15]. There is no doubt that S. 
aureus truly represents an important health and economic 
concern throughout the world, involving various sectors of 
our society [14-19]. In health-care settings, transmission of 
MRSA between humans most commonly occurs by physical 
contact with contaminated hands (with or without gloves) 
[20]. Community-acquired MRSA is spread by various ways 
and amongst diverse populations, such as: 1) athletes 
participating in contact sports (i.e. direct skin to skin 
contact); 2) individuals in cramped living quarters with 
others, which include prisoners; 3) military personnel; 4) 
diabetics; and 5) those sharing personal items (i.e. razors, 
towels, clothes, etc.) that contact the skin [21].  

 The SEs (A-U) are associated with a prevalent form of 

food poisoning throughout the world [22-24]. The first 

definitive report of human staphylococcal food poisoning 

was in 1914 after consumption of milk from a cow with S. 

aureus-induced mastitis. Typically, SE intoxication occurs 
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after ingesting processed meats or dairy products (i.e. ice 

cream, cottage cheese, custard, cream-filled pastries, etc.) 

contaminated by S. aureus via improper handling. Upon 

storage at temperatures that enable bacterial growth, there 

can be one or more SEs produced as a metabolic byproduct. 

Released toxin(s), and not the bacterium itself, ultimately 

causes classic symptoms of staphylococcal food poisoning. 

Very low microgram quantities of consumed SE are 

sufficient to cause emesis plus diarrhea within approximately 

four hours, and one may still experience a general malaise 

twenty-four to seventy-two hours after ingestion [23, 25]. 

Food poisoning by SEs is rarely fatal among healthy 

individuals; however, children and the elderly do represent 

the highest-risk groups for severe sequelae. Additionally, 

many MRSA strains (hospital- or community-acquired) also 

produce various SEs [26].  

 In contrast to SEs and food poisoning, toxic shock 
syndrome (TSS) caused by S. aureus colonization with 
subsequent TSST-1 release was first reported in 1978 and 
subsequently linked to tampon usage [27-29]. Increased 
levels of protein, carbon dioxide, and oxygen, as well as 
neutral pH within the microenvironment of S. aureus bound 
to vaginal epithelium are implicated in TSST-1 production in 
vivo [22, 30, 31]. An early report erroneously describes 
TSST-1 as an enterotoxin designated as SEF [32]; however, 
homogeneous SEF (later renamed TSST-1) lacks 
enterotoxicity in non-human primates [33]. Symptoms of 
staphylococcal TSS are linked to altered immunity that 
includes: 1) elevated serum levels of proinflammatory 
cytokines and chemokines; 2) rash (diffuse with intense 
erythroderma and subsequent desquamation); 3) hypotension 
(< 90 mm Hg); 4) fever (> 38.9

o
C); and 5) adverse effects 

upon three or more organ systems [1, 2, 28, 30]. Non-
menstrual TSS is also attributed to other SEs, like SEB and 
SED, from S. aureus growth on other body sites [34, 35]. In 
fact, non-menstrual TSS is now more prevalent and leads to 
higher mortality rates versus menstrual cases [35]. Similar to 
TSST-1, absorption of SEB through the vaginal (as well as 
nasal and conjunctival) mucosa results in toxic shock 
symptoms in a mouse model [36].  

 From 1980-2005, the percent of women (United States – 
Minnesota) vaginally colonized by S. aureus has increased 
(twelve versus twenty-three percent, respectively) and the 
toxin profiles of these strains have become different [37]. 
Antibodies towards two of these toxins (SEG and SEI) are 
much more evident in women versus men, perhaps 
suggesting a possible role during vaginal colonization by S. 
aureus [38]. All TSS patients may suffer recurring bouts 
unless the offending strain is kept at both minimal growth 
and toxin release. Antibodies seemingly play an important 
role in patient susceptibility to TSST-1-induced TSS [39, 
40]. Patients that do not seroconvert against the offending 
toxin are more likely to have relapses of menstrual TSS. 
Depending upon toxin concentrations, there are varying 
effects upon human B cells in vitro that include apoptosis 
and decreased (when used at 1000 pg TSST-1/ml) or 
enhanced (between 1 – 0.01 pg TSST-1/ml) levels of 
antibody synthesis [41]. Such findings further emphasize a 
need for vaccines towards not only TSST-1, but also other 
SEs that play a role in staphylococcal-induced illness [42-
50]. 

 A microbial relative of S. aureus, S. pyogenes, is a group 
A streptococcus as defined by classic carbohydrate-based 
serotyping developed by Rebecca Lancefield [51]. Normal 
niches for S. pyogenes, like S. aureus, include skin and 
mucosal surfaces such as the upper respiratory tract. In 
contrast to S. aureus, S. pyogenes is strictly a human 
pathogen [52]. S. pyogenes causes various diseases such as 
acute glomerulonephritis, cellulitis, impetigo, necrotizing 
fasciitis, pharyngitis, rheumatic fever, and scarlet fever [1, 
53, 54]. S. pyogenes possesses potent virulence factors that 
include: 1) protein toxins (streptolysins O and S); 2) anti-
phagocytic capsule and cell-wall based M protein; 3) 
fibronectin binding proteins; as well as 4) a serine-type 
protease that inactivates the C5a component of complement 
[54]. The M1 serotype is often linked to outbreaks and much 
of the gene diversity between S. pyogenes strains is 
attributed to prophage DNA, which includes macrolide 
(erythromycin) resistance [55]. As later described, S. 
pyogenes produces multiple streptococcal pyrogenic 
exotoxins or SPEs (A, C, G-M) that are also prophage-
encoded and possess similar biological (superantigenic) 
effects as the aforementioned S. aureus SEs and TSST-1 [1, 
2]. In particular, the SPEs are linked to streptococcal TSS 
during bouts of bacteremia, necrotizing fasciitis (most 
common route of S. pyogenes-induced TSS), or rheumatic 
fever [1, 56]. Like that for S. aureus TSST-1 and menstrual 
TSS, antibodies against SPEs and M protein also play an 
important role in protective immunity against invasive group 
A streptococcal infections [57]. Circulating toxin can cause a 
characteristic rash (i.e. scarlet fever) as a consequence of 
host-induced inflammatory mediators and dilated blood 
vessels. For example, scarlet fever is most prevalent in 
children following wound or upper respiratory infections by 
S. pyogenes, with SPEA-producing strains often the culprit 
followed by SPEC producers [58, 59].  

 The term “superantigen” (SAg) commonly describes the 

SEs, TSST-1, SPEs or any other microbial protein that 

activates specific T-cells at sub-picogram per ml levels in 

vitro [1, 2, 60, 61]. Typical SAg interactions with host cells 

differ from conventional antigens, in that the former: 1) 

directly bind outside the peptide-binding groove of major 

histocompatibility complex (MHC) class II; 2) exert 

biological effects without internalization and cellular 

processing; as well as 3) are not MHC class II restricted. For 

the latter, there are differences between types of class II 

molecules and effective presentation of toxin to T cells [1, 2, 

60]. Recognition of a SAg - MHC class II complex by T 

cells through T-cell receptor (TCR) depends upon the 

variable region within a TCR  chain (V ), thus differing 

from the V -V  chain combination common for 

conventional peptide antigens [1, 2, 62]. Microbial SAgs are 

reportedly produced by various gram-positive plus gram-

negative bacteria [63-69], viruses [70-74], and even fungi 

[75]. However, of all the SAgs found in the literature, those 

from staphylococci and streptococci are generally better 

studied and best fit the classic definition of a SAg. For this 

particular review, our use of SAg will be interchangeable 

with SE, TSST-1, and SPE. The widespread nature of these 

microbial proteins with similar biological effects is highly 

suggestive of a successful survival strategy shared 
throughout the biosphere.  
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GENETICS AND STRUCTURES OF SAgs  

 The SEs, TSST-1 and SPEs are secreted, single-chain 
proteins (twenty-three to thirty kilodaltons each) that cluster 
into distinct, amino acid-based homology groups [1, 2, 60]. 
Genes for these staphylococcal and streptococcal toxins are 
encoded by plasmids, bacteriophage, or mobile genetic 
elements and typically expressed during late logarithmic, 
into stationary, phases of growth [1, 2, 59, 76]. Differential 
gene location and in situ release of SEs and TSST-1 from S. 
aureus evidently cause noticeable differences in neutralizing 
antibody responses toward these toxins [77]. Some of the S. 
aureus SAgs (SEG, SEI, and SE-like proteins M, N, O, U) 
not commonly associated with TSS are encoded by an 
enterotoxin gene cluster (egc) within a pathogenicity island. 
Often, strains producing egc-based SAgs are harmless 
commensals. Additionally, the egc-associated toxins are 
released during logarithmic growth in vitro (versus late 
stationary phase for non-egc toxins like SEA, SEB, SEC, 
TSST-1) and, relative to non-egc toxins, do not readily 
stimulate production of neutralizing antibodies amongst 
human carriers of egc-containing strains of S. aureus [77, 
78]. Regulation, in vitro or in vivo, of egc and non-egc SAgs 
is not well understood.  

 Structural genes for the SPEs are found on the 
chromosome or integrated bacteriophages. Promiscuous 
transfer of SPE genes by phage occurs between different 
group A strains, as well as to groups C and perhaps G 
streptococci, thus logically leading to increased virulence 
among normally avirulent strains [79]. Like that for S. 
aureus SAgs, the regulation of SPE genes is also not well 
understood [1]. A global regulator gene (nra or negative 
regulator of group A streptococci) maximally expressed 
during early stationary phase affects SPEA, binding proteins 
for fibronectin and collagen, as well as a positive regulator 
gene mga (multiple gene regulator of group A) [80]. SAg 
production varies between strains of S. pyogenes in vitro, 
while a host factor(s) evidently plays a role in toxin synthesis 
in situ. For instance, synthesis of SPEC and DNase by S. 
pyogenes may be naturally enhanced during infection by an 
unknown, human-derived factor(s) from pharyngeal cells 
[81].  

 X-ray crystallography of the SEs, TSST-1, and SPEs 
reveals a conserved, globular conformation consisting of two 

tightly-packed domains containing -sheet plus -helix 
structures (Fig. 1). The domains are separated by a 
conserved, amphipathic -helix of the -grasp fold forming 
a shallow groove that interacts with surface loops on TCR 
[82-85]. The amino terminus contains an OB-fold while the 
carboxy terminus has -grasp domains. In terms of general 
evolutionary relationships, the OB-fold family of protein 
domains consists of a five-stranded, closed -barrel that 
commonly uses the same face for ligand binding and as an 
active site [86]. The prominent -sheet and open barrel-like 
structure of the -grasp fold control domain function [87]. 
Structure-function studies provide additional clues regarding 
specific residues critical for binding to MHC class II and 
TCR [45, 49, 88-90]. Upon considering overall similarities 
among bacterial SAgs, protein surfaces that involve 
interactions with MHC class II tend to be most conserved 
[91]. Furthermore, these SAgs share antigenic structures as 
evidenced by cross-reactivity and neutralization with 
polyclonal and monoclonal antibodies [92-96].  

BINDING OF SAgs TO CELLS 

 Staphylococcal and streptococcal SAgs bind distinct 
MHC class II molecules with relatively high affinity (Kd = 
10

-8 
- 10

-6 
M) [1, 2]. The HLA-DR (human class II) molecule 

binds better to SEs and TSST-1, versus HLA-DP or -DQ, 
while the preferential binding of SPEA to HLA-transfected 
L-cells is HLA-DQ > -DR > -DP. Competitive binding 
studies reveal at least two different binding sites on MHC 
class II molecules for the SEs and TSST-1. Among the SEs, 
SEA has the highest affinity for HLA-DR mediated by two 
separate binding sites [97-99]. The higher affinity site on 
SEA is within the C-terminus and binds HLA-DR  chain in 
a Zn

2+
 -dependent manner [98]. The second binding site of 

SEA for HLA-DR is similar to that for SEB and located 
within the N-terminus, which interacts with the  chain of 
HLA-DR [99]. Cross-linking of two MHC class II molecules 
by a SAg leads to cytokine expression in monocytes [100-
103].  

 Although analogous N-terminal regions from SEB and 
TSST-1 bind to MHC class II [89, 90, 104], co-crystals of 
SEB or TSST-1 complexed to HLA-DR1 reveal distinct 
differences [101, 102]. Uniquely, SEB interacts exclusively 
with the  chain of HLA-DR1 and is unaffected by 
presentation of peptide antigen. TSST-1 binds to both  and 

 

 

 

 

 

 

 

Fig. (1). Crystal structures of SEB [83] (Research Collaboratory for Structural Bioinformatics Protein Data Bank (PDB) identification = 

3SEB), TSST-1 [84] (PDB identification = 2QIL), and SPEA [85] (PDB identification = 1FNU) were generated with PyMol software 

(DeLano Scientific LLC, Palo Alto, CA).  
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 chains of class II molecules and is affected by residing 
peptide antigen. SPEA also differs from most other SPEs by 
binding to the , not , chain of MHC class II. A Zn

+2
 

molecule generally serves an important role in SPE binding 
and subsequent biological effects, with SPEC being an 
exception [1, 105]. Although SPEC uses Zn

+2
 – dependent 

binding to MHC II, this is not essential for T-cell activation 
and suggests Zn

+2
 – independent interactions [105]. The 

evolutionary similarity between streptococcal and 
staphylococcal SAgs is further evidenced in SPEH, as this 
“hybrid” toxin consists of an N-terminal domain related to 
the SEB homology group and a C-terminus resembling 
SPEC [88].  

 The groove formed between SE, TSST-1, or SPE 
domains represents an important binding site for TCR V  
chain [83-85, 89, 90, 101]. These toxins typically bind 
(approximately 10

-6
 M affinity) to a distinct repertoire of V -

bearing T-cells, thus generating a “fingerprint” useful for 
diagnosing staphylococcal- and streptococcal-induced TSS 
[106-108]. The SAg - MHC class II complex binds to the 
carbon backbone, but not side-chain residues, of TCR V  
[62, 109, 110]. There is one notable exception, as SEH binds 
to T cells via V  interactions [111]. An additional unique 
characteristic of SEH is the sub-nanomolar affinity for MHC 
class II [112]. Depending upon the SAg, there are 
differences in how antigen presenting cells (APCs) and T 
cells interact [113]. For instance, SPEC or TSST-1 form a 
bridge between cells while the MHC class II and TCR 
molecules do not make direct contact. In contrast, SEB does 
not inhibit direct MHC class II – TCR interactions. 

HOST CELL RESPONSES TO SAgs  

 Recognition of the SAg - MHC class II complex by T 

cells results in signaling, profound proliferation, and 

ultimately cytokine production by APCs plus T cells [1, 2]. 

Peripheral blood mononuclear cells (PBMCs) from humans 

are commonly used in vitro to study cell activation by 

staphylococcal and streptococcal SAgs [114-119]. PBMCs 

secrete various cytokines / chemokines following SAg 

exposure, and these include interleukin (IL)-1, -2, -6, tumor 

necrosis factor (TNF) , TNF , interferon (IFN) , 

macrophage inflammatory protein 1  (MIP-1 ), MIP-1 , 

and monocyte chemoattractant protein-1 (MCP-1). T-cell 

recognition of SAg, when bound to an APC through MHC 

class II, becomes the triggering event for cytokine and 

chemokine release [114, 120-122]. Contradictions exist in 

the literature though, regarding APC and T-cell responses to 

these toxins without the other cell type [114, 123]. MHC 

class II-based stimulation of T cells by SAgs is a general 

requirement, but cells possessing select TCR V  types (i.e. 

human 6, 7, and 18 with SEA) can also independently 

respond, albeit less efficiently [124]. Perhaps the MHC class 

II-dependent V  types require class II molecules for more 

effective cell activation to overcome lower binding affinity 

to TCR? Additionally, SAg (i.e. SEB) presentation to V 3
+
 

T-cells without MHC class II-bearing cells can also decrease 
TCR expression and induce anergy [125].  

 In addition to APCs and T cells, bacterial SAgs can also 
have both stimulatory and destimulatory effects upon B cells 
and synovial fibroblasts. For example, cross-linking of TCR 

with MHC class II triggers B-cell proliferation and 
immunoglobulin synthesis in a dose-dependent manner, but 
high concentrations of toxin actually inhibit antibody 
synthesis [41, 126]. Continual SE exposure during chronic 
rhinosinusitis linked to S. aureus colonization can lead to 
localized, toxin-specific IgE and shifting of IgG subclasses 
(i.e. elevated IgG4 and decreased IgG2 versus individuals 
without SE-specific IgE) [127]. Early exposure to SEs as a 
neonate, via colonization by toxinogenic S. aureus, may also 
play an important role in oral tolerance and food allergies 
[128]. Suppression of antibody secretion by TSST-1 occurs 
by inducing apoptosis among B cells [41], critically 
impacting humoral immunity against this toxin that can lead 
to recurring bouts of TSS [39, 40]. Direct stimulation of 
synovial fibroblasts by SAgs also induces chemokine 
expression, suggesting that autoreactivity and chemotactic 
responses could initiate or augment chronic inflammation 
such as rheumatoid arthritis [129-131]. Additionally, 
intestinal myofibroblasts respond directly to SEA (but not 
SEB) by producing MCP-1, IL-6, and IL-8 which is also an 
effect mimicked by cross-linking MHC class II molecules 
with antibody [132]. Overall, bacterial SAgs can have 
multiple effects upon various aspects of the host’s immune 
system.  

IN VIVO EFFECTS OF SAgs  

 From a food poisoning perspective with SEs, specific 
cells and receptors in the intestinal tract have not been 
identified unequivocally. Data suggest that leukotrienes play 
a role in SEB-induced emesis and skin reactions (non-human 
primate model) while serotonin binding to vagal afferent 
neurons plus the cannabinoid receptor 1 affect SEA-induced 
emesis (shrew model) [133, 134]. The SEs readily induce 
emesis in primates (human and non-human) upon ingesting 
low microgram quantities, while larger toxin amounts can 
lead to toxic shock [23, 135]. Studies with SEs and non-
human primates are considered the gold standard for in vivo 
work linked to food poisoning; however, these efforts are 
increasingly more expensive (politically and monetarily) and 
thus fuel exploration by various laboratories for alternative 
animal models (Table 1). Typically, TSST-1 or SPEs do not 
cause vomiting after ingestion although they do naturally 
cause TSS in humans and animals [1, 2, 33, 136]. An oral 
dose of SEB activates V 8

+
 T-cells in Peyer’s patches of 

mice, increasing IFN  and IL-2 mRNA expression [137]. 
Either SEA or SEB alone causes intestinal inflammation, but 
these toxins can also exacerbate a microbe-based syndrome 
called inflammatory bowel disease which suggests an 
immune response to ingested SEs [138]. An enteric immune 
connection may also explain fifty year-old results published 
by Sugiyama et al. [139], as they discovered that non-human 
primates given intragastric SE become transiently resistant to 
another dose of the same (but not a different) SE. Such 
findings are likely linked to toxin-specific stimulation of 
unique V -bearing T-cells that subsequently become 
anergic.  

 To further understand how SE ingestion affects intestinal 
mucosa, in vitro studies with human Caco-2 monolayers 
reveal transcytosis (albeit by different mechanisms) of SEA, 
SEB, and TSST-1 [140]. In this model system, there is 
facilitated transport of SEB and TSST-1 in a bidirectional 
fashion (i.e. basolateral to apical or vice versa). Transport of 
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SEA is in contrast less rapid and non-specific. Mutant forms 
of SEB altered at residues Asn23Lys or Phe44Ser, which 
respectively decrease toxin binding to TCR and MHC class 
II, also decrease transcytosis by fifty to seventy percent. In 
this same report, additional studies with mice show that 
ingested SEB enters the circulatory system (peak levels 
appear approximately two hours after ingestion) at much 
higher concentrations (twenty-fold) than SEA. The SEs do 
not act as direct cytotoxins upon human intestinal cells 
[141], but they do disturb gut mucosa by increasing ion 
permeability in the presence of SE-stimulated PBMCs and 
cytokine / chemokine release in vitro [142]. 

 Perhaps in contrast to the above transcytosis results, SE 
binding to MHC class II may not play a role in 
enterotoxicity. Attenuated variants of SEA (Leu48Gly) and 
SEB (Phe44Ser), with diminished binding to MHC class II 
molecules and decreased stimulation of T cells, remain 
emetic [143]. Although carboxymethyl modification of 
histidines on SEA [144] and SEB [145] minimally affect 
superantigenicity, these molecules lack enterotoxicity, lethal 
effects, and skin reactivity [133, 146, 147]. In non-human 
primates, this modified SEB inhibits vomiting and diarrhea 
of wild-type SEB when given together, perhaps suggesting 
competition for a common receptor(s) in the gut [146]. 
Individual recombinant changes of His44, His50, His114, or 
His187 on SEA to either alanine or aspartic acid have no 
effect upon biological activity, yet modification of His225 
impacts both emesis and superantigenicity [147].  

 Besides toxin-specific resistance after an oral dose of SE, 
chronic intravenous exposure functionally inactivates all V -
reactive T-cells in mice [148]. Footpad injections of SEB in 
mice also elicit a dose-related tolerance within sixteen hours 
among circulating V 8

+
 T-cells [149]. Subcutaneous 

exposure to low doses of SEB in mice causes a general 
immunosuppression inhibited by IL-12 [150]. IL-12, 
produced by dendritic cells and macrophages, plays many 

roles that include differentiation of T cells. Additionally, 
immunosuppression induced by repeated exposure to SEB is 
also linked to activation of regulatory T-cells (Foxp

3+
 plus 

CD152
high

) and catabolism of tryptophan by indoleamine-
2,3-dioxygenase [151].  

 Similar to SEB, mice given a microgram of SEA 
intranasally (once a week for three weeks) also become 
resistant to a subsequent lethal challenge of SEA, but not 
TSST-1 [152]. Such tolerance is not due to toxin-specific 
antibody or functional deletion of SEA-reactive T-cells. 
However, increased IL-10 levels in sera from these animals 
correlate with other findings showing that this cytokine 
protects against SE or TSST-1 intoxication [153, 154]. T-cell 
studies of patients with rheumatic fever (acute/chronic), or 
healthy donors, show varying degrees of stimulation (or lack 
of) by SPEA in vitro [155]. Overall, dampening of host 
immunity is a general characteristic of the staphylococcal 
and streptococcal SAgs which possibly enhances pathogen 
survival.  

 SAgs perturb the immune system by inducing high levels 
of proinflammatory cytokines in various animals that include 
primates, rabbits, and mice (Table 1) [1, 2, 23, 46, 47, 116-
118, 156-159]. IL-1 and TNF  are endogenous pyrogens that 
induce fever via hypothalamus release of prostaglandin E2 
[160]. Circulating levels of IFN , IL-2, and IL-6 also 
increase after toxin exposure. IFN  particularly feeds into 
SAg-fueled toxicity by increasing MHC class II expression 
among various cell types (i.e. APCs, epithelial cells, and 
endothelial cells), plus augmenting the proinflammatory 
actions of IL-1 and TNF . SAg-driven TSS results from a 
cacophony of released cytokines plus chemokines that 
adversely affect critical organs throughout the body [1, 2]. 

 Mice represent an alternative model to large vertebrates 
(i.e. non-human primates or rabbits) for studying SAg-
mediated shock (Table 1) [156, 161-166]. Relative to non-

Table 1. Toxic Shock Models for Staphylococcal and Streptococcal SAgs  

 

Animal (strain) 

Mouse (Balb/c) 

Mouse (C57/BL6) 

Mouse (Balb/c)  

Mouse (Balb/c) 

Mouse (Balb/c) 

Mouse (CBA) 

Mouse (C3H/HeJ) 

Mouse (Transgenic  

HLA-DQ8 + CD4) 

House Musk Shrew  

Rat (Sprague-Dawley) 

Ferret  

Rabbit (Dutch Belted) 

Rabbit (Dutch Belted) 

Rabbit (Dutch Belted) 

Rabbit  

(New Zealand White) 

Cat 

Goat (Dwarf) 

Monkey (Rhesus) 

Agent(s)  

TSST-1 + LPS 

SEA or SEC1 + LPS 

SEB + LPS 

SEB + D galactosamine  

SEB + Actinomycin D  

SEB + Virus  

SEB 

SPEA 

 

SEA, SEE, or SEI 

SEB + LPS 

SEB 

TSST-1 + LPS 

SEC +LPS 

SPEA or SPEC 

SEA 

 

SEA 

SEB or TSST-1 

SEB 

Reference(s) 

[42, 153, 165] 

[162] 

[153, 171, 187] 

[156] 

[163] 

[164] 

[166] 

[185] 

 

[202, 203] 

[170] 

[201] 

[165] 

[172] 

[195] 

[194] 

 

[224] 

[200] 

[213, 217] 
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human primates, mice are a very viable option for basic 
toxin studies involving potential vaccines and therapeutics. 
However, mice lack an emetic response and are thus less 
appropriate for studying certain aspects of food poisoning 
due to SEs. Mice are also naturally less susceptible than 
primates to SAgs, largely because of decreased affinity for 
murine MHC class II [1, 2]. Various groups have shown that 
potentiating agents like D-galactosamine, actinomycin D, 
lipopolysaccharide (LPS), viruses (influenza and 
lymphocytic choriomeningitis), or even pathogenic protozoa 
(Trypanosoma cruzi, causative agent of Chagas disease) 
greatly amplify SAg toxicity and TSS effects in mice [161-
168]. The natural synergy between SAgs with diverse 
pathogens, including outer membrane-based LPS of gram-
negative bacteria, provides yet additional intrigue for truly 
understanding complex microbe-host interactions.  

 For many years our laboratory has favored a LPS-
potentiated model in mice, as various studies show a natural 
synergy existing between SAgs and LPS [153, 161, 162, 
167, 169-173]. Very minute (nanogram) quantities of LPS 
alone in humans elevate cytokine levels, temperature, and 
heart rate [174], yet SAgs like the SEs, TSST-1, and SPEs 
can dangerously augment LPS effects many log-fold [157]. 
Upon considering the sheer number of gram-negative 
bacteria that make up intestinal flora, along with a 
recognized increase of such bacteria among TSS patients, the 
probability of SAg(s) and LPS synergy is rather high [157, 
175]. There is a correlation between elevated serum levels of 
various proinflammatory cytokines (IL-1, IL-2, TNF , IFN ) 
with severity of SEA-, SEB-, or TSST-1-induced TSS [2, 42, 
61, 156, 162]. Further studies with knockout mice show that 
IL-10 affects various cytokine and chemokine (MIP-1  and 
MIP-2) levels in serum following SEB intoxication [176]. 
Two different receptors for TNF  play differential roles in 
SE-induced shock, as p55 (type 1) serves a more prominent 
role versus p75 (type 2) [153]. Various cell markers such as 
CD28 (also known as TP44), CD43 (leukosialin), CD54 
(intercellular adhesion molecule-1 or ICAM-1), and CD95 
(Fas or cell death receptor) also have prominent functions in 
SAg-induced shock in vivo [177-182].  

 An additional twist to using mice for studying 
staphylococcal and streptococcal SAgs involves transgenics 
expressing human receptors, such as HLA-DQ6 and CD4. 
These animals succumb to normally sublethal amounts of 
SEB (with D-galactosamine potentiation), and the serum 
levels of TNF  correlate with onset of lethal shock [183]. 
Transgenics expressing human HLA-DR3 and CD4 lethally 
respond to a SE challenge without a potentiating agent, thus 
providing a more easily-interpreted model [184]. When 
naïve PBMCs from these transgenics are incubated with SEB 
in vitro, IL-6 and IFN  release is markedly elevated versus 
that from cells of control (non-transgenic) BALB/c mice. As 
reported from other animal models for staphylococcal and 
streptococcal SAgs, these results with HLA-DR3/CD4 mice 
suggest involvement of proinflammatory cytokines. Similar 
studies using transgenic mice, with similar results, have also 
been reported using SPEA and mice expressing human 
HLA-DQ8 plus CD4 [185]. Additionally, transgenics over-
expressing TCR V 3 (murine) experience increased 
mortality from elevated TNF and IFN  levels during 
infection by SEA-producing S. aureus [186]. Mice 
expressing human HLA and CD4, or even increased levels of 

specific murine TCR, will likely provide a clearer 
understanding of SAg-mediated effects in vivo without 
potentiating agents.  

 Besides lethality, temperature represents an important 
parameter for studying SE- or TSST-1-induced shock in 
various animal models (Table 1). In mice, these studies can 
be accomplished by implanting a subcutaneous transponder 
[153] or intraperitoneal telemetry device [187]. Results 
reveal a rapid (less than 10 hours after toxin challenge) 
temperature decrease that provides a quick, non-lethal 
parameter for intoxication. Mouse studies have not unveiled 
a temperature increase following intoxication by a SE, in 
contrast to non-human primates given SEB [188], thus 
suggesting a very rapid onset of SE-induced TSS in mice and 
subtle differences between models.   

 In addition to overt signs of SAg intoxication in vivo (i.e. 
temperature, emesis, diarrhea, and death), SEB induces 
apoptosis and decreased signal transduction among specific 
V -bearing T-cells due to loss of L-selectin (a cell adhesion 
molecule) [189, 190]. Surface levels of TCR-CD3 also 
decrease approximately fifty percent among V -reactive T-
cells within just thirty minutes after SEB exposure [191]. T-
cell proliferation in mice following an SEB injection is 
transient, as within forty-eight hours the majority of 
activated T-cells undergo apoptosis [61]. After two 
intraperitoneal injections (one hundred micrograms each) of 
SEB into mice, splenic V 8

+
 T-cells become non-responsive 

to SEB in vitro. These cells produce less IL-2, but more 
IFN  and IL-10, within forty-eight hours after the initial 
toxin dose [192]. In contrast to elevated levels of 
proinflammatory IFN , anti-inflammatory IL-10 perhaps 
reflects an attempt by the host to counter deleterious effects 
of other cytokines and chemokines.  

 In addition to numerous studies with mice (Table 1), 
rabbits have also afforded a reliable in vivo model for SAg-
induced TSS although little information exists regarding 
SAg interactions with rabbit MHC class II and TCR [165, 
172, 193-198]. For rabbits, use of an implanted infusion 
pump to slowly release toxin into the body mimics a natural 
setting during S. aureus or S. pyogenes infection [193, 195]. 
Variation in strain susceptibility to a specific toxin exists in 
rabbits (New Zealand White versus Dutch-Belted), just like 
that discovered in mice [153, 196]. Similar to humans, 
rabbits exposed to either TSST-1 or SEB develop elevated 
serum levels of LPS eliminated by polymyxin B, along with 
diminished clinical signs of TSS [169, 196, 197]. Higher 
concentrations of circulating LPS may be due to impaired 
liver clearance [172, 198], further exacerbated by SAgs like 
the SEs, TSST-1, or SPEs [170, 199].  

 Other less-defined animal models for SAg intoxication 
have been described in the literature (Table 1). One example 
includes goats used for TSST-1 and SEB, with fever as a 
measurable parameter after intravenous administration [200]. 
There is also a reported ferret model for oral intoxication that 
employs relatively large (milligram) quantities of SEB, using 
emesis and fever as markers [201]. Another emetic model for 
the SEs employs the rather unusual house musk shrew 
challenged intraperitoneally or orally [202]. Recently, this 
latter model has been used successfully for vaccine studies 
with recombinantly-attenuated SEA [203]. An obvious, and 
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less than pleasant, caveat with any emetic (or diarrheic) 
model involves quantitation.  

 Although basic aspects of intoxication have been 
investigated in each animal model listed above (Table 1), 
critical work still remains for vaccine and therapeutic 
discovery. Any model (in vitro or in vivo!) has positive, but 
also negative, aspects that require any investigator to closely 
scrutinize data and interpret usefulness of such information 
for human application.  

THERAPEUTICS AND VACCINES AGAINST SAgs  

 Other than a precarious societal reliance upon antibiotics, 
which continue to become less practical with rising 
microbial resistance, there are surprisingly few clinically-
useful options for therapeutics and there are no approved 
vaccines targeting the staphylococcal and streptococcal 
SAgs. To circumvent SAg stimulation, potential therapies 
and vaccines against these toxins should interfere with one 
or more of the following: 1) TCR – SAg – MHC class II 
interactions; 2) accessory, co-stimulatory, or adhesion 
molecules necessary for T-cell activation; and 3) 
proinflammatory cytokine plus chemokine release from host 
cells.  

 Several of the aforementioned models (in vitro and in 
vivo) have been used to study potential therapies against 
SAg-induced TSS. As just a few examples that uniquely 
attack SAg-induced TSS, inhibitors of nitric oxide synthase 
(i.e. aminoguanidine or dexamethasone) can diminish SEA-
induced IL-1, -2, -6, TNF, and IFN  production from human 
PBMCs in vitro, as well as prevent neutrophil influx into rat 
lungs in vivo [204, 205]. The blocking of CD28 co-
stimulatory receptor by a synthetic ligand, CTLA4-Ig, 
prevents TSST-1-induced effects in vitro and in vivo [206]. 
Antibodies against TNF  prevent SEB-induced lethality 
[156], while IL-10 blocks IL-1, TNF , as well as IFN  
synthesis that then reduces TSS symptoms [154]. Studies 
with human PBMCs in vitro and a mouse model show that 
either pentoxifylline or pirfenidone (drugs that diminish 
proinflammatory cytokine synthesis) effectively decreases 
SEB or TSST-1 toxicity [116, 117]. Tryptanthrin, naturally 
derived from a medicinal plant, is an anti-inflammatory 
alkaloid that inhibits cyclooxygenase 2 (COX2) and 
decreases IFN  release from SEB-stimulated lymphocytes in 
Peyer’s patches [207]. A hexapeptide (anti-leukinate) 
inhibitor of IL-8, a cytokine which elicits SEA-induced 
inflammation of the lungs, decreases neutrophil influx and 
subsequent lung damage [208]. Finally, soluble antagonists 
for TCR V  have also proven effective in vitro and in vivo 
(rabbit model) against SEB [209]. These reagents were 
generated from a murine V 8.2 clone that was affinity 
matured into small (twelve kilodalton), higher-affinity (six 
log lower Kd versus wild-type) molecules through random 
mutagenesis.    

 Besides the aforementioned experimental therapeutics, 
different antibody-based therapies and experimental vaccines 
that directly target SAgs have been developed over many 
decades. Preexisting antibodies toward these toxins play an 
important role in disease outcome [39, 40, 210], and 
intravenous immunoglobulin (IVIG) has been useful 
following the onset of TSS due to S. aureus or S. pyogenes 
infection [211, 212]. From a bioterror perspective involving 

an aerosol of SEB, passive transfer of SEB-specific 
antibodies to naïve rhesus monkeys within four hours after 
exposure prevents TSS [213]. Similar results were 
discovered earlier in mice, suggesting important parallels 
between diverse animal models for aerosol or intraperitoneal 
administration of SEB [214]. Recombinantly-attenuated 
forms of staphylococcal and streptococcal SAgs that 
ineffectively bind MHC class II and/or specific V  TCR 
represent promising vaccines against TSS [42-50, 203, 215-
217]. When given either parenterally [44, 45, 50, 203], or 
mucosally [43, 218], such vaccines are effective against a 
toxin challenge or S. aureus infection; however, mucosal 
vaccination with these toxin-based immunogens has 
remained largely unexplored. In addition to recombinant 
vaccines for SAgs, dated literature reveals that formaldehyde 
toxoids of SEA, SEB, or SEC1 also represent effective 
parenteral or mucosal immunogens [219, 220]. Although 
chemically-generated toxoids of the SEs and many other 
toxin antigens exist, such treatment can adversely affect 
native epitopes, antigen processing, and subsequent 
presentation to the immune system [221, 222]. In our 
opinion, intimate knowledge of how a toxin interfaces with 
receptor (i.e. co-crystal or structure/function data) leads to 
minimal manipulations of the toxin into an immunogen that 
best retains proper conformation and epitopes.  

CONCLUSIONS 

 S. aureus and S. pyogenes are very formidable pathogens 
that cause a wide array of diseases, including TSS [113]. 
One common, protein-based aspect these bacteria share 
involves synthesis of toxic SAgs. Intoxication by SEs, 
TSST-1, or SPEs occurs through the host’s abnormal 
response to the offending toxin (i.e. elevated 
proinflammatory cytokine / chemokine levels), that can 
trigger shock and possibly death. After cytokine and 
chemokine release, ensuing imbalance of the immune system 
likely aids survival of the offending pathogen [223]. Similar 
sequence homologies, conformations, and biological 
activities amongst the staphylococcal and streptococcal SAgs 
suggest common evolution as well as a common means of 
medicinally thwarting their intoxication process. New SAgs 
from S. aureus and S. pyogenes are constantly being 
discovered by groups from around the world. More effective 
controls targeting S. aureus, S. pyogenes, plus their 
associated toxins are necessary and include new therapeutics 
as well as vaccines. Many of the latter forms of medicine 
remain experimental, with promise for the not so distant 
future. In particular, human monoclonal antibodies that 
target SAgs and are well characterized could be quite 
efficacious as well as afford distinct advantages versus IVIG.  

 Finally, the constant evolution of pathogens like S. 
aureus and S. pyogenes requires that humans co-evolve 
towards recognizing and then effectively challenging these 
constantly changing, and quite deadly, microbial threats. The 
SEs, TSST-1, and SPEs portrayed in this review represent 
just one piece of a complex puzzle towards better 
management of staphylococcal and streptococcal infections.  
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