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Abstract: Forced convection in a tube with its core partially filled with a porous medium is treated both analytically and 

numerically to find its high heat transfer performance. Assuming a fully developed flow subject to a constant heat flux, 

both friction factor and Nusselt number are presented explicitly as functions of the Reynolds number, Darcy number and 

porous core diameter ratio. Partial filling of the porous medium in the core region leads the fluid particles close to the 

wall, resulting an increase in the heat transfer coefficient. Extensive filling, however, tends to block the fluid particles 

channeling through the small gap formed between the wall and the porous core interface. Consequently, there exists the 

optimal porous core diameter ratio as a function of the Darcy number, which yields the maximum heat transfer 

coefficient. 
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INTRODUCTION 

 A considerable number of investigations on forced 
convection in a tube fully or partially filled with a porous 
medium were reported in view of its possible potential in 
enhancing heat transfer performance [1-3]. Obviously a 
partial filling has the advantage of a comparable increase in 
the heat transfer performance at expense of only a smaller 
increase in the pressure drop. Some analytical expressions 
associated with hydraulic and thermal characteristics were 
obtained for fully developed channel flows with various 
thermal boundary conditions such as constant wall 
temperature and constant wall heat flux conditions. 

 Al-Nimr and Alkam [4] numerically investigated forced 
convection in a concentric annulus partially filled with a 
porous medium and reported an increase of 12 times in the 
heat transfer coefficient as compared with the annulus 
without a porous medium. Al-Nimr and Alkam [5] also 
proposed to place porous substrates on both sides of the 
inner cylinders of conventional concentric tube heat 
exchanger to achieve higher heat transfer performance with 
an only moderate increase in the pumping power. An 
extensive numerical investigation was conducted by 
Mohamad [6] to confirm possible heat transfer augmentation 
for thermally developing flows in a pipe with its core 
partially filled with a porous medium. He found that partially 
filling the channel with porous substrates lead to reduction of 
the thermal entrance length and that an optimum thickness of 
about 60% of the channel height results in a substantial 
increase in heat transfer at the expense of a reasonable 
pressure drop. Pavel and Mohamad [7] conducted an 
experimental investigation to elucidate the effect of a  
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metallic porous matrix, inserted in a pipe, on the rate of heat 
transfer and concluded that higher heat transfer rates are 
possible when using porous inserts at expense of a 
reasonable pressure drop. Liu et al. [8] carried out a series of 
numerical computations for laminar forced convection in a 
tube with its core partially filled with a porous medium. 
They used the momentum equation proposed by Vafai and 
Tien [9] to cover both clear fluid layer and porous core 
region, treating the clear fluid core region as a special kind 
of porous medium with unit porosity and infinitely large 
permeability. Upon changing the ratio of the porous medium 
radius to the tube radius, they found a tremendous heat 
transfer enhancement is possible when the ratio is close to 
unity. 

 However, no quantitative relationships among controlling 
parameters such as the friction factor, Nusselt number, Darcy 
number and radius ratio have been presented explicitly in 
these previous investigations. In this study, we shall revisit 
the problem of forced convection in a tube with its core 
partially filled with a porous medium and attack it both 
analytically and numerically so as to elucidate the heat 
transfer augmentation mechanism and the corresponding 
optimum conditions to achieve high heat transfer 
performance in such conduits partially filled with a porous 
medium. 

MATHEMATICAL MODEL AND GOVERNING 
EQUATIONS 

 A mathematical model in consideration is shown in Fig. 

(1), in which a circular tube of inner diameter d is filled 

partially with a porous medium of diameter
 
d

i
. It is assumed 

that the tube wall is heated to provide a uniform heat flux 
 
q

w
 

and that the tube is long enough for both velocity and 

temperature fields to be fully developed. 
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Fig. (1). Tube with its core partially filled with a porous medium. 

 The governing equations for the case of steady-state fully 
developed flow under the constant heat flux condition are 
given by: 
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where Brinkman-extended Darcy’s law [9] is introduced for 

the porous core region whose porosity, permeability and 

effective thermal conductivity are denoted by ,  K  and 
 
k

e
, 

respectively. Note that the axial velocity  u  in Equations (3) 

and (4) corresponds to the Darcian velocity, while the 

physical properties of the fluid are indicated by the subscript 

f. Referring to Fig. (2) showing typical velocity and 

temperature profiles, we may set the boundary conditions as 

follows: 

 

Fig. (2). Velocity and temperature profiles. 
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 The foregoing set of equations can easily be solved 
numerically using any one of standard numerical schemes 
such as SIMPLE [10, 11], exploiting periodic boundary 
conditions for a finite tube length [12]. Such numerical 
results will be presented later along with the analytical 
results based on Darcy’s law. 

VELOCITY FIELD BASED ON DARCY’S LAW 

 As indicated in Fig. (2), the Brinkman effects on the 

velocity are appreciable only within a thin layer of the order 

K . Therefore, in our analytical treatment, we may drop 

the second LHS term of Equation (3), which then reduces to 

Darcy’s law such that: 

  

u =
K

μ

dp

dx
u

i
= const.  for 

  
0 r d

i
/ 2           (9) 

 Subsequently, the velocity profile within the fluid region 
may readily be determined by integrating Equation (1) as: 

  

u = 2u
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1
2

32Da
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ln
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where the dimensionless radial coordinate 
  
= r / d / 2( )  is 

introduced with the porous core diameter ratio 
  
R

p
= d

i
/ d  

and the Darcy number   Da = K / d
2 . Naturally, Equation 

(10) satisfies the no-slip condition given by Equation (6a) 

and the matching condition (7a), namely, 
 
u = u

i
 at r = di / 2 . 

The interfacial velocity 
 
u

i
 is related to the bulk mean 

velocity 
   
u

B
= m /

f
d 2

/ 4( )  in the tube as: 
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 In Fig. (3), the approximate velocity profile given by 

Equations (9) and (10) along with (11) is compared against 

the exact one obtained from numerically solving Equations 

(1) and (3) with the boundary and compatibility conditions  
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(5a), (6a), (7a) and (7b), for the case of =0.9, 

 Da = 10
4
and 

 
R

p
=0.7. Fairly good agreement can be seen 

between these two profiles. This indicates that the velocity 

profile based on Darcy’s law is a reasonable approximation 

for comparatively low permeability cases. 

 

Fig. (3). Fully developed velocity profiles in a tube. 

 For a given set of Reynolds number 
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which reduces 
  f

64 / Re
d

 for 
  
R

p
0 . The effects of 

 
R

p
 on the friction factor are presented in Fig. (4) in terms of 

the parameter 
  f

Re
d

/ 64 , which may be taken as the 

pumping power ratio for the case of equal mass flow rate   m . 

Naturally, the pumping power increases drastically as 

  
R

p
1  

 

Fig. (4). The effects of 
 
R

p
 on the friction factor 

  f
.  

 

TEMPERATURE FIELD AND NUSSELT NUMBER 

 Having established the velocity field, we shall seek the 
temperature field and the corresponding Nusselt number. 
The energy balance for the case of constant heat flux readily 
gives us: 
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where 
B
T  is the bulk mean temperature. Since 
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/ dx = T / x , the Equations (2) and (4) can be 

rewritten as follows: 
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 We may solve the second order differential equation (14) 
along with Equation (10) to find the temperature profile 
within the fluid layer. However, the velocity profile as given 
by Equation (10) is fairly complex so that a procedure to find 
the temperature profile and the corresponding bulk 
temperature is quite formidable. Thus, we shall appeal to an 
approximate procedure, by integrating (14) for the fluid 
region as: 
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which, together with Equation (6b), reduces to: 
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 We also note writing Equation (14) at the wall as: 
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 Therefore, we expect the temperature profile prevailing 
within the fluid region to satisfy Equations (17), (18) and 
(6b). One of the simplest profiles satisfying these conditions 
would be as follows: 
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 The temperature profile for the porous core region may 
readily be obtained by integrating Equation (15) with the 
boundary condition (5b) and the matching condition (8a) as: 
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Fig. (5). Fully developed temperature profiles in a tube. 

 Note that Equations (19) and (20) automatically satisfy the matching condition (8b). 

 The temperature profile is generated using the foregoing Equations (19) and (20) along with (11) for the case of =0.9, 

 Da = 4
10  and 

 
R

p
=0.7 and plotted in Fig. (5) to compare with the exact numerical solution based on Brinkman extended 

Darcy’s law. Despite of the difference in the temperature in the core region, two profiles are generally in good agreement. 

 The corresponding Nusselt number of our primary concern may be obtained following the definition of the bulk mean 
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 Hence, we have: 
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where the interfacial velocity ratio to the bulk mean velocity 
  

u
i
/ u

B
( )  is already given by Equation (11) as a function of 

 
R

p
 

and Da. 
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RESULTS AND DISCUSSION 

 The variations of Nusselt number are illustrated in Fig. 

(6a, b) where the Nusselt number is plotted against the 

porous core diameter ratio 
 
R

p
. Upon changing the value of 

the diameter ratio 
 
R

p
, analytical curves were generated 

using Equation (22) for a given set of the Darcy number and 

thermal conductivity ratio. Numerical computations were 

also carried out with =0.9 for different Darcy numbers, 

namely, Da = 10
3
,  10

4
 and  10

5
. Both analytical and 

numerical sets of the results are compared with each other in 

Fig. (6a, b), for 
  
k

e
/ k

f
=1.4 and 6, respectively, noting that 

the effective thermal conductivity is likely to be less than 10 

for most porous media to be used for filling the core. Though 

the analytical results stay somewhat lower than the 

numerical results, the agreement between the two sets of the 

solutions appears to be fairly good over a wide range of 
 
R

p
 

and  Da . This proves the soundness of the present analytical 

treatment based on Darcy’s law. 

(a) 

 

(b) 

 

Fig. (6). The effects of 
 
R

p
 on the Nusselt number 

 
Nu

d
 (a) 

  
k

e
/ k

f
=1.4 and =0.9, (b) 

  
k

e
/ k

f
=6 and =0.9. 

 It is interesting to note that there exists the optimal 
porous core diameter ratio, which gives the local maximum 
Nusselt number. The presence of the porous core region 
guides the fluid particles towards the heated wall, such that 
the flow channeling takes place through the clear fluid 
annular region between the wall and the porous core 
interface. Thus, comparatively high velocity field is formed 
there, resulting the heat transfer enhancement from the wall 
to the fluid channeling through the annular region. However, 
as the pore core diameter increases further to make the 
annular gap between the wall and the interface of the porous 
medium small, the fluid particles come to experience higher 
flow resistance as channeling through the gap. In this way, 
the fluid particles passing through the small gap are blocked 
out. Finally, the fluid particles stay stagnant within the gap 
and thus find their way through the porous medium in the 
core region. This results in a drastic decrease in the Nusselt 
number, as can be seen from Fig. (6a, b). 

 As the figures show, the Nusselt number is higher for the 

lower Darcy number and its maximum value takes at the 

larger diameter ratio. The information on this optimal 

diameter ratio 
 

R
p( )

opt
yielding the maximum heat transfer 

coefficient may be quite useful for possible engineering 

applications such as designing effective heat transfer 

conduits. The analytical expression (22) is readily available 

for such a purpose to find 
 

R
p( )

opt
 and the corresponding 

maximum Nusselt number. For the case of 
  
k

e
/ k

f
=1.4, for 

example, the values of 
 

R
p( )

opt
may be correlated fairly well 

by: 

  
R

p( )
opt

= 1 1.73Da
1/4  for 

  
k

e
/ k

f
=1.4        (23) 

 Furthermore, the curve valid for the solid core, namely, 

0Da = , is generated and plotted in Fig. (6a), using the 

asymptotic expression reducible from Equation (22) for the 

case of 
  
R

p
1 : 
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13 1 R
p( )

 for   Da = 0         (24) 

 The foregoing equation appears to give fairly good 

approximations for the cases of comparatively large diameter 

ratio, say 
 
R

p
>0.5 when   Da = 0  

 As can be seen from both Fig. (6a, b), all curves for 

different Darcy numbers except for the solid core merge 

together at 
 
R

p
=1. This value at 

 
R

p
=1 can readily be found 

by carrying out an integration described in Equation (21) 

with 
  
R

p
1 , which gives: 
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k
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irrespective of the value of Darcy number. 
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 It should also be seen from Fig. (6b) that the Nusselt 

number for the case of large Darcy number exhibits its 

minimum value (lower than the value at 
 
R

p
=1 given by 

Equation (25)), as increasing 
 
R

p
 towards 1. This 

undershooting of 
d

Nu  results from the fact that the increase 

in the radial thermal conductivity due to the expansion of the 

porous medium region of high conductivity compensates and 

eventually overwhelms the convective heat transfer 

deterioration due to narrowing the gap. To the best of our 

knowledge, this undershooting phenomenon has not been 

inferred in the literature. 

CONCLUSIONS 

 A theoretical treatment was presented to investigate fully 
developed forced convection in a tube with its core partially 
filled with a porous medium. Explicit expressions for the 
friction factor and Nusselt number for the case of constant 
heat flux were derived for possible engineering applications. 
It has been found that partial filling of the tube, up to a 
certain level of the porous core diameter, forms a high 
velocity field close to the wall working favorably to enhance 
heat transfer. However, any further increase beyond this 
level, results in the heat transfer deterioration since it tends 
to block the fluid particles channeling through the small gap 
formed between the wall and the porous core interface. A 
useful expression for the optimal porous core diameter ratio 
is presented as a function of the Darcy number. An 
experimental verification is underway, and will be reported 
in near future. 

NOMENCLATURE 

 d  = Tube diameter 

 
d

i
 = Porous medium diameter 

Da = Darcy number 

k = Thermal conductivity 

K = Permeability 

  m  = Mass flow rate 

 
Nu

d
 = Nusselt number 

 
p  = Pressure 

 
q

w
 = Wall heat flux 

u = Axial velocity 

 r  = Cylindrical coordinate 

d
Re  = Reynolds number 

 
R

p
 = Diameter ratio 

 
R

p   
= d

i
/ d  

T = Temperature 

x = Axial coordinate 

 = Porosity 

 = Dimensionless radial coordinate 
  
= r / d / 2( )  

 = Density 

μ  = Viscosity 

 = Kinematic viscosity 

 f
 = Friction factor 

Subscripts 

e = Effective 

f = Fluid 

i = Interface 
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