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Abstract: Steady natural convection flow in an inclined square cavity filled with a porous medium has been investigated. 

It is assumed that the cavity is heated on one wall and cooled from an adjacent wall, while the other two walls are 

adiabatic. The governing dimensionless partial differential equations have been solved numerically for the stream 

function, isotherms, and the local and average Nusselt numbers using a central finite-difference method and Richardson 

extrapolation. Effects of the various parameters on the flow and heat transfer characteristics have been investigated, 

namely: Rayleigh numbers 10, 100, and 1000, and the inclined angle of the cavity from 0o  to 3150 . Special attention is 

given to the understanding of the effects of the inclination on the heat transfer rates on the heated and cooled walls as well 

as the flow configurations. It is found that the streamlines, isotherms and the average Nusselt numbers are affected 

significantly by the inclination of the cavity and the Rayleigh number. Results could be obtained for angles of inclination 

for Rayleigh numbers up to 100 but for a Rayleigh number of 1000 solutions could not be obtained for all angles of 
inclination. 
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INTRODUCTION 

 Over the last few years, the analysis of natural 
convection in enclosures filled with fluid-saturated porous 
media has been studied extensively using different 
geometries, equation models, and numerical techniques and 
can be used in numerous applications of engineering. Some 
of these applications are solar power collectors, geothermal 
applications and nuclear reactors. Detailed reviews on the 
subject of porous media can be found in the well-
documented research books by Nakayama [1], Nield and 
Bejan [2], Ingham and Pop [3], Vafai [4], Lemos [5], Vadasz 
[6], etc. In the past few years, most of the researchers have 
focused on the investigation of natural convection in a 
porous square or rectangular enclosure with constant 
temperature or heat flux boundary conditions, see for 
example Bejan [7], Goyeau et al. [8], Gross et al. [9], 
Manole and Lage [10], Saeid and Pop [11], Baytas and Pop 
[12], etc. However, different boundary conditions are also 
important in practice due to the fact that a good knowledge 
of the flow field and temperature distributions assist in the 
design of high efficient thermal systems. The direction of the 
temperature gradient with respect to the gravity associated 
with the heating of the walls is also a primary factor in the 
formation of the velocity and temperature fields. 

 The research regarding natural convection in cavities 
with differentially heated neighbouring walls is limited.  
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Anderson and Lauriat [13] have studied, both experimentally 
and numerically, the natural convection in a square cavity 
heated from below and cooled from adjacent walls. Kimura 
and Bejan [14] numerically investigated the natural 
convection inside a right-angled corner formed by a hot 
vertical wall and a cold horizontal wall. Ganzarolli and 
Milanez [15] studied numerically the natural convection in a 
rectangular enclosure heated from below and symmetrically 
cooled from both side walls. The heat transfer characteristics 
of the natural convection in square and rectangular 
enclosures heated and cooled on adjacent walls has also been 
studied by Aydin et al. [16, 17] and Rahman and Sharif [18]. 
Finally, we mention the paper by Ece and Büyük [19] on the 
natural convection flow of a viscous (Newtonian) fluid in the 
presence of a magnetic field in an inclined rectangular 
enclosure heated from one side wall and cooled from an 
adjacent wall. The basic dimensionless equations are solved 
numerically using the finite-difference method along with 
the Richardson extrapolation technique. Streamlines, 
isotherms, and local Nusselt number have been determined 
and discussed. 

PHYSICAL MODEL AND GOVERNING EQUATIONS 

 A schematic of the two-dimensional inclined square 

cavity filled with a fluid-saturated porous medium is shown 

in Fig. (1), where x  and y  are the Cartesian coordinates, L  

is the length of the cavity and  is the inclination angle from 

the horizontal. It is assumed that the right hand side and 

bottom walls of the cavity are adiabatic, and the fluid-

saturated porous medium is isothermally heated and cooled 

by the left hand side and top walls at uniform temperatures 

h
T  and 

c
T , respectively, where 

ch
TT > . All walls are 
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impermeable and the flow is assumed to be steady. Constant 

fluid-porous medium properties are assumed, except for the 

density changes with temperature that induce buoyancy 

forces, i.e. the Boussinesq approximation is adopted. Under 

these assumptions, the continuity, Darcy and energy 

equations can be written in dimensional form as follows: 
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where u  and v  are the velocity components along the x  

and y  directions, respectively, T  is the fluid temperature, 

g  is the magnitude of the acceleration due to gravity, K  is 

the permeability of the porous medium, 
m

 is the effective 

thermal diffusivity of the porous medium,  is the thermal 

expansion coefficient, and  is the kinematics viscosity. 

 We introduce the following dimensionless variables: 
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Fig. (1). Physical model and coordinate system. 

where 
0
T  is a characteristic temperature and we assume that 

T0 = (Th + Tc ) / 2 . Also we introduce the dimensionless 

stream function  defined in the usual way as yu = /  

and xv = / . Thus, Eqs. (1) - (3) can be written in 

dimensionless form as follows: 
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where mch LTTKgRa /)(=  is the Rayleigh number 

for the porous medium. According to the boundary 

conditions defined in Fig. (1), Eqs. (5) and (6) have to be 

solved subject to the following boundary conditions: 
(x,0) = 0, (0, y) = 0, (x,1) = 0, (1, y) = 0

(0, y) =
1

2
, (x,1) =

1

2
,
y
(x,0) = 0,

x
(1, y) = 0

        (7) 

 The physical quantities of interest are the local and 

average Nusselt numbers from the heated wall, Nuh (y)  and 

Nuh , and cooled wall, Nuc (y)  and Nuc , respectively, 

which are given by 

Nu
h
(y) = 2

x
(0, y),Nuh = Nu

h
(y)dy

0

1

Nu
c
(x) = 2

y
(x,1),Nuc = Nu

c
(x)dx

0

1

         (8) 

RESULTS AND DISCUSSION 

 In order to obtain the numerical solution of Eqs (5) and 

(6), a central finite-difference scheme has been used and the 

system of discretised equations have been solved using a 

Gauss-Seidel iteration technique. The unknown quantities  

and  are calculated iteratively until the following criterion 

of convergence is fulfilled: 

ji

jiji

,

oldnew ),(),(           (9) 

where  represents the temperature or the stream function 

and  is the convergence criterion. In all the results 

presented in this paper, we have found that 7
10=  is 

sufficiently small such that any smaller value produces 

results which were graphically indistinguishable. In order to 

choose the size of the grid, accuracy tests using the central 

finite-difference method and Richardson extrapolation [20] 

for mesh sensitivity analysis has been performed for 

100=Ra  for some typical values of the stream function and 

temperature using three sets of grids: 26  26, 51  51 and 

101  101 as shown in Table 1. Reasonably good agreement 

has been found between the results obtained using the 51 51 

and 101 101 grids and the extrapolated results. Therefore, 

all the results presented in this paper are those obtained using 

the extrapolated results. Due to the lack of suitable results in 

the literature, we are unfortunate in not being able to 

compare the present results with other results. However, 

because the numerical method has been used in our recently 

published papers [21] and [22], we are confident that the 

present results are accurate. Further, our results are 

comparable with the ones reported by Aydin et al. [16] for a 

similar geometrical cavity filled with viscous and 

incompressible fluid (non-porous medium). It should be 

noted that the value of 100=Ra  is a typical value that has 

been used by other authors, see for example [23], for a cavity 

filled with a fluid-saturated porous medium. Thus, we have 
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concentrated our investigations on Rayleigh numbers in this 

vicinity. 

Table 1. Some Typical Values of the Stream Functions and 

Temperature for 
 
Ra = 100, = 0o  

 

Nodes  (0.24;0.24)  (0.24,0.24) 

26x26 -3.8460 -0.1478 

51x51 -3.8795 -0.1485 

101x101 -3.8884 -0.1497 

Richardson extrapolation -3.8913 -0.1501 

 

 Streamlines and isotherms are shown in Figs. (2, 3) for 

10=Ra  (Fig. 2) and for 100=Ra  (Fig. 3) and for values of 

the inclined angle of ,90,45,0
oo

=  135o , 180o , 225o ,  

270o , 315o.  Streamlines are plotted on the left hand side, 

while isotherms are plotted on the right hand side of these 

figures. It is clear from Fig. (1) that certain values of the 

inclined angles represent different physical problems and 

this leads to variations in the patterns of the streamlines and 

isotherms. While a cavity with 
o
0=  represents heated 

from one side and cooled from above, a cavity with 
o

90=  

corresponds to the problem of heated from below and cooled 

from one side. The other two cases include heated from one 

side and cooled from below when 
o

180= , and heated from 

above and cooled from one side when 
o

270= . It is 

observed that a unicellular recirculation flow pattern appears 

for all the inclined angles, except for 
o

45=  and o
225  

where two bicellular recirculation flow patterns are 

observed. However, we observe, as expected, that there is a 

symmetrical pattern for the cases 
oo

225and45= . On the 

other hand, the solutions for 
o

180=  and 
o

270=  are 

identical, after a suitable rotation about the centre of the 

cavity and, as expected, the flow for 
o

45= and 100=Ra  

is symmetrical. Further, it is observed that the nature of the 

streamlines and isotherms do not change significantly as the 

angle of inclination changes. The buoyancy force which 

ascends the fluid particle heated near the hot wall acts 

parallel to this wall when the cavity is inclined at 
oooo

270and180,90,0=  but forces them towards the hot 

and cold walls when the cavity is inclined at 

= 45o , 135o , 225o , and 315o and away from the hot and 

cold walls for all the other angles of inclination. As regards 

the isotherms, it is observed that they are almost the same as 

for 10=Ra  as Ra  increases, while they are closer to each 

other near the hot or cold walls depending on the angle of 

inclination. This indicates that there is a higher heat flux 

from the hot wall to the cold wall and vice versa. This higher 

heat flux depends on the angle of inclination and it is more  

 

pronounced for higher angles of inclination. Further, it can 

be seen that as Ra  increases then the isotherms are bulged 

near the hot wall and squeezed near the cold wall, and vice 

versa depending on the angle of inclination. The streamlines 

are displayed in two symmetric counter-rotating cells when 

the cavity is tilted at the angles 
oo

225and45=  for 

10=Ra  and 100=Ra . The upper one rotates 

counterclockwise, while the lower one rotates clockwise, see 

Figs. (2b, f, 3b, f). It is observed that for 1000=Ra  we are 

able to determine the flow and heat transfer only 

for
o

180= . It appears that for other values of , the flow 

becomes unsteady due to the destabilizing effects of the 

isothermal walls. In fact, the flow field becomes three-

dimensional beyond 1000=Ra  at all angles of inclination. 

Further, it should be observed that a boundary layer is 

formed near the hot wall for 100=Ra  and the angle of 

inclination 
o

315= and it is more pronounced for 

1000=Ra  when
o

180= , see Figs. (3h, 4). 

 The variations of the local Nusselt number h
Nu  for the 

hot wall, and 
c

Nu  for the cold wall, with the angle of 

inclination are illustrated in Figs. (5, 6). It is observed that 

h
Nu  continuously increases along the hot wall for all the 

values of  considered, except 
oo

315and0= , see Figs. 

(5a, 6a). However, 
c

Nu  first decreases and then increases 

along the cold wall for 
ooo

135and90,45=  and for all the 

other values of  it continuously decreases, see Figs. (5b, 

6b). This is in accordance with the distribution of the 

isotherms shown in Figs. (2, 3). 

 Finally, the obtained numerical results for the average 

Nusselt number 
ch
uNuN and  for the hot and cold walls 

using both the second-order finite-difference method and 

Richardson extrapolation are given in Tables 2 and 3 when 

100=Ra  and for different values of the angles of 

inclination. It is observed that, as expected, the values of the 

average Nusselt numbers, 
ch
uNuN and  are almost equal 

when 
o

225=  (the largest difference between the values of 

the Nusselt numbers on the cooled and heated walls is less 

than 1.5%). Further, it can be observed that both 

ch
uNuN and  increase and decrease simultaneously. Starting 

from a maximum value at 
o
0=  the Nusselt number hNu  

gradually decreases with  and then increases for
o

90= . 

Further, they smoothly decrease to a minimum at o
225= . 

The maximum values of both 
ch
uNuN and  are attained at 

o
0= and

o
90= , respectively, and the energy transport 

increases due to the convective effect of the isothermal cold 

wall. It is observed that the values of the average Nusselt 

numbers, 
ch
uNuN and , are almost equal. 
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Fig. (2). Streamlines and isotherms for 10=Ra and (a) = 0o ; (b) = 45o ; (c) = 90o ; (d) = 135o ; (e) = 180o ; (f) = 225o ; 

(g) = 270o ; and (h) = 315o.  
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Fig. (3). Streamlines and isotherms for 100=Ra  and (a) = 0o ; (b) = 45o ; (c) = 90o ; (d) = 135o ; (e) = 180o ; (f) 

= 225o ; (g) = 270o ; and (h) = 315o.  
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Fig. (4). Streamlines and isotherms for Ra = 1000, = 180o.  
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Fig. (5). Variation of ( a) Nuh and (b)Nuc  for 100=Ra and different values of . 
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Fig. (6). Variation of (a) Nuh and (b) Nuc  for 100=Ra and different values of . 
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CONCLUSIONS 

 In this paper, we have numerically analyzed the steady 

natural convection flow in an inclined square cavity filled 

with a porous medium and isothermally heated from one side 

wall and isothermally cooled from an adjacent wall. The 

influence of the angle of inclination on the flow field and the 

energy transport is investigated for a range of angles of 

inclination, namely, oo
3150  and for Ra = 10,100 and 

1000. Because of the presence of the adjacent isothermal 

walls, this geometry represents different natural convection 

problems and exhibits some interesting fluid flow and energy 

transport mechanisms. It should be noted that the flow field 

becomes unstable for 1000=Ra  when the inclination angles 

are different from
o

180= . The minimum value of the 

average Nusselt numbers are attained at o
225= when 

100=Ra , and in this case, conduction is dominant and the 

effect of Ra  becomes insignificant, as can be observed from 

Tables 2 and 3. To this end, it should be notedthat we have 

adopted the Darcy model here but the paper can be extended 

to the Brinkman-extended non-Darcy model. 

NOMENCLATURE 

g = Magnitude of the acceleration due to gravity,  

   2
m/s  

h  = Heat transfer coefficient, W/m
2
k 

k  = Thermal conductivity, KW/m  

K  = Permeability, 
2

m  

L  = Width of the square cavity, m  

h
Nu  = Local Nusselt number from the heated wall 

h
uN  = Average Nusselt number from the heated wall 

c
Nu  = Local Nusselt number from the colded wall 

c
uN  = Average Nusselt number from the colded wall 

Ra  = Rayleigh number for a porous medium 

T  = Temperature, K  

h
T  = Temperature for hot wall, K  

c
T  = Temperature for cold wall, K  

0
T  = Volume average of the temperature over the  

   fluid, K  

u  = Filtration velocity along x  axis, m/s  

U  = Dimensionless velocity along X axis 

v  = Filtration velocity along y  axis, m/s  

V  = Dimensionless velocity along Y  axis 

x  = Coordinate measured along the lower horizontal  

   wall, m  

X  = Dimensionless coordinate in the horizontal  

   direction 

y  = Coordinate measured along the hot vertical wall,  

   m  

Y  = Dimensionless coordinate in the vertical  

   direction 

Greek Symbols 

 = Dimensionless modified thermal capacity ratio 

m
 = Effective thermal diffusivity of the porous  

   medium, sm /
2  

 = Inclination angle, degree 

Table 2. Average of Nusselt Number Nuh  for the Heated Wall Using  Ra = 100  

 

 
 0

o
  45

o
  90

o
  135

o
  180

o
  225

o
  270

o
  315

o
 

26x26 8.2636 5.3705 8.2240 7.4053 5.6450 5.1780 6.0722 7.7828 

51x51 9.2162 6.2760 9.2008 8.4700 6.6573 6.0649 6.8935 8.6699 

101x101 10.1319 8.1912 10.1247 9.4311 7.6072 6.9500 7.7297 9.5335 

Richardson extrapolation 10.4371 8.8296 10.4326 9.7514 7.9238 7.2450 8.0084 9.8213 

 

Table 3. Average of Nusselt Number Nuc  for the Cold Wall Using  Ra = 100  

 

 
 0

o
  45

o
  90

o
  135

o
  180

o
  225

o
  270

o
  315

o
 

26x26 8.2240 5.3705 8.2636 7.7828 6.0722 5.1780 5.6450 7.4053 

51x51 9.2008 6.2759 9.2163 8.6698 6.8935 6.0650 6.6573 8.4699 

101x101 10.1247 8.1576 10.1319 9.5335 7.7297 6.9503 7.6072 9.4311 

Richardson extrapolation 10.4326 8.7848 10.4371 9.8214 8.0084 7.2454 7.9238 9.7515 
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 = Dynamic viscosity, sm /
2  

 = Dimensionless temperature 

 = Dimensionless stream function 

 = Density of the fluid, 
3kg/m  

 = Convergence criterion 

Subscrips 

c  = Cold wall 

h  = Hot wall 
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