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Abstract: The effects of the porous medium on the flow in the interface region between a highly porous wall and clear 
fluid are discussed. Three dimensional laminar flows in the interface regions of foamed porous walls are microscopically 
simulated by the lattice Boltzmann method. The chosen porous structure is the body-centered-cubic or the unit cube 
structure whose porosity ranges 0.82-0.98. The velocity distribution in the interface regions show that the flow penetration 
into porous layer is very little and it decays until one pore-diameter depth from the interface. To describe the slip velocity 
distribution independently of the porous structure, the permeability Reynolds number and the friction velocity are 
confirmed to be representative scale parameters. The stress jump conditions across the interface are also examined with 
the simulation results. Although the obtained averaged wall friction of the porous interface is slightly lower than that of 
the solid smooth impermeable surface, the reduction is not significant due to the Reynolds stress arisen from the statistical 
averaging of the interfacial flow motions. 
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1. INTRODUCTION 

 Viscous fluid flows through porous media have been 
studied for many years after Darcy [1] since porous materials 
are so common in engineering fields as well as in the earth 
science. Once such porous materials are applied to fluid 
flows for guiding, filtering or controlling the fluid, the 
characteristics of flows over or around porous surfaces are 
also very important for designing the flow-devices. 
Accordingly, boundary layer flows over permeable walls 
have been of primary interests for many researchers. 

 Beavers and Joseph [2] studied on the effects of a porous 
medium on the flow in the interface region between the 
porous wall and clear fluid (named “interface region” 
hereafter). They measured mass flow rates over permeable 
beds in laminar flow conditions and found that the mass flow 
rates increased compared with those in impermeable cases. 
Many other following studies [3-9] also focused on the 
laminar flow regime experimentally and numerically since 
the flow physics is rather complicated and controversial even 
in laminar flows. In fact, the effects of flow penetration into 
porous layers are still not fully understood. Gupte and 
Advani [7] performed mean flow measurements in the 
interface region of fibrous mats using a laser Doppler 
anemometry. They reported that the flow penetration into the 
porous layer was stronger than that estimated semi-
theoretically in the laminar flow regime. Since their 
measurements were performed at the slits between fibrous 
mats, the reported results might not show the pure 
penetration effects. On the contrary, James and Davis [8]  
reported numerically that the external flow penetrated the 
fibrous porous medium very little. 
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 The slip velocity at the interface is also one of the issues. 
On the porous interface, the fluid motion is not totally 
damped having non-zero statistical tangential velocity 
component. Since this slip velocity is required to solve the 
momentum equations over the interface as a boundary 
condition, Beavers and Joseph [2] proposed a condition that 
is a function of the permeability and the Darcy velocity of 
the porous media. This condition was supported by many 
studies [4,5,10]. Ochoa-Tapia and Whitaker [6] proposed 
another relation introducing a jump condition of the stress 
distribution across the interface. Both of the conditions 
require experimental measurements for determining their 
coefficients. Thus, to answer the question of which condition 
is better or more useful representation, discussions using 
measured or simulated data are essential. 

 Another important issue is the friction of the porous 
surfaces. In laminar flow regimes, the aforementioned work 
by Beavers and Joseph

 
[2] reported that the friction over the 

porous walls reduced due to the porosity. However, Zagni 
and Smith [11] and Zippe and Graf [12] experimentally 
found that the friction factors of turbulent flows over 
permeable beds became higher than those over impermeable 
walls with the same surface roughness. Kong and Schetz 
[13] observed that the increase of the skin friction was due to 
the combined effects of roughness and porosity. Thus, the 
mechanism to produce such a difference depending on the 
flow regimes is still unknown. 

 In order to understand the flow characteristics in the 
interface regions, it is necessary to obtain the detailed flow 
profiles in the interface region. However, measuring flow 
profiles across the interface region is very difficult even with 
the latest measurement techniques. Thus, one can expect that 
numerical analyses can provide useful information instead. 
The recently emerged lattice Boltzmann method (LBM)

 

[14,15] has become powerful tool for simulating flows inside 
porous media [16-18] due to its coding simplicity of the 
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method for complicated flow geometries. Therefore, in order 
to understand and discuss the flow characteristics such as the 
flow penetration, the slip velocity, the stress jump condition 
and the friction of the porous interfaces in laminar flow 
regimes, the present study has performed numerical 
simulations using the LBM. 

2. NUMERICAL METHODS 

2.1. Lattice Boltzmann Method 

 The presently used LBM employs the single-relaxation-
time (SRT) Bhatnagar-Gross- Krook (BGK) [19] model 
which is briefly described below. 

 The lattice Boltzmann method for flow simulation by the 
SRT BGK model may be written as 

    

f (r + e
t
, t +

t
) = f (r, t)

f (r, t) f eq (r, t)
,

( = 0,1,2, ,Q 1),

            (1) 

where 
   
f (r, t)  is the density distribution function along the 

 direction at the lattice site r at time t , 
 
e  is the discrete 

velocity, 
 t

 is the time step and  is the dimensionless 

relaxation time ( = 1  is applied in this study). The 

equilibrium distribution function determined by the fluid 

density and momentum is 

   

f eq
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e u

c
S

2
+
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,         (2) 

where 
 
w  is the weight coefficient and 

 
c

S
 is the sound 

speed. Once the density distribution function is known, the 

density , the velocity u, the pressure p and the kinematic 

viscosity  are obtained from the conservation laws and the 

equation of state: 

   

= f ,   u = f c ,   p = c
S

2
,   = c

S

2 1

2
t
.     (3) 

In the present study, the D3Q19 discrete velocity model 
shown in Fig. (1), whose parameters [20] are listed in Table 
1, is employed. 

 At the solid wall boundaries, the usual half-way bounce-

back (HWBB) method [18] is employed. (In [18], the 

HWBB is called the perfect bounce-back.) Fig. (1b) 

illustrates the procedures of the HWBB method in a  

 

(a) 

 

(b) 

 

(c) 

 

Fig.(1). Discrete velocity and solid wall boundary models: (a) 

D3Q19 discrete velocity model, (b) half-way bounce back, (c) 

representation of a curved surface by the half-way bounce-back 

boundary condition. 

Table 1. Parameters of the Discrete Velocity Model of D3Q19 
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one-dimensional setting. In this case, since the boundary 
 
x

W
 

is located at the middle between nodes
 
x

A
 and 

 
x

B
, 

(
  
| x

A
x

W
| /

  
| x

A
x

B
|= 1 / 2 ), the particle at node A

x  

travels and collides with the wall at 
 
x

W
 and reverses its 

momentum (the collision process completes instantly), then 

travels back to 
A
x . Thus, the incoming distribution function 

is simply equal to the corresponding outgoing one with the 

opposite momentum. As discussed in [21] the special error 

convergence of the HWBB method is first order and its 

representation of a curved surface is step-like as shown in 

Fig. (1c). Although HWBB condition is less accurate than 

the other elaborate method, it is computationally efficient 

and generally gives reasonable results [22]. Indeed, the 

authors’ group confirmed that it was reasonably accurate to 

reproduce flow characteristics in porous media [23]. 

2.2. Models of Foamed Porous Media 

 In the present study, foamed porous media which have the 
open-cell foam structure are considered. During the 
manufacturing (foaming) process of the foamed porous 
media, the bubbles of the foam attain an equilibrium state 
where the surface energy becomes minimum. The body-
centered-cubic (BCC) and the unit cube (UC) structures are 
homogeneous models of such condition. They are thus 
chosen to represent the foamed porous media in this study. 

 For the BCC foam geometry creation, the shapes of the 

pores are assumed to be spherical and spheres of equal 

volume are located at the vertices and the center of the unit 

cell as shown in Fig. (2a). For the UC foam creation, the 

spherical pores are located at the center of the unit cell as 

shown in Fig. (2b). The periodic foam geometry is then 

obtained by subtracting the spheres from the unit cell cube. 

For the open-cell structure, the pore diameter 
 
d

p
 should be 

larger than the height of the cube (:cell height) A. The pore 

diameter also has a maximum limit to form the structure. 

Thus, the BCC structure has the range of the porosity  as 

 
0.94 < < 0.99 , while the UC has 

 
0.53 < < 0.96 . Table 2 

lists all the presently simulated cases. 

2.3. Computational Domain and Grids 

 The computational domain includes a channel over a 

porous layer whose thickness 
 
H

p
 is the same as that of the 

channel 
 
H

c
 as shown in Fig. (3). The porous layer consists 

of 7 cells of the BCC or UC structure in the 
 
y direction. 

The porosity  of the present test cases ranges  0.82 0.98 . 

Periodical boundary conditions are imposed in the flow 

( x ) and spanwise ( z ) directions. The lattice nodes of 

 25 337 25  are used for the main computations whose 

bulk Reynolds number, based on the bulk mean velocity 
 
U

b
, 

is 
  
Re

b
= 80 . Here, the bulk mean velocity is defined by the 

total flow rate both in the clear fluid and porous layer 

regions. In the  x direction, the flow is driven by a pressure 

difference. 

 Grid dependency tests have been performed comparing 

the results by  51 701 51  lattice nodes. Fig. (4) compares 

the sectional mean streamwise velocity  U  profiles in the 

interface regions obtained by the “sectionally superficial” 

averaging. (The sectionally superficial averaging is defined 

by taking average of a variable over a sectional area element 

of the medium consisting of both solid and fluid materials.) 

The location of the interface is 
  
y = 0  and the channel region 

is in 
  
y 0  whilst the porous region is 

  
y 0 . The Darcy 

velocity is 
 
U

d
 which is the volume averaged velocity deep 

inside the porous layer. Fig. (4a, b), respectively corres-

(a) 

 

(b) 

 

Fig. (2). Models of foamed porous media: (a) BCC structure, (b) UC structure. 

cube spheres BCC model
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ponding to the BCC and the UC structure cases, show 

virtually the same distribution profiles of the two lattice node 

cases and confirm that the results of  25 337 25  lattice 

nodes are well grid independent. 

 Pan et al.
 
[18] reported that the multiple relaxation time 

(MRT) model [24] was suitable for predicting porous 

medium flows by the LBM. Hence, Fig. (4) also compares 

the results by the two relaxation-time (SRT and MRT) 

models of the LBM. It is clear in Fig. (4) that the difference 

between the profiles by MRT model by the grid of 

 25 337 25  and those by the SRT model are invisibly 

small. This confirms that the present discussions on the flow 

characteristics by the SRT model are reliable. 

3. RESULTS AND DISCUSSIONS 

3.1. General Flow Characteristics 

 For the general idea of the simulated flow profiles, Fig. 

(5) shows a simulated velocity profile normalized by the 

bulk mean velocity 
 
U

b
. In the channel region, the velocity 

distributes parabolically while one can observe a slip 

velocity at the interface. (This slip velocity 
 
U

w
 is discussed 

in the next section 3.2 in detail.) A sectionally superficial 

velocity  U  profile inside a porous layer is displayed in Fig. 

(6) along with the profile of the solution of the Brinkman 

equation [25] : 

  
U = U

d
+ (U

w
U

d
) exp y / K ,          (4) 

where K and 
 
U

d
 are respectively the permeability and the 

Darcy velocity. To obtain the broken line in Fig. (6), 
   
K ,  U

d
 

and 
 
U

w
 from the simulation results are applied to Eq. (4). 

Due to the structure whose void-fraction changes in 

 
y direction, a sinusoidal velocity profile is observed. 

 As shown in Fig. (6), the flow inside the porous layer 
rapidly develops and reaches a periodical distribution. 
Hence, the permeability K of the porous layer can be 
obtained from the flow characteristics deep inside the porous 
layer by the definition: 

  

K =
μ

P / A
U

d
,            (5) 

where  P  is the pressure drop along the unit cell length  A . 

The Darcy velocity 
 
U

d
 can be calculated by averaging the 

velocity distribution deep inside the porous layer. The 

permeability distribution of the presently simulated porous 

Table 2. Simulated Flow Cases; 
 
U

d
: Darcy Velocity, 

 
U

b
: Bulk Mean Velocity, K: Permeability, 
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Fig. (3). Flow field geometry. 
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layers are shown in Fig. (7). The normalized permeability 

  K / d
2  is defined after Bhattacharya et al. [26]. The 

microscopic characteristic length  d  of foamed porous media 

by Du Plessis et al. [27] is determined with the pore diameter 

 
d

p
 as 

  
d = 2 1 / (3 )d

p
.           (6) 

(a) 

 

(b) 

 

Fig. (4). Grid and relaxation-time model dependency: (a) BCC 

structure, (b) UC structure. 

As shown in Fig. (7), the presently obtained permeability of 

the BCC structure accords well with the experimental data 

[26] of foamed porous metals. This confirms that the BCC 

structure is a reasonable model for foamed porous media and 

also the present numerical methods are reliable enough. 

Since the permeability of the UC structure is higher than the 

experimental data, it implies that such a structure is not very 

good representation of the experimentally chosen foamed 

materials. Although both the BCC and UC cases show the 

increase of the permeability with the increase of the porosity, 

one can see an obvious difference between the two structures. 

This clearly implies that the permeability is subjected to both 

the porosity and the structure. Note that in the preliminary 

computations, it has been confirmed that the normalized 

values of the flow characteristics such as the permeability 

  
K / d

p

2
 and the Darcy velocity 

  
U

d
/ U

b
 do not vary in the 

Reynolds number range: 
  
20 Re

b
200 . 

 

Fig. (5). Velocity profile. 

 

Fig. (6). Sectionally superficial velocity profile in the porous 

region. 

 

Fig. (7). Computed permeability distribution. 

 As discussed with Fig. (6), the flow distribution depends 
on the phase of the local void-fraction. Although the 
simulated porous media have perfectly regular homogeneous 
structure, many phase-positions can be defined at the  
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surface. Thus, in order to obtain reasonably general flow 
characteristics of the structure, averaging several different 
cases of the surface phase-position is applied. Although there 
are an infinite number of phases to determine the porous 
interface, 2 types of the interface position (1, 1/4) are applied 
for the BCC structure as shown in Fig. (8). They represent 2 
main phase-positions which are opposite phases to each 
other. Note that the phases of position 3/4 and 1/2 are the 
same as those of 1/4 and 1, respectively. For the UC 
structure, 4 types of the position (1, 3/4, 1/2, 1/4) as in Fig. 
(8) are applied for averaging. In the following discussions, 
all velocity profiles are obtained by this averaging process. 

 

Fig. (8). Interface positions. 

 With this averaging, the sinusoidal velocity profile is 
smoothed out as shown in Fig. (9). In fact, the velocity 
profile reasonably accords with the profile of the solution of 
the Brinkman equation, Eq.(4). This indicates that the 
general velocity distribution and the flow penetration inside 
the present porous media can be reasonably estimated by the 
Brinkman equation if the correct interface velocity is given. 

 

Fig. (9). Averaged velocity profile of 2 different phases of the BCC 

structure. 

3.2. Flow Penetration and Slip Velocity 

 As shown in Fig. (9), the flow penetration region is 

defined as the region where the averaged velocity is 5% 

greater than the Darcy velocity 
 
U

d
 in this study. The 

penetration length is the thickness of this penetration region. 

The obtained penetration length 
 
l

p
 is plotted in Fig. (10). It 

is clear that the penetration length generally increases with 

the porosity. However, the maximum penetration length is 

less than the pore diameter 
 
d

p
. This tendency is also  

 

observed in a finer porous layer which has the same 

thickness but 28 layers of the cells in the extra simulations 

by  25 1345 25  lattice nodes. The present results support 

the numerical study of James and Davis [8] which reported 

that the external flow penetrated the porous layer (consisting 

of circular cylinder arrays) very little even for sparse arrays 

of circular cylinders. 

 

Fig. (10). Flow penetration length. 

 Fig. (11a) shows the slip velocity against the porosity. 

Although the slip velocity increases with the porosity, it 

strongly depends on the porous structure. James and Davis 

[8] normalized the slip velocity using the permeability and 

the velocity gradient as 
  
U

w
/ ( K dU / dy)  and discussed its 

behavior against the porosity. However, in their figures, it is 

difficult to find a simple correlation to represent the slip 

velocity distribution. Gupte and Advani [7] also discussed 

the normalized slip velocity 
  
U

w
/ U  (

 
U  is the free stream 

velocity) against the permeability. Although a linear 

correlation profile was observed, their experimental points 

plotted were only three. Thus, in order to find a general 

distribution profile of the slip velocity independent of the 

structure, the normalization by the friction velocity 
*
u  and 

the permeability is presently considered. (Generally, the 

friction velocity is a representative scale parameter for the 

boundary layer.) The friction velocity 
  
u

*
=

p
/  can be 

obtained from the porous wall friction: 

 
p
= H

c

dP

dx s
,            (7) 

where 
  

s
= μ dU / dy

y= H
c

. Note that the present porous 

wall friction includes all the porous interface effects and thus 

  
p
= (μ + μ

eff
)

U

y
0+

,           (8) 

where 
 
μ

eff
 is the effective viscosity arising from the 

statistical handling of the interface flows and the subscript 

“ 0 + ” denotes the clear fluid side. With the definition by  
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(a) 

 

(b) 

 

Fig. (11). Slip velocity distribution: (a) slip velocity against the 

porosity, (b) slip velocity against the permeability Reynolds 

number. 

Eq.(7), 
 p

 can be obtained by measuring the clear channel 

flow. Fig. (11b) shows the normalized slip velocity 

  
(U

w
U

d
) / u

*
 against the permeability Reynolds number 

  
Re

K
= u

*
K /  and confirms that this normalization 

provides a general tendency that is reasonably free from the 

porous structure. In fact, all the data reasonably collapse 

around the single correlation line: 

  
(U

w
U

d
) / u

*
= a

2
Re

K
+ b

2
Re

K

2 ,  a
2
= 0.4,  b

2
= 0.68 .     (9) 

3.3. Stress Jump Conditions 

 In order to obtain analytical solutions of flows over 
porous media, the discussions on the non-monotonic 
distribution of the velocity gradients, namely “stress jump”, 
across the interface have been historically made. Beavers and 
Joseph

 
[2] proposed a clear fluid flow boundary condition at 

the interface as 

  

U

y
0+

=
K

U
w

U
d( ) .         (10) 

They reported that the coefficient  ranged from 0.1 to 4 

depending on the porous materials. Saffman [10] supported 

this Beavers and Joseph (BJ) condition by a theoretical 

study. Larson and Higdon [4] also confirmed it numerically 

by simulating flows over two-dimensional cylinder arrays. 

The other studies such as Sahraoui and Kaviany [5] also 

discussed the BJ coefficient . However, to represent the 

coefficient of the BJ condition, there has been no correlation 

formula covering many different flow cases. Ochoa-Tapia 

and Whitaker [6] improved the BJ condition and proposed 

another stress jump condition: 

  

U

y
0+

=
1 u

s

y
0

K
U

w
,        (11) 

where 
 

u
s

 is the superficial velocity and the subscript 

“ 0 ” denotes the porous media side. The superficial 

averaging is defined by taking average of a variable over a 

volume element of the medium consisting of both solid and 

fluid materials. In their report, this Ochoa-Tapia and 

Whitaker (OTW) stress jump coefficient  ranged from  1  

to  1.47  depending on the porous materials. The other stress 

jump conditions have also been found in the literature. 

Alazmi and Vafai [28] listed five different conditions 

including the BJ and OTW conditions and analytically 

studied their effects on flows and heat transfer. (Three more 

conditions are the monotonic stress distribution without the 

stress jump, its modified version using the effective viscosity 

for clear fluid region and the nonlinear expansion of the 

OTW condition including the second order velocity term.) 

They concluded that the variances had a more pronounced 

effect on the velocity field and a substantially smaller effect 

on the temperature field. Hence, finding a reasonable 

correlation formula of the coefficients is important for 

engineering applications as well as using a reliable stress 

jump condition. 

 Fig. (12) shows the variation of the coefficients of the 

stress jump conditions of BJ and OTW against the 

permeability Reynolds number 
  
Re

K
. Although the coefficients 

of the BJ and OTW conditions look fairly constant, a little 

discrepancy still can be seen in the structures. When the 

velocity gradient underneath the surface can be derived from 

the Brinkman equation as 

  

u
s

y
0

=
K

U
w

U
d( ) ,        (12) 

the BJ condition can be rewritten as 

  

U

y
0+

=

u
s

y
0

,          (13) 

where 
 

= / . As shown in Fig. (13), the distribution  
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(a) 

 

(b) 

 

Fig. (12). Coefficients of the stress jump conditions: (a) coefficient 

of the BJ condition, (b) coefficient of the OTW condition. 

of the modified coefficient  for the BJ condition more 

reasonably looks constant ( 1.25 ) though its applicability 

out of the present range of 
  
Re

K
 is unknown. 

 When the slip velocity is described by Eq. (9), from the 

definition of 
  
Re

K
 and 

  
= a

2
+ b

2
Re

K
, one can easily 

obtain 

  

μ
(U

w
U

d
)

K

= u
*2 ,            (14) 

which is essentially the BJ condition with 

  
= μ / [ (μ + μ

eff
)] since 

  
u*2

=
p
= (μ + μ

eff
) U / y |

+0
. 

The present results thus support the BJ stress jump condition. 

3.4. Wall Friction 

 The flow over a porous medium has been often 

considered to be a kind of Couette-Poiseuille flow [2]. Its 

analytical solution leads to the wall friction over the slip wall 

  
( y = 0)  as 

   

SlipWall
=

H
c

2

dP

dx
μ

U
w

H
c

CP

,        (15) 

whilst the wall friction over the non-slip wall 
  
( y = H

c
)  is 

  

=
H

c

2

dP

dx
+ μ

U
w

H
c

.           (16) 

 

Fig. (13). Distribution of the modified coefficient of the BJ stress 

jump condition. 

Hence, the porous-wall friction becomes smaller than the 
solid non-slip-wall friction depending on the slip velocity. 
From the present simulations, the wall friction over the 
porous wall can be obtained as 

   

p
= H

c

dP

dx s
=

H
c

2

dP

dx

H
c

2

dP

dx
μ

dU

dy
y=H

c

s

p

,        (17) 

where 
 s

 is the wall shear stress on the top solid wall. If the 

above Couette-Poiseuille assumption is reasonable, the terms 

  
CP

,
p
  should be comparable to each other. However, as 

shown in Fig. (14), the ratio is always 
  

CP
/

p
  >1.0  

indicating 
 p

>
SlipWall

. This is mainly caused by the 

statistical treatment. Since the sectional averaging process of 

the velocity component:   u = U + u  is defined as 

  

U ( y) = u =
1

S( y)
uds

S ( y )

,         (18) 

it produces the Reynolds stress term 
  

uv  as in the large 

eddy simulation as 

   

0 =
dP

dx
+

d

dy
μ

dU

dy
+

d

dy
uv( ) .        (19) 
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Fig. (14). Ratio of 
 

CP and 
 

p  in Eqs. (15) and (17). 

This Reynolds stress term is considered to be the main 

reason why the present results indicate 
 p

>
SlipWall

. 

(Obviously the effective viscosity 
 
μ

eff
 in Eq.(8) corresponds 

to this Reynolds stress.) Therefore, the Couette-Poiseuille 

flow assumption for the porous wall channel flow is not 

totally correct. Although the porous wall friction 
 p

 is 

slightly smaller than the solid wall friction 
 s

 as shown in 

Fig. (15), the reduction of the wall friction over the porous 

wall is not significant due to the Reynolds stress term. 

 

Fig. (15). Ratio of porous- and solid-wall friction. 

 Therefore, at the porous interface, the local vertical flow 
component by the penetrating flow motions pushes up the 
statistical wall friction. This also implies that the total wall 
friction on the porous interface can be larger than that of the 
solid smooth impermeable wall even in non-turbulent flow 
regimes if the surface geometry is very complicated. 

4. CONCLUSIONS 

 In the present study, several flow characteristics in the 

porous medium-clear fluid interface regions are discussed by 

the lattice Boltzmann flow simulations. The simulated 

porous structure is the body-centered-cubic or the unit cube 

structure whose porosity ranges  0.82 0.98 . The simulation 

results imply that the permeability is subjected to both the 

porosity and the structure. It is confirmed that the Brinkman 

equation can be usable for estimating the flow profiles inside 

the porous media if the correct interface velocity is given. 

The results also show that the flow penetration from the clear 

fluid region into the porous layer generally increases with 

the porosity while the maximum penetration length is less 

than the pore diameter. For representing the interfacial 

velocity, the permeability Reynolds number and the friction 

velocity are confirmed to be good scale parameters to 

describe the slip velocity distribution independently of the 

porous structure. After the discussions on the stress jump 

conditions across the interface, it is found that the present 

slip velocity distribution supports the BJ condition. A fairly 

constant value for the modified BJ coefficient is seen in the 

simulated range of the permeability Reynolds number. The 

averaged wall friction on the porous interface is slightly 

smaller than that of the solid smooth surface. However, it is 

concluded that the reduction is not significant due to the 

Reynolds stress term arisen from the statistical treatment of 

the flow motion in the interface region. 
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