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Abstract: In light of a local thermal non-equilibrium model, fully developed forced convection in an annulus filled with a 
porous medium is treated to elucidate its exact temperature solutions for both fluid and solid phases. In this study, the 
plug-flow approximation is assumed since Darcian velocity over the cross-section is uniform except in a small region very 
close to the walls. The inner wall is heated under the constant heat flux condition while the outer wall is subject to the 
adiabatic boundary condition. The exact solutions based on the present local thermal non-equilibrium model clearly show 
that the local thermal equilibrium assumption may fail for the case of metal foam and air combination. The approximate 
solution for the Nusselt number, which is in accord with the corresponding exact solution, has also been presented for 
possible engineering applications. 
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INTRODUCTION 

 Two kinds of models, namely, thermal equilibrium model 
and thermal non-equilibrium model, can be applied to invest-
tigate thermal characteristics of conduction and convection 
within a porous medium. The only difference between these 
two models is whether the local thermal equilibrium is 
assumed or not. A substantial number of researchers [1-3] 
adopted the thermal equilibrium model to perform the 
theoretical and numerical investigations. Nevertheless, the 
local thermal equilibrium assumption between the solid and 
fluid phase is often inappropriate for a number of problems 
as pointed out by Carbonnel and Whitaker [4], Vafai and 
Sozen [5], Quintard and Whitaker [6, 7], Quintard [8], Amiri 
and Vafai [9], Jiang et al. [10], Jiang and Ren [11], Peterson 
and Chang [12], and Spiga and Morina [13], who 
recommended the use of local thermal non-equilibrium 
model. 
 Noticeable contributions have been made for the imp-
rovement of local thermal non-equilibrium model. Alazmi 
and Vafai [14] analyzed the effect of variant boundary 
conditions for the case of constant wall heat flux based on 
the local thermal non-equilibrium model. Meanwhile, per-
tinent parameters such as the porosity, Reynolds number, 
Darcy number, inertia parameter, particle diameter, and the 
ratio of solid to fluid conductivity are taken into account in 
their research. Finally, they proposed a useful and compre-
hensive set of correlations that relate these parameters with 
the total Nusselt number. Under the assumption of local 
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thermal non-equilibrium, Jiang and Ren [11] numerically 
performed the comprehensive calculations in which the 
effects of viscous dissipation, the boundary condition 
assumptions, thermal dispersion, particle diameters and the 
variable properties of oil on heat transfer characteristics are 
considered. A good agreement between the predicted 
convection heat transfer coefficients and the corresponding 
experimental results indicates that the utilization of local 
thermal non-equilibrium model is essential. 
 By using two energy equations introduced by Hsu [15] 
and Hsu et al. [16], Nakayama et al. [17] presented exact 
solutions for two fundamental steady heat transfer cases, 
namely, one-dimensional steady heat conduction in a porous 
slab with internal heat generation, and also thermally 
developing unidirectional flow through a semi-infinite 
porous medium. However, exact solutions for such local 
thermal non-equilibrium problems are very much limited, 
because of the analytical difficulty in solving the two energy 
equations simultaneously. These exact solutions are essen-
tially needed for possible benchmark tests of numerical tools 
based on the thermal non-equilibrium assumption.  
 In this study, we shall consider a fundamental yet 
important case in the field of engineering applications, 
namely, the fully developed forced convection in an annulus 
filled with a porous medium. Exact solutions for the case of 
aluminum foam and air combination are sought for the 
annulus in which the inner wall surface is heated by constant 
heat flux whereas the outer wall surface is insulated. We 
shall consider the effects of tortuosity on the stagnant 
conductivity on the heat transfer characteristics, which were 
often neglected in previous investigations. It will be shown 
that the local thermal equilibrium assumption may fail for 
the constant heat flux case in which the fluid and solid 
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phases within the gap of annular tube are never at thermal 
equilibrium. 

MATHEMATIC MODEL BASED ON LOCAL 
THERMAL NON-EQUILIBRIUM ASSUMPTION 

 Upon integrating two energy equations for the two 
individual phases over a representative elementary volume 
V  following the volume averaging theory [6, 7, 18, 19], we 
obtain the macroscopic energy equations for the two 
individual phases as follows: 
 For the fluid phase: 
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 For the solid matrix phase: 
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where the volume average of a certain variable! in the fluid 
phase is defined as, 

! f
"
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Vf

! dV
Vf
#  

such that T
f is the intrinsic volume average of the fluid 

temperature, while T
s is the intrinsic volume average of the 

solid matrix temperature, whereVf is the volume space 
which the fluid phase occupies. The porosity ! " Vf /V  is 
the volume fraction of the fluid space. The variable !  is 
decomposed into its intrinsic average and the spatial 
deviation from it: 
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 Moreover, A
int

is the local interfacial area between the 
fluid and solid matrix, while n

i
 is the unit vector pointing 

outward from the fluid side to solid side. The continuity of 
both temperature and heat flux is imposed on the interface. 
Obviously, the parenthetical terms on the right hand-side of 
Equation (1) denote the diffusive heat transfer, while the last 
term describes the interfacial heat transfer between the solid 
and fluid phases. In terms of the local thermal equilibrium 
assumption, the following one-equation models can be 
achieved by combining the previous Equations (1) and (2): 
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Where,  
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is the Darcian average of the variable! such that 

u j = ! u j

f

is the Darcian velocity vector. From the 
foregoing equation (3), the macroscopic heat flux 
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thermal conductivity kstag  may be defined as follows: 
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 Note that the first term in the rightmost expression 
corresponds to the upper bound of the effective stagnant 
thermal conductivity based on the parallel model, namely, 

  
!k

f
+ 1" !( ) k

s( ) . Thus, it is the tortuosity term (i.e. the 
second term) that adjusts the level of the effective stagnant 
thermal conductivity from its upper bound to a correct one. 
 Meanwhile, for obtaining more concise and neat forms of 
previous two energy equations, the following two-energy 
equation model was presented by Yang and Nakayama [20] 
along with the effective porosity: 
 For the fluid phase: 
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 For the solid matrix phase: 
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where the effective porosity !* which accounts for the effect 
of tortuosity on the stagnant thermal conductivity is defined 
such that the stagnant thermal conductivity is given by, 
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such that Equation (4) gives, 

  

!* " !( )
# T

#x
i

=
1

V
Tn

i
dA

A
int

$  (8) 

 As the stagnant thermal conductivity kstag  is given either 
empirically or theoretically, the effective porosity !*  can 
easily be evaluated from (7b). Furthermore, the thermal dis-
persion term is modeled according to the gradient diffusion 
hypothesis [21]: 
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while the interfacial heat transfer between the solid and fluid 
phases is modeled using Newton’s cooling law:  
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where h
v
is the volumetric heat transfer coefficient. 

PHYSICAL MODEL 

 We shall seek possible exact solutions for convective 
heat transfer in an annulus filled with metal foams, using the 
foregoing thermal non-equilibrium model. As indicated in 
Fig. (1), the air is flowing through an infinitely long annulus, 
the gap of which is fully filled with a metal foam. The inner 
wall surface is heated by constant heat flux whereas the outer 
wall surface is insulated. As pointed out by Dukhan et al. 
[22], the Darcian velocity shows its dependence on the trans-
verse direction only in a small region very close to the wall. 
Therefore, we may neglect the boundary term (i.e. Brinkman 
term) and use the plug-flow approximation. Under this app-
roximation, sufficiently away from the entrance, the energy 
equations (5) and (6) for the individual phases reduce to the 
following differential equations: 

 

Fig. (1). Convective heat transfer in anannulus filled with a metal 
foam. 

 For the fluid phase: 
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 For the solid phase: 
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with the following boundary conditions: 
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THEORITICAL APPROACHES FOR EXACT SOLU-
TIONS 

 For the sake of seeking possible exact solutions for 
convective heat transfer in an annulus filled with a porous 
media, Equations (11) and (12) are added to form,
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where u
D
= u is the Darcian velocity. Upon integrating the 

foregoing equation (15) across the cross-section of the 
annulus with the boundary conditions given by Equation (13) 
and (14), the energy balance readily gives, 
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 Note that the temperatures increase linearly downstream, 
although the velocity is unchanged. Equation (16) can be 
substituted into Equation (15) to give, 
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 This may be integrated as, 
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where the boundary conditions Equation (13) and (14) are 
exploited. The equation can further be integrated as, 
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where, 
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must be prescribed. The foregoing relationship (17) between 
the solid and fluid temperatures is substituted into Equation 
(12) to obtain the following ordinary differential equation in 

terms of 
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 Note that 
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 Note that, 
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where 
0,1,2,3
I  are the modified I Bessel functions of the 

zeroth, first, second and third order, respectively. 
Correspondingly, 0,1,2,3

K  are also the modified K Bessel 
functions of the zeroth, first, second and third order, 
respectively.  

 The combination of Equation (19) and (17) readily gives 
the temperature of the fluid phase: 
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 As for the degree of thermal non-equilibrium, !T , let us 
consider the two asymptotic conditions, namely, the local 
thermal equilibrium condition at the inner wall, i.e. !T=0 , 
and the local uniform heat flux condition at the inner wall, as 
given by, 
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POSSIBLE APPLICATIONS TO ALUMINUM FOAM 
AND AIR COMBINATION 

 Due to a number of advantages such as high thermal 
conductivity, high strength, large specific surface area and 

low density etc., aluminum foams are quite ideal porous 
media for possible engineering applications, such as compact 
heat exchangers, heat sinks for power electronics, condenser 
towers and regenerators. Therefore, a large body of literature 
associated with aluminum foam is found. Some useful 
experimental correlations for the stagnant thermal conduct-
ivity, the volumetric heat transfer coefficient and the disper-
sion coefficient are proposed by Calmidi and Mahajan [23, 
24]. These are listed as follows: 
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where u
D

is the Darcian velocity, !  is ratio of thermal con-
ductivity of solid phase to that of fluid phase, and the per-
meability K  is given by the following empirical correlation 
[23]: 
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where d
m  is the pore diameter. 

 Both fluid and solid temperature profiles over the cross-
section of the annulus for the case of aluminum foam and air 
combination, with !=8200 , !=0.95 , ! f cp f uDD2

/ k f =5000 , 

d
m
D
2
=0.1  and K / d

m

2
=0.015 , are shown in Figs. (2a and 

b) for these two asymptotic cases, namely, the local thermal 
equilibrium inner wall case, i.e. !T = 0  and the local 
uniform heat flux inner wall case, respectively. The stagnant 
thermal conductivity, the volumetric heat transfer coefficient 
and the dispersion coefficient, obtained based on Equations 
(31) to (34) introduced previously, are given by 
kstag / k f = 160 , !kdisyy / k f = 3.67  and !D

2
= 42.1 , 

respectively. 

 In reality, the temperature difference between aluminum 

and air at the walls 
 
!T = T

s

" T
f( ) , should be non-

negative. Therefore, the case of the local thermal 
equilibrium, as shown in Fig. (2a), is reasonable, since the 
base materials usually exhibit sufficiently high thermal 
conductivity. In a consolidated porous medium of metal 
foam, heat conducts through the solid phase. Therefore, the 
solid temperature is expected to be higher than the fluid 
temperature. However, the local thermal uniform heat flux 
condition at the inner wall, as illustrated in Fig. (2b), results 
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in the negative 
  

!T = T
s

" T
f( )

r=D
1
/2

, since, under such a 

condition, the fluid temperature gradient towards the wall 
becomes so high in order to generate the required uniform 
heat flux on the adjacent wall. This makes the fluid tempe-
rature exceed the solid temperature towards the wall. 
Obviously, this asymptotic condition may never be realized 
in practical applications. Nevertheless, both figures clearly 
indicate that the solid temperature in most region of the gap 
away from inner wall stays always substantially higher than 
the fluid temperature for these two cases discussed in this 
study, irrespective of the degree of thermal non-equilibrium 
!T . Hence, the one energy equation model fails to be valid 
for these cases of the aluminum foam and air combination. 

 
(a) Local thermal equilibrium at inner wall ( !T =0) 

 

(b) Local uniform heat flux at inner wall 

Fig. (2). Fluid and solid temperature profiles in an annulus filled 
with a metal foam.  

 The corresponding Nusselt number may be evaluated 
from, 
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 (35) 
 Note that the reference length for defining the Nusselt 
number can be any one of relevant dimensions, such as the 
inner radius, outer, inner and hydraulic radii. Equation (28) 
may be substituted into the foregoing equation to find the 
Nusselt number for the case of local thermal equilibrium at 
the wall ( !T = 0 ), as shown in Fig. (3). The figure indicates 
that with the rise of Peclet number based on the pore dia-
meter, Nusselt number substantially has a significant in-
crease which may be persuasive for the possible engineering 
applications of aluminum foam and air combination. 

 
Fig. (3). Nusselt number for an annulus filled with a metal foam 
bounded by a local thermal equilibrium inner wall. 

APPROXIMATE ANALYSIS 

 We shall seek a simple expression for Nusselt number for 
the case of local thermal equilibrium inner wall. An approxi-
mate treatment based on an integral method is presented 
here. We shall adopt Equation (18) which, for the case of 
local thermal equilibrium inner wall ( !T = 0 ), may be 
integrated as, 
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Where, 
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 Further integration leads to, 

  

!" #( ) !
$D

1

2

%

&'
(

)*

2 " #( )

# !1( )
2

1

+
+"

+

#

, d+
%
&'

(
)*1

#

, d+

=
$D

1
/ 2( )

2

2# # 2 !1( )

# 4

2
ln#( )

2

!
5# 2 ! 2( )# 2

8
ln#

+
3 # 2 !1( ) 3# 2 !1( )

32

-

.

/
/
/
/
/

0

1

2
2
2
2
2

 (40) 

 The solid phase temperature profile θ(η)

 

may be assumed 
as, 
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 Such that ! 1( ) = 0 and substitution of Equation (41) into 
(40) gives the unknown parameter: 
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 From Equation (17), we find, 
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 Thus, the Nusselt number of our concern may be 
evaluated according to (35) and (43) as, 
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 (44) 

 The approximate curve for the Nusselt number based on 
Equation (44) is presented in Fig. (3), which shows reason-
ably good agreement with the exact curve. 

CONCLUSIONS 

 Using a local thermal non-equilibrium model, thermally 
fully developed flow in an annulus filled with a porous 
medium was investigated in this study, where inner and outer 
walls are subject to constant heat flux and adiabatic res-
pectively. Exact solutions for fluid and solid phases were 
obtained for these two asymptotic cases, namely, the local 
thermal equilibrium case and the local uniform heat flux case 
at the inner wall, respectively. An aluminum foam and air 
combination was chosen as an illustrative example in views 
of its possible engineering application potential. The tem-
perature profiles achieved for the aluminum and air phases 
are quite different, which means the utilization of local ther-
mal equilibrium assumption may lead to large discrepancies 
for the cases. An approximate solution was presented to 
evaluate the Nusselt number for the case of local thermal 
equilibrium at the inner wall, which is found in accord with 
the corresponding exact solution. 
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ABBREVIATIONS 

A = Surface area (m2) 

Aint = Interface between the fluid and solid (m2) 

c = Specific heat (J/kgK)  

cp = Specific heat at constant pressure (J/kgK) 

D1 = Tube inner diameter (m) 

D2 = Tube outer diameter (m) 

m
d  = Mean pore diameter (m) 

v
h   = Volumetric heat transfer coefficient (W/m3K)  

k  = Thermal conductivity (W/mK) 

K  = Permeability (m2) 

j
n  = Unit vector pointing outward from the fluid side  
  to solid side (-) 

Pr = Prandtl number (-) 

q  = Heat flux (W/m2) 
r  = Radial coordinate 

T = Temperature (K)  

D
u  = Darcian velocity (Uniform inlet velocity) (m/s) 

i
u  = Velocity vector (m/s) 

V  = Representative elementary volume (m3) 

i
x  = Cartesian coordinates (m) 

x, y, z = Cartesian coordinates (m) 

!  = Porosity (-) 
*

!  = Effective porosity (-) 

!  = Kinematic viscosity (m2/s) 

!  = Density (kg/m2) 

!  = Ratio of tube outer diameter D2 to tube inner  
  diameter D1 (-) 

!  = Non-dimensional temperature of solid phase (-) 

!  = Ratio of thermal conductivity of solid phase to  
  that of fluid phase (-) 

Special Symbols 
!
~

 = Deviation from intrinsic average 

!  = Darician average 
,f s

!  = Intrinsic average 

Subscripts and Superscripts 
dis = Dispersion 
f = Fluid 
s = Solid 
stag = Stagnation 
w = Inner wall 
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