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Abstract: A three-dimensional numerical model is proposed to determine the pressure drops in porous media consisting 
of obstacles of different sizes. A series of full three-dimensional numerical calculations were performed to reveal complex 
three-dimensional velocity and pressure fields within three-dimensional porous structures consisting of spheres of 
different sizes. These numerical results are processed to obtain the macroscopic pressure gradients. An effective diameter 
concept has been proposed to correlate the resulting macroscopic pressure gradients with the Ergun equation. The most 
appropriate definition of the effective diameter has been found such that it, when substituted in the Ergun formula, gives 
the most reasonable estimate on the pressure drop for the given porosity and diameter distribution. 
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INTRODUCTION 

 The Ergun equation [1] is quite effective for estimating 
the pressure drops within packed beds of uniform particles. 
However, such an effective formula for the pressure drop 
estimation does not seem to exit when the bed consists of the 
particles of different sizes.  
  Liu et al., [2] proposed a formula for estimating an equi-
valent permeability of fractured porous media, assuming that 
the size of the particles embedded within the fractures is 
much smaller than the size of the fractures. Thus, they 
focused on the equivalent continuum model consisting of 
only two kinds of particles, whose sizes differ significantly 
from each other. The Brinkman-Darcy model was introduced 
to derive a rational mathematical model for determining the 
equivalent permeability of the fractured porous medium. 
  Sano et al., [3] extended their analytical expression to 
estimate the pressure drop in the flow in a bed packed with 
particles of different sizes. They conducted a series of the 
experiments using a column of particles of different sizes. 
Four sets of glass particles were mixed uniformly at a certain 
mixture ratio filling the vertical column to make various 
porous media consisting particles of different diameters. The 
values of effective permeability were obtained reading the 
slope of the measured water pressure-velocity plot. They 
concluded that the extended formula is valid for the ranges 
of the parameters studied. The parameter ranges studied by 
them, however, are rather limited, since they were able to 
construct the columns consisting of only four kinds of 
particles of different sizes. Furthermore, the complexity in 
their analytical expression makes its practical use difficult. 
 The pressure drop and its corresponding permeability can 
be determined by numerically applying the first principles of  
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mass and momentum conservation to flow of viscous fluids 
at the pore scale. Such theoretical attempts have been made 
by a number of investigators including Eidsath et al., [4], 
Couland et al., [5], Fowler and Bejan [6], Larson and Higdon 
[7], Nakayama et al., [8] and Nakayama and Kuwahara [9]. 
However, all these attempts were made for porous media 
consisting of uniform particles of the same size.  
  Nakayama et al., [10] recently conducted an exhaustive 
numerical experiment based on such first principles, using a 
unit structural model consisting of horizontal rods of differ-
ent sizes. They proposed to use “effective diameter”, which, 
when substituted in available empirical expressions, such as 
the Ergun formula [1], gives a reasonable estimate on the 
pressure drop in a porous medium consisting of obstacles of 
different sizes. After considerable computational manipula-
tions, they concluded that the Ergun equation may be used 
even for evaluating the pressure drop of multi-sized obstac-
les. Their effective diameter of the multi-sized porous 
medium (to be substituted in the Ergun equation) is defined 
as follows: 
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where h(D) is the density function for the distribution of 
diameter D. The exponent n was varied from 0 to 2 to find 
best match between the numerical results and the Ergun 
equation. It was concluded that n=1 gives the best fit over 
wide ranges of the porosity and mixture ratio.  
  Since the effective diameter can easily be evaluated for 
the given diameter distribution, the concept of the effective 
diameter for multi-sized porous media is quite promising. 
Their conclusions however must be examined by carrying 
out full three-dimensional numerical calculations to elimi-
nate the ambiguity resulting from the two-dimensionality of 
their unit structure model. 
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  In this study, three-dimensional numerical models of 
multi-sized structure are proposed to describe porous media 
consisting of particles of different sizes. Pore-scale nume-
rical calculations are performed to find out the most appro-
priate definition of the effective diameter. Firstly, the micro-
scopic numerical results are processed to determine the per-
meability for the given porosity. These values are examined 
to find out the appropriate definition of the effective dia-
meter to be substituted in the Ergun formula. Secondly, the 
results are re-processed to evaluate the inertia effects, 
namely, the Forchheimer coefficient. Thus, the most appro-
priate definition of the effective diameter is sought, such that 
it, when substituted in the Ergun formula, gives the most 
reasonable estimate on the pressure drop for the given 
porosity and diameter distribution. 

THREE-DIMENSIONAL NUMERICAL MODELS 

 Fig. (1) shows a structural unit of three-dimensional 
model, in which a body-centered cubic lattice of spheres and 
a face-centered cubic lattice of spheres are merged together 
to form a porous medium of two different sizes. 

 
Fig. (1). A unit structure made of two kinds of spheres. 

Table 1.  Dimensions of the Unit Structure Made of Two 
Kinds of Spheres 

 
Particle diameter 

Model 
D1/H D2/H D3/H 

Porosity ε  

3-2a 0.85 0.85 0.15 0.352 

3-2b 0.3 0.3 0.7 0.433 

3-2c 0.8 0.8 0.2 0.451 

3-2d 0.2 0.2 0.7 0.453 

3-2e 0.35 0.35 0.65 0.524 

3-2f 0.20 0.20 0.65 0.560 

3-2g 0.7 0.7 0.1 0.639 

3-2h 0.65 0.65 0.35 0.645 

3-2i 0.6 0.6 0.3 0.731 

3-2j 0.4 0.4 0.5 0.732 

 

  The sizes of particles forming the units and their poro-
sities are listed in Table 1. Note that D1, D2 and D3 are the 
diameter of the particles at the lattice corners, that in the 
centers and that at the face centers, respectively, whereas H 
is the size of the structural unit. In the present cases of two 
different sizes, the diameter of the corner is set to the same 

as that in the center, 
1 2 3

D D D= ! . The corresponding 
numerical models listed in the table are bird’s-eye-viewed in 
Figs. (2a) to (2j) by labeling as 3-2a to 3-2j, respectively.  

Fig. (2). Bird’s-eye-views of the unit structures made of two kinds 
of spheres. 

 A three-dimensional numerical model for a porous 
medium of three different sizes is illustrated in Fig. (3), 
where a simple cubic lattice of spheres of D1, a sphere of D2 
in the center and a face-centered lattice of spheres of D3 are 
merged together to form a porous medium of three different 
sizes.  

 
Fig. (3). A unit structure made of three kinds of spheres. 

 The dimensions of spheres forming the units and their 
porosities are listed in Table 2 for the cases of porous media 
of three kinds of spheres. The corresponding numerical 
models are bird’s-eye-viewed in Figs. (4a) to (4h) by label-
ing as 3-3a to 3-3h, respectively. 
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Table 2.  Dimensions of the Unit Structure made of Three 
Kinds of Spheres 

 
Diameter 

Model 
D1/H D2/H D3/H 

Porosity !  

3-3a 1 0.7 0.3 0.254 

3-3b 1 0.5 0.4 0.310 

3-3c 0.8 0.4 0.6 0.359 

3-3d 0.95 0.65 0.25 0.383 

3-3e 0.5 0.2 0.7 0.392 

3-3f 0.2 0.3 0.7 0.443 

3-3g 0.9 0.6 0.1 0.504 

3-3h 0.6 0.8 0.2 0.617 

Fig. (4). Bird’s-eye-views of the unit structures made of three kinds 
of spheres. 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS 

  A macroscopically uniform flow is assumed to prevail 
through an infinite number of the unit structures stacked 
together in a regular fashion. Only one structural unit of 
H H H! !  as shown in Fig. (5) can be taken as a calculation 
domain in consideration of the geometric periodicity. The 
direction of the macroscopically uniform flow is expressed 
in terms of ( ),! "  as illustrated in the figure such that 
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u =
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where u!
 
denotes the Darcian velocity vector. The govern-

ing equations for the detailed flow field, namely, the equa-
tions of continuity and momentum, are given by, 
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Fig. (5). Typical flow directions. 

 The periodic boundary and compatibility conditions are 
given by, 
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 Once the foregoing set of the governing equations are 
solved using the corresponding boundary and compatibility 
conditions, the macroscopic pressure gradient (i.e. the gra-
dient of the intrinsic average pressure measured along the 
macroscopic flow direction) may readily be evaluated using 
the microscopic numerical results as follows: 
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where fA  is the total area occupied by the fluid on the 
periodic boundary. The macroscopic pressure gradient 
depends on the macroscopic flow direction. In reality, a fluid 
particle travels through a porous medium, changing its 
direction freely. Thus, any numerical model has its limita-
tions for simulating such random flow motions encountered 
in a real porous medium. For the first approximation, one 
may take an average of the macroscopic pressure gradients 
obtained for different macroscopic flow angles. A preli-

minary investigation on this respect revealed that the macro-
scopic pressure gradient obtained at a typical angle 

 
! ,"( ) = 

(150, 450) is fairly close to its average over the flow angles. 
Thus, the results obtained at the flow angle 

 
! ,"( ) = (150, 

450) were used for determination of the permeability and 
inertia coefficient. 

METHOD OF COMPUTATION 

 The foregoing governing equations are readily discre-
tized by integrating them over a grid volume. SIMPLE 
algorithm for the pressure-velocity coupling, as proposed by 
Patankar and Spalding [11] were adopted to correct the 
pressure and velocity fields. Calculation starts with solving 
the two momentum equations, and subsequently, the esti-
mated velocity field is corrected by solving the pressure 

 

 
Fig. (6). Microscopic velocity fields in the model 3-3b at 

H
Re =300. 
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correction equation reformulated from the discretized con-
tinuity and momentum equations, such that the velocity field 
fulfills the continuity principle. This iteration sequence must 
be repeated until convergence is achieved. Convergence can 
be measured in terms of the maximum change in each 
variable during an iteration. The maximum change allowed 
for the convergence check may be set to an arbitrarily small 
value (such as 10-5), as the variables are normalized by 
appropriate references. A fully implicit scheme was adopted 
with the hybrid differencing scheme for the advection terms. 
In order to check the grid dependency, the results obtained 
from a finer grid system 150x150x150 are compared with 
those from the grid system 101x101x101. After confirming 
the grid independency on the two sets of the solutions, 
calculations were carried out using only the grid system with 
101x101x101 nodes. Further details on this numerical 
procedure can be found in Patankar [12] and Nakayama [13]. 

MICROSCOPIC VELOCITY FIELDS 

  The resulting microscopic velocity fields are presented in 
Fig. (6) for the case of the unit made of three kinds of 
spheres, namely, the model labeled as 3-3b. The Reynolds 
number based on the unit length H and the Darcian velocity 
was set to H

Re u H !=
!

=300 such that the inertia effects 
on the velocity are appreciable. The velocity vectors are 
plotted on the cross-sectional planes at /z H =0.3 and 0.5 for 

the two cases of the flow angle, namely, 
 
! ,"( ) =( 0

0 , 0
45 ) 

and 0 0(35.3 ,45 ) , which reveal the horizontally and dia-
gonally symmetric velocity fields, respectively. Both sets of 
the figures clearly indicate the presence of three-dimensional 
bubbles in voids.  

MACROSCOPIC PRESSURE GRADIENT AND ITS 
CORRELATION  

  According to the empirical Ergun equation, the macro-
scopic pressure gradient may be correlated as follows: 

2

f
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where the permeability is given by 
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and the Forchheimer coefficient is given by  
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 The Ergun equation originally proposed for the packed 
beds of uniform spheres may now be extended for the cases 
of multi-scale structures made of different spheres by 
introducing the effective diameter 

e
D . In this study, the 

effective diameter 
e
D  is assumed to follow Equation (1), 

which, for the present three dimensional numerical models, 
reduces to 
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 Thus, one’s task is to determine the exponent n such that 
the Ergun equation (9) based on the effective diameter

n
e
D  

gives most reasonable estimate on the pressure gradient. A 
number of cases for the units made of two- and three-
different sizes (as listed in Tables 1 and 2) were considered 
to generalize the outcome and to find out the most appro-
priate value for the exponent n.  
  As implied by the Ergun equation (9), the pressure 
gradient stays constant for small 

H
Re . Thus, following 

Nakayama et al. [8], the permeability K can be obtained, by 
plotting the dimensionless permeability:
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against the Reynolds number 
H

Re  and reading the value of 
the intercept as 0

H
Re ! . One may refer to Nakayama and 

Kuwahara [9] for the details of the procedure. The 
Forchheimer coefficient, on the other hand, can be obtained, 
plotting the dimensionless Forchheimer coefficient:  
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against the Reynolds number
H

Re , and reading its asymp-
totic value at 

H
Re !" .  

  In order to seek the most appropriate exponent n, the 
permeability may be normalized using each 

n
e
D  (with n=1, 

2 and 3) instead of H as  
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 Similarly, the Forchheimer coefficient may be norma-
lized using 

n
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  The numerical results obtained using various unit struc-
tures are processed to evaluate the macroscopic pressure 
gradients. The dimensionless values of the permeability, as 
defined Equation (15), are presented together in Figs. (7a), 
(7b) and (7c), in terms of 

0

2
/

e
K D , 

1

2
/

e
K D and

 
2

2
/

e
K D , 

respectively. The Forchheimer coefficients are also presented 
in Figs. (8a), (8b) and (8c), in terms of 

0
e

bD , 
1
e

bD

 
and 

2
e

bD , respectively. 

 

 

 
Fig. (7). Dimensionless permeability as a function of porosity 
(a)
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  A comparison of Figs. (7a, b and c) reveals that 
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than the permeability of the Ergun 
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tends to 

underestimate it. Thus, 
1
e
D appears to be the best choice for 

normalizing the permeability, as all data points in Fig. (7b) 
are clustered along the solid line of the Ergun equation. 

 As for the Forchheimer constant, 
0
e

bD is not a good 

choice, since the data points of 
0
e

bD  in Fig. (8a) tend to 
depart from the Ergun equation as the porosity increases. As 
can be seen from Figs. (8b) and (8c), the data points of 
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and 
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bD , on the other hand, are clustered along the Ergun
  

 

 

 

 
Fig. (8). Dimensionless Forchheimer constant as a function of 
porosity (a)
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equation. In fact, it has been found that the inertia effects are 
rather insensitive to the way of normalization as long as the 
exponent is greater than or equal to 1. Since 

1
e
D

 
is the best 

choice for the permeability, one may conclude
 
that the most 

appropriate way of defining the effective average size of the 
multi-sized porous medium is given by Equation (1) with 
n=1, which, when substituted in the Ergun equation, gives a 
reasonable estimate on the pressure gradient. Hence, the 
following general formula can be used for porous media 
consisting of obstacles of different sizes:  
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 It is interesting to note that the conclusions drawn from 
this study based on the three-dimensional numerical models 
conform to those reported by Nakayama et al., [10] using the 
two-dimensional numerical models. The present three-
dimensional numerical models faithfully generate the empi-
rical equation proposed by Ergun, even to the value of the 
Forchheimer coefficient, namely, 1.75, which was over-
estimated by Nakayama et al., [10] to be 2.5 in the two-
dimensional numerical models. Thus, the study reveals the 
importance of three-dimensionality in estimating the form 
drag within porous media. 

CONCLUSIONS 

  Three-dimensional numerical models of multi-sized 
structure are proposed to describe porous media consisting of 
obstacles of different sizes. Pore-scale numerical calculations 
are performed to reveal complex three-dimensional velo-
city and pressure fields within three-dimensional porous 
structures consisting of spheres of different sizes. The 
most appropriate definition of the effective diameter was 
sought, such that it, when substituted in the Ergun formula, 
gives the most reasonable estimate on the pressure drop for 
the given porosity and diameter distribution. The present 
study reveals that the Ergun equation is quite effective for 
estimating the macroscopic pressure gradients even in 
porous media consisting of obstacles of different sizes, 
provided that the effective diameters are properly deter-
mined. In this study, only several kinds of simple structures 
have been investigated. A further computational investi-
gation using more complex structures is required to draw a 
general conclusion on the specific expression of the effective 
diameter.  

NOMENCLATURE 

b = Forchheimer coefficient 

D1,2,3 = Sphere diameters 

De = Effective diameter (m)  

Den  = Effective diameter with the exponent n (m) 

H  = Size of structure (m) 

K = Permeability (m2) 

 

p = Pressure 

u
!

 = Velocity vector (m/s) 

X = Coordinate along the macroscopic flow  
  direction 

xi x, y, z = Cartesian coordinates (m) 

α, β = Macroscopic flow angle (degree) 

ε = Porosity (-) 

µ = Viscosity (Pa s) 

ν = Kinematic viscosity (m2/s) 
!  = Fluid density (kg/m2) 

SPECIAL SYMBOLS 

 = Darician average 

f  = Intrinsic average 
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