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Abstract: The efficient large-scale recycling of plastic waste is of increasing interest from an ecological and economic 

point of view but it represents a goal that has yet to be achieved by the recycling industry. European project W2Plastics 

(FP7) aims at a fundamental change of the present status of plastics recycling by applying the Magnetic Density 

Separation (MDS) technology as well as the Ultrasound Imaging Technology to develop a separation device for the 

recycling of polyolefin's from complex wastes, i.e., wastes such as Waste from Electric and Electronic Equipment 

(WEEE), household waste and Automotive Shredder Residue (ASR). 

The sorting of plastics in W2Plastics is based on the use of a magfluid, magnetized water, to stratify the different plastics 

according to their densities and to collect them at different depths in an efficient way. One component of this project 

consists in simulating the particle paths into the water flow inside the separation device in order to understand the 

separation mechanisms and to optimize its configuration. 

The separation device is divided into three sections. The plastic particles enter the device with a strong turbulent mixing, 

necessary for an initial good separation between particles. The first section is the laminator section that tries to make the 

flow laminar in the shortest distance as possible. The second section is the separator section in which the particles are 

separated according to their densities, under the magnetic field. These particles are flowing to the last section, the 

collector section where each kind of plastics should flow at a different heights. 

From the numerical point of view, there are three main challenges. First, the Navier-Stokes solver should be robust and 

fast enough. This is accomplished using parallelized schemes together with efficient algebraic solvers, running on 

thousands of processors. The second challenge is the plastic particles tracking and their interactions with the flow. This 

will be carried out using a fixed grid method in order to avoid remeshing at each time step. Finally, the turbulent flow will 

be captured using a Variational Multiscale Method method, and the inlet turbulence will be treated using a synthetic 

turbulence generation. 
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1. INTRODUCTION 

1.1. Density Separation Applied to Plastics 

 We are interested in this work in the recycling of 
polyolefin waste. Polyolefin fractions are often end fractions 
resulting from the recycling of cars, waste from electric and 
electronic equipment (WEEE) and packaging waste. Sink-
float, with water as the medium, is the usual process that 
creates such mixtures of PP and PE as a float fraction. 
Typical PP:PE ratio range from 70:30 for car scrap to 25:75 
for packaging waste. Such mixtures are not suitable for high 
quality products. For this, the grade of PP and PE should be 
better than 97%. Several separation techniques are known to 
achieve this level of purity. Among others, let us mention 
some common techniques with advantages and drawbacks 
summed up in [1]. Electrostatic separation; techniques based 
on the fact that PP and PE have  different  of  melting  points;  
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techniques based on near infra red spectroscopy; a sink-float 
process can give an effective separation with both high grade 
and recovery if the difference in densities between the 
materials is large enough. 

 An alternative is the inverse magnetic density separator 
(IMDS). This separator achieves a lower apparent density 
than water by the combination of a gradient magnetic field 
and a magnetic liquid. The magnetic liquid contains nm-
sized ferrite particles and is water based. Magnetic liquid can 
be used without the economic and environmental problems 
of organic liquids. With the IMDS it is also possible to use 
two different cut densities in one step. The present papers 
propose to describe a numerical algorithm capable of 
simulation an IMDS. 

1.2. Objectives of the Simulation 

 The sorting of plastics in W2Plastics is based on the use 
of a magfluid, magnetized water, to stratify different 
particles according to their density and to collect them at 
different depths in an efficient way. The particles are made 
of products and residues. The products are the plastics we 
want to sort, that is the PP and PE. The residues are any 
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other material, which can be floating or sinking. The 
apparatus is shown in (Fig. 1). 

 In this introduction we present the different zones of the 
separator which will be of interest to develop the numerical 
code. The separation process is based on the separation 
capacity of the magfluid. Magfluid with particles are injected 
in the injection zone, the flow is laminarized in the 
laminarization zone, particle are separated in the separation 
zone and finally collected in the collection zone. Finally, the 
belt removes the heavy residues. 

 The magfluid. The magnetized water is composed of 
water and magnetite, that is a magnetic mineral. This volume 
of this mineral should be high enough to create the desired 
stratification effect on plastics but not too dense to remain a 
fluid. In fact, if too many magnetites are present in the water, 
their polarization would lead to a magnetic binding resulting 
in the formation of solid pockets. To avoid this, they are 
synthetically surrounded by a surfactant to prevent the 
magnetite from getting too close from each other. When 
magnetized, this magnetized water exhibits a non-hydrostatic 
behavior at rest so that any components floating in it will fell 
a force depending on its density. See section 2.2. 

 Particle injection: injection zone. The injection of the 
particles is a key point. A strong mixing is required at the 
channel entrance in order to obtain a good separation of 
plastic particles. If this is not achieved, then groups of bound 
particles could be transported through the channel without 
having a chance to be separated. The mixing is obtained 
upstream using a specific technique (like a mixer, etc.). 
Usually, the volume of particles which provides a good 
mixing at injection is around 20% of the total volume. 
Obviously, this mobility requirement contradicts the 
collection requirement that the flow should be as laminar as 
possible to separate smoothly. So the apparatus needs a 

laminarization zone which should be as short as possible for 
practical and cost reason. 

 Flow laminarization: laminarization zone. The role of 
the laminarization zone is to low down the mixing needed at 
the particle injection in order to make effective the 
separation zone in the shortest distance as possible. One 
proposal consists in dividing this zone into two parts. The 
first part transports the mixed particle from the injection 
zone; this is the injection channel. The second part provides 
a laminar and smooth flow which should attenuate the 
mixing when put in contact to the first part; this is the 
laminator, shown in (Fig. 2). This second part is made of 
pipes which diameter must be small enough to obtain a small 
Reynolds number and laminar flow at their outflow, and 
large enough to avoid too high pressure losses associated 
with too low outflow velocities. The crucial point to study is 
how the laminar shear layer is able to dissipate the turbulent 
eddies coming from the injection channel. 

 Separation of particles: separation zone. The 
separation zone involves laminar or slightly turbulent flow to 
avoid mixing between particles. We in fact know that one 
property of turbulent flows is the enhance mixing through 
momentum transfer between fluid layers. Its only 
requirement is that it is long enough to enable all product 
particles to reach their equilibrium depth and short enough 
for practical and cost reasons. 

 Collection of particles: collection zone. The magfluid 
enables to distribute the plastic particles according to their 
density across a given fluid depth. In order to collect them, 
on possibility is to transport them to a separator device 
(channels located at different heights). This transport must 
be smooth enough to prevent any mixing between particles 
of different densities and is provided by the separation zone. 

 Another requirement of the collection is that the 
incoming flow at the channel entrance should also be 

 

Fig. (1). Prototype. 
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smooth. In fact, when approaching the channel, the 
streamwise velocity is decreased. Due to mass conservation, 
this implies a vertical motion of the fluid. This vertical 
motion is not desirable as it could transport some particles to 
the wrong collection channel. 

 Belt: residual removing. A belt at the bottom of the 
channel is necessary to remove residues. In fact, without this 
belt, sinking residue would fall into the boundary layer and 
could not be transported out of the channel. 

 The numerical model presented in the following will take 
into account all the physical aspects described here. Some 
approximations will nevertheless have to be made: for 
example, the injection zone will not be simulated but its 
effect will surely be taken into account via specific boundary 
conditions. The free surface at the separation zone will 
neither be taken into account (see Fig. 3). The final objective 
of the simulation is to understand the mechanisms involved 
in the separation, the interaction of the particles between 
themselves and the flow, the efficiency of the laminarization 
zone, etc. Ultimately, this understanding will be helful to 
optimize the channel and test new configurations. 

 

Fig. (3). Free surface at separation zone. 

2. MAGFLUID: PHYSICAL PROBLEM 

2.1. Governing Equations 

 In this section, we briefly describe the numerical method 
used to solve the Navier-Stokes equations for transient 

incompressible flows (viz. [2]). A deeper description of this 
method can be found in [3]. Let  be the viscosity of the 
fluid, and  its constant density. The problem is stated as 
follows: find the velocity u and mechanical pressure p in a 
domain  such that they satisfy in a time interval 

Du
Dt

[2μ (u)] + p = pf ,  

u = 0,  

together with initial and boundary conditions. Du/Dt is the 

total derivative of the velocity and (u) is the velocity strain 

rate such that 

Du
Dt

:=
u
t
+ (u )u,

(u) :=
1

2
( u + ut ).

 

 The force term f includes the gravity and the magnetic force: 

f = g +M B,  

where B is the magnetic field and M is the magnetization of 
the fluid. 

2.2. Apparent Density 

 A nice metaphor to understand the effects of the 
magnetic field consists in introducing the concept of 
apparent density. Define g = g  where g is the norm of the 
gravity acceleration and  the gravity unit vector. If B is 
aligned with the gravity, we have B = ( B   ) . Thus we 
can rewrite the force term as 

f = +
B ĝ
g

g,  

 From this we can define an apparent density app such that 

app := +
B ĝ
g

,  

 This apparent density will affect the force exerted on the 
particles and will therefore depend of the magnetic field 
distribution. 

 

Fig. (2). Laminator. (left) experimental, (right) numerical. 
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 From a numerical point of view, it is convenient to 
redefine the pressure by including the gravity force and 
magnetic force into a modified pressure (see section on 
boundary conditions 2.3). In fact we observe that we can 
redefine the pressure as 

p* = p pg ĝ MB,  

Du
Dt

[2μ (u)] + p * = 0,  

u = 0,  

 Therefore, we conclude that, as the gravity force, the 
magnetic field does not participate to the motion of the fluid, 
but only affects the pressure distribution. The steady state 
solution is solution of p

*
 so that Steady state: 

p = pg ĝ MB,  

up to a constant. 

 Note that if we eventually solve for p
*
, both the buoyancy 

and magnetic forces will have to be explicitly taken into 
account when performing the force balance on the particles, 
as the fluid pressure does not include it. 

2.3. Boundary Conditions 

 We need boundary conditions for the inflow, for the 
walls, for the belt and for the outflow. For the walls and the 
belt, the velocity is prescribed to zero for the former case and 
to the belt velocity for the latter one. 

 For outflows, we prescribed the traction to zero where 
the traction is defined as 

Traction : =    n 

with  being the stress tensor 

 = p
*
n + 2 (u)  n 

 For a uniform flow we have (u) = 0; for flows with high 
Reynold numbers, we have (u)  0. For these two cases, the 
prescription of zero traction is therefore (almost) equivalent 
to prescribing p

*
 to zero, that is to the steady state (hydro-

magnetic static) pressure. From now on and for the sake of 
clarity, the asterisk superscript will be omitted. 

 In order to save CPU time, the computational domain 
does not include the injection zone. So the inflow is located 
at the injection channel and should therefore include the flow 
structures generated upstream. That is one cannot impose a 
constant inflow velocity. In order to take into account the 
incoming turbulence of the flow, a special strategy based on 
the synthetic turbulence concept is used [4]: 

The Synthetic Eddy Method (SEM), is based on 
the classical view of turbulence as a 
superposition of coherent structures... 

3. MAGFLUID: NUMERICAL METHOD 

 We will describe in this section the main ingredients of 
the numerical strategy: the stabilization based on a 
Variational MultiScale (VMS) method, namely the 
orthogonal subgrid scale (OSS) method, the subgrid scale 
(SGS) tracking in convection and time, the Navier-Stokes 
solver based on the iterative solution of the pressure Schur 

complement, and the parallelization of the code. The time 
discretization is based on the classical trapezoidal rule of 
first and second order and the linearization is carried out 
using the Picard method, so no special attention will be paid 
these two aspects. Let us define a the convection velocity 
taken from a previous time step and tu = (u – u

n
)/( t), 

where u is the solution computed at time step n + . We 
choose  = 1 for first order Euler scheme and  = 1/2 for the 
Crank-Nicolson second order scheme. 

3.1. Weak Form 

 Let us start with the weak form. Let  and q be the test 
functions We introduce the bilinear form B([u,p], [ ,q]) such 
that 

B([u,p], [ ,q]) : =( (a  )u,  ) + (2 (u),  ( ))               (1) 

                                   (p,   ) +   (q,   u) 

 The weak form can be written in a compact form as 
follows: find [u,p] in appropriate space such that 

(p tu, ) + B([u,p], [ ,q]) = 0 

for all [ ,q] in appropriate space. The weak form of the 
momentum equation can be recovered by simply taking q = 0 
while that of the continuity equation can be found by taking 

 = 0. 

3.2. Stabilized Formulation 

 The stabilization technique is based on a VMS method, 
namely the the split OSS method introduced in [5]. This 
method has similarities with old high order artificial 
viscosity methods but it is set in the context of a VMS 
method; this method introduces the SGS as the key for 
stabilization in a natural way. Let a the convection velocity 
known from a previous iteration (coming from the Picard 
linearization method). 

 The way to devise the split OSS method consists in the 
following steps: 

• Split velocity and pressure into grid and subgrid scale 
components, u and u  for the velocity and p and p  for 
the pressure. 

• Introduce this splitting in the weak form (1). 

• Solve for the SGS equation by approximating the 
differential momentum and continuity operators by 
algebraic ones ( 1 and 2). 

• Require that the SGS is in the orthogonal space. 

 Eventually, the split OSS method consists in adding three 
stabilization terms to the Galerkin formulation and reads 

(p tu, ) + B([u,p], [ ,q]) + ( a  , 1 a  u   adv) 

       + ( q, 1 p   pre   + (   , 2   u   div) = 0               (2) 

where 

adv =  ( 1 a  u) 

pre =  ( 1 p) 

div =  ( 2   u) 

 The operator  is the L2 projection, obtained by solving 

(u) d = u d .  
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 The first additional term adv stabilizes the convection; 
for smooth velocity field, we have adv  1 a  u and the 
convection does not need to be stabilized. The second term 

pre is the pressure stabilization which enables the use of 
equal order interpolation. The third term div enforces the 
mass conservation in the momentum equation that was 
penalized by the pressure stabilization in the continuity 
equation. 

 Parameters 1 and 2 are the so-called stabilization 
parameters, that is the algebraic approximate inverses of the 
momentum and continuity equations, respectively [6, 7]. In 
this work we take [8]: 

1 = 4
μ

h2
+ 2p

| a |
h

1

2 = h
2
1
1,

 

where h is the element characteristic length. 

 Including the linearization and time integration the final 
system to solve is: 

( u/( t), ) + B([u, p]), [ , q] + ( a  , 1 a  u)  

+ ( q, 1 p) + (   , 2   u)           (3) 

= ( u
n
/( t), ) + ( a  , adv) + ( q, pre) + (   , div) 

where all terms on the RHS are known from a previous time 
step or linearization iteration. 

3.3. Subgrid Scale Modeling 

 In addition to the OSS stabilization, the tracking in 
convection and time of the subgrid scale is taken into 
account for two purposes: it has been shown that it gives 
more accurate results [7] and it consists of a mathematical 
LES model [9]. Therefore, using this strategy, no LES model 
has to be considered. 

 The velocity subgrid scale is computed by solving the 
following non-linear transient equation: 

p tu + 1 1u = 1 a u + adv,  

in the following way 

t
+ 1

1 u =
t
u n

1 a u + adv  

where now the convection velocity includes the velocity 

SGS: a a+u  and where the time discretization is carried 

out using the same trapezoidal rule as the one used for the 

velocity is used. Note that the non-linearity comes from 

different terms: 1, a and the projection adv which includes 

1 and a. In practice, the subgrid scale (which is 

discontinuous) is computed at any Gauss point in any 

element. 

3.4. Pressure Schur Complement Solver 

 At each time step, the linearized system 

Auu Aup

A pu A pp

u

p

bu

b p

 

is solved, where u and p are velocity and pressure 
unknowns. Four sub-matrices then arise. Matrix Auu includes 
the Galerkin as well as the stabilization terms. Matrix Aup 
includes the Galerkin pressure term. Matrix Apu includes the 
velocity divergence operator as well as the part of the 
pressure stabilization involving the velocity in the 
momentum residual. Finally, matrix App includes only the 
pressure stabilization. When this system is solved in one shot 
using either a direct solver or an iterative solver with 
preconditioning, the resulting scheme is referred as a 
monolithic scheme. The strategy used here transforms the 
solution process in a fractional scheme. 

 The method consists in solving the pressure Schur 
complement by using the Orthomin(1) iterative solver 
introduced in [10]. It is shown in Algorithm 1. 

Algorithm 1. Momentum Preserving Orthomin(1) Iteration 

 

1. Solve momentum eqn Auuu
k+1 = bu Aupp

k
 

2. Compute Schur complement residual  

    rk = [b p A puu
k+1 ] A ppp

k
 

3. Solve continuity eqn Qz = rk  

4. Solve momentum eqn Auuv =Aupz  

5. Compute x =A ppz A puv  

6. Compute =< rk ,x > / < x,x >  

7. Update velocity and pressure 

  p
k+1

= pk + z
uk+2 = uk+1 v

 

 

 

 The Orthomin(1) algorithm requires two solves of the 
momentum equations and one for the continuity equation. 
The system resulting from the momentum equations is 
unsymmetrical for which GMRES or Bi-CGSTAB algebraic 
solvers can be used. The system resulting from the continuity 
equation is symmetric (See Alg. 3.4). A deflated Conjugate 
gradient [11-13] is used together with a linelet 
preconditioner [14] in the boundary layers. Matrix Q is the 
preconditioner of the pressure Schur complement based on 
the weak form of the Uzawa's operator; any details can be 
found in [10]. 

 Fig. (4) shows some convergence histories of the 
simulation of the hemodynamics in a brain for a 19M 
tetrahedra mesh. The results are taken from [10]. It compares 
the momentum preserving Orthomin(1) with the continuity 
preserving version (not presented in this work) using 
different safety factors  for the time step. We observe that 
the continuity preserving method converges even with very 
large safety factors. In fact for the other two methods, the 
continuity residual remains blocked at unity when using the 
highest safety factor. For  = 100, momentum and continuity 
residuals fall below 2 orders of magnitude in 100 iterations. 
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3.5. Solution Procedure 

 The final algorithm is shown in Algorithm 2. 

3.6. Parallelization 

 The Master reads the mesh, performs its partition and 
dumps some output files (for example of the convergence 
residuals). The slaves build the local element matrices (LHS) 
and right-hand side (RHS) and are in charge of the resulting 
system solution in parallel. Two strategies are possible: 

• For small problems (say <15 millions of elements): 
The Master creates the mesh partition, sends each of 
the subdomains and supplementary data to the 
corresponding slaves and launches the simulation. 

• For large problems: The Master creates the mesh 
partition, writes individual restart files for each of the 
slaves containing its corresponding subdomain and 
supplementary data and stops the run. Then, a parallel 
run can start at any time with the Master commanding 
the Slaves to read the individual restart files. This 

 

Fig. (4). Typical convergence history of the Orthomin(1) solver. From (Top) to (Bot.)  = 10
1
,  = 10

2
,  = 10

3
. (Left) Momentum residual. 

(Right) Continuity residual. 
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strategy is particularly well-suited for very large cases 
whose partitions are expensive to compute in terms of 
both CPU time and memory. Moreover, it is very 
likely that the memory available for one CPU in the 
distributed memory cluster is not enough, ant pre-
process must be done in a different architecture with 
shared memory like an Altix cluster. 

Algorithm 2. Solution Procedure 

 

Initial conditions 

for Time step do 

   while Not converged do 

      Assemble matrices and RHS (Eq. (3)) 

      Solve one Orthomin(1) iteration (Alg. 1) 

      Compute velocity subgrid scale u  (Eq. (4)) 

      Compute projections adv, pre, div, (Eq. (2)) 

   end while 

      Update velocity: un+1 =1 / u + (1 1 / )un  

      Update SGS: u'n+1 =1 / u + (1 1 / )u n
 

end for 

 

 In a finite element implementation, only two kinds of 
communications are necessary between subdomains. The 
first type of communication consists in exchanging arrays 
between neighbors with MPI_Sendrecv. The strategy is the 
following: 

1. For each slave, compute elemental LHS and RHS for 
each element. 

2. For each slave, assemble (scatter) elemental RHS and 
LHS into global LHS and RHS. 

3. Exchange RHS of boundary nodes, the nodes 
belonging to more than one subdomain, and sum the 
contribution. 

4. The operations of an iterative solver are matrix-vector 
multiplications. Then, for each slave, compute 
matrix-vector multiplication. 

5. Exchange the results on the boundary nodes, as was 
done for the RHS. 

 The second type of communication is global and of 
reduce type with MPI_Reduce. It is used to compute: 

• The critical time step: it is the minimum over the 
slaves. 

• The convergence residual: the sum over all the nodes 
of the domain. Residuals are required to check the 
different convergence tolerances of the scheme. 

• Scalar products: they take part of iterative solvers. 

 All details on the parallelization strategy can be found in 
[3]. (Figs. 5, 6) show two scalability results on thousands of 
processors from latter reference. The first one compares the 
speed-up obtained on Marenostrum (MAR) with BG/L and 
BG/P supercomputers. The second one shows only 

Marenostrum results. This case first one is a favorable case 
where the element assembly dominates and the second one 
the algebraic solvers dominate the CPU time. 

 

Fig. (5). Speedup for an element assembly dominated case. 

Comparison of MareNostrum, Blue Gene/L and Blue Gene/P. 

 

Fig. (6). Speedup for a solver dominated case. Influence of the 

number of iterations carried out by the CG solver. 

 

Fig. (7). Different approaches to treat the particles. (Left) 

Infinitesimal particles. (Mid.) Continuum approach. (Right) Real 

shaped particles. 

4. PARTICLE TREATMENT 

 There exist mainly three main approaches to treat the 
particles transport and/or interaction, as illustrated in (Fig. 
7). They are: 

• Infinitesimal particle. The particles are transported 
by the flow. This is a postprocess issue as the 
interactions of the particles on the fluid can ``barely'' 
be taken into account. 
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• Continuum approximation. The particles are 
associated to a continuous medium and one can solve 
for a partial differential equation describing the 
particle concentration. However, it is therefore 
impossible to take into account the dynamics of the 
particles. 

• Real shaped particles. The particles are represented 
through a mesh describing their real shape. 

 The only way to consider the full dynamics of the 
particles is to describe their real shapes. Therefore, last 
option will be considered. 

 We treat in this section the transport of the rigid particles 
as well as their interactions with the flow, between each 
others and with the wall. These points are illustrated in Fig. 
(8) and will now be developed. 

 

Fig. (8). Particle treatment. 

4.1. Particle Properties 

 Let us first define the properties of the particle defined by 
the domain p with boundary S, shown in Table 1. 

Table 1. Particle Properties 

 

 Symbol   Definition  

 m   Mass (Constant)  

s  Density (Constant)  

I   Center of inertia with respect to center of mass  

 
x, x, x   Linear position, velocity and acceleration of particle center 

of mass  

 
, ,   Angular position, velocity and acceleration of particle  

F   Total force acting on particle  

T   Total torque acting on particle wrt center of mass  

ns   Exterior normal to the particle p with components ni  

 

 In the current numerical implementation, the particles are 
described by their boundaries S (boundary mesh). It is 
therefore convenient to re-express some properties computed 

as integrals over their volume into integrals over their 
surface (using the divergence/Gauss theorem). 

 The particle volume and initial position of center of 
gravity are computed as: 

V = d = (1 / 3)
S

rini d ,
S

xi = r d = (1 / 2)
S

ri
2ni d .

S

 

 The tensor of inertia is a symmetric tensor and is defined 
by 

 

I = S ( r
2 Id r r)

S

d .  

 From this, we have for each component: 

I11 = (1 / 3) S (r2
3n2 +

S

r3
3n3 )d ,  

I22 = (1 / 3) S (r1
3n1 +

S

r3
3n3 )d ,  

I33 = (1 / 3) S (r1
3n1 +

S

r2
3n2 )d ,  

I12 = (1 / 4) S ( r2r1
2n1 r1

S

r2
2n2 )d ,  

I13 = (1 / 4) S ( r3r1
2n1 r1

S

r3
2n3 )d ,  

I23 = (1 / 4) S ( r3r2
2n2 r2

S

r3
2n3 )d ,  

4.2. Fluid >  Particle Interaction 

 The motion of a rigid particle inside the fluid is described 
by the Euler's equations which describe its linear and angular 
motion: 

Linear momentum: 
 

F =
d(mx)
dt

, 

Angular momentum: 
 

T =
d(I )

dt
.  

 As we saw in Section 2.2, the fluid pressure does not 
include neither the gravity nor the magnetic force on the 
particle. The total force on the particle should therefore 
explicitly take them into account. We have 

F = Fflu + Fbuo + Fmag + Fgra, 

Fflu = ns d ,
S

 

Fbuo = gĝns d
S

= Vg,  

Fmag = M Bns d ,
S

 

Fgra = sVg,  
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so that 

F = ( M BId ) ns d +Vg( s )
S

,  

where Id is the identity matrix. Gravity and buoyancy do not 
exert any torque on the particle so that we are left with the 
torques exerted by the fluid and the magnetic field: 

T = (r x) ( M BId ) ns
S

.  

 The solution of the linear momentum equation (5) is 
straightforward. The angular momentum is more tricky as it 
is non-linear and time dependent, the tensor of inertia 
depending on the position . A way to circumvent this is to 
express the angular motion in the principal axes coordinate 
system (notation with asterisk superscript). The resulting 
equations are solved using a Newmark scheme with variable 
time step. 

4.3. Particle > Fluid Interaction 

 There exists different ways of treating the particle > fluid 
interaction, each one with advantages and drawbacks. Most 
common methods are illustrated in (Fig. 9), taken from [15]. 

 We select here three of these methods that can be applied 
to our problem, namely the ALE, Chimera and mebedded 
mesh methods. They are: 

• ALE (Fig. 9, Mid., Right). The mesh is updated at 
each time step to follow the particles, by moving 
nodes or by locally regenerating the mesh when this 
one gets too distorted. Advantage: the shape of the 
particle is represented up to the mesh size. 
Drawbacks: in a parallel context, it is a costly task as 
mesh partitioning should be performed to rebalance 
the load for each new mesh and the communication 
strategy should be updated. 

• Chimera (Fig. 9, Top, Right). Independent body 
fitted meshes are generated for each particles as well 

 

Fig. (9). Illustration of some methods to simulate flows around moving components. (Top) (Left) Multi-domain method without overlap: 

sliding mesh method. (Top) (Right) Multi-domain method with overlap: Chimera method. (Mid.) (Left) Embedded mesh method. (Mid.) 

(Right) ALE method: automatic remeshing. (Bot.) (Left) ALE method: SSMUM. (Bot.) (Right) ALE method: FMALE. 
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as a backgroudn mesh for the separation apparatus. 
Advantage: a boundary layer mesh can initially be 
generated around each particle and even the drag 
forces can be accurately computed. Drawback: in a 
parallel context, it is a costly task as the mesh 
partitioning should be performed at almost each time 
step, and the communication strategy should be 
updated as the interpolation from one mesh to another 
changes as well. 

• Embedded Mesh (Fig. 9, Mid., Left). These methods 
consider a bacground mesh on which boundary 
meshes are patched onto it. These methods can be 
divided into two groups. In the first group, the 
boundary conditions are taken into account through a 
force term added to the flow equations. In the second 
group, the boundary conditions are approximated, 
having previously identified the elements where the 
solid boundary falls. The following description is 
absolutely not formal. Advantage: it is well suited for 
parallel implementation, if no addition degrees of 
freedom are introduced. Drawbacks: the particle 
geometry is not well described from the fluid point of 
view and viscous forces may not be computed 
accurately. 

 For the advantages and drawbacks mentioned earlier, the 
embedded mesh method is the candidate. In this family, let 
us mention the Fictitious Domain method [16, 17], the 
Immersed Boundarymethod [18, 19] and the method 
introduced in [20]. The latter one has the advantage that no 
addition degree of freedom is introduced. It looks for a 
solution that minimizes (in a weak sense) the difference 
between the solution and the real boundary condition under 
the restriction that the solution satisfies the Navier-Stokes 
equations. In addition, a specific fixed mesh ALE treatment 
(FMALE) is need for moving objects [21]. 

4.4. Particle <> Fluid and Wall > Particle Interactions 

 To solve the problem of collision between particles A and 
B, we have to carry out two main tasks: 

• Collision detection (pseudo-dynamic) to prevent 
penetrations between objects: 

- Divide time step into pseudo time steps to identify 
possible collision. 

- Find contact time. 

- Find contact points for vertex-face and edge-edge 
contacts. 

• Collision response using the equations for an elastic 
collision: 

- Compute the contact unit normal vector: 

    * Face-vertex case: normal of the face. 

    * Edge-edge case: cross-product of the direction  
   vectors of the two edges. 

- Write post-impulse linear and angular velocities 
of A and B using conservation of linear and 
angular momenta in term os impulse magnitude. 

- Compute relative velocity for pre and post-
impulse. 

- Apply the empirical law for friction-less collisions 
states: the relative velocity only changes sign for 
dissipation-free collisions. 

- Correct linear and angular velocities. 

 The wall > particle interaction can be carried out in the 
same way by assigning to the wall infinite mass and inertia 
tensor components. 

5. RESULTS 

 In this section, preliminary results are presented. They 
will be helful to calibrate the simulation parameters and to 
have an insight on the cost of the complete simulation which 
will include the particle transport and interactions. 

 A simulation to reach the steady state of the separation 
prototype has been carried on Marenostrum supercomputer 
using 64 processors (1 master + 63 slaves). This run enables 

 

Fig. (10). Partition. 
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to test the robustness of the algorithm and to get an insight of 
the CPU time would cost a real simulation. The mesh is 
made of approximately 3M tetrahedra elements. Only one 
linearization iteration is carried out per time step. Both the 
first order and second order time scheme will be compared. 

 The partition of the mesh is illustrated in (Fig. 10) and 
shows the number of neighbors for each subdomains. We 
observe a large disparity in the number of adjacent 
subdomains due to the particularity of the geometry. The 
averaged number of elements by subdomain is around 
47000. The contours of the velocity are shown in (Fig. 11). 

 We now analyze the convergence of the algorithm, 
shown in (Fig. 12). By observing the residual norm and 
maximum velocity, the steady state is reached after 1000 
iterations. The first order time scheme exhibits are slightly 
higher rate of convergence. 

 Fig. (13) shows the number of iterations carried out by 
the momentum and continuity solvers. As an average, the 
momentum solver does 3 iterations and the continuity solver 
33. Note that there are twice momentum iterations (6000) as 
continuity iterations (3000) as one Orthomin(1) iteration 
solves twice for the momentum per time step. 

6. CONCLUSION 

 A numerical algorithm has been presented to simulate a 
separation by density device applied to plastics recycling. 

The numerical algorithm takes into account not only the flow 
features but also the particle transport and interactions. 
Preliminary results have been obtained for a steady state 
simulation. The convergence is fast (two orders of 
magnitude in momentum and continuity residuals reached in 
250 iterations) and the algotihm is robust. The possibility to 
use a big cluster to run the parallel code is uncircumventable 
to be able to carry out simulation the full device in operation 
conditions, which are higly unsteady. 

 

Fig. (13). Solver iterations. 

 

Fig. (11). Velocity contours. 

 

Fig. (12). Convergence. (Left) Residual norm. (Right) Maximum velocity. 
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 Finally, Fig. (14) shows the CPU time elapsed at each 
iteration which in average is around 2 seconds. 

 

Fig. (14). CPU time. 
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