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Abstract: Different functions have been used to model the lightning return-stroke current with the aid of direct current 

measurements at tall structures. In this paper, a comparison between the Pulse function and Heilder function is carried out 

to find out the suitability of each of these functions for simulating the lightning return-stroke current, measured at the CN 

Tower. An automated system for determining the CN Tower lightning return-stroke current waveform parameters is 

introduced. The curve fitting technique of this system and the estimation of the initial values of the simulation function 

parameters are presented. An artificial lightning signal, free of noise and reflections, is used as a reference signal for 

evaluating the parameter extraction system. Finally, cumulative statistics of the CN Tower lightning return-stroke current 

waveform parameters (peak, maximum rate of rise, risetime, pulse width, decay time and charge) are derived using the 

Pulse function parameters. 
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1. INTRODUCTION 

 Heidler function and its modified form have been widely 
used to simulate the lightning return-stroke current [1-3]. 
Furthermore, the derivative of Heidler function and the 
derivative of its modified form have been successfully used 
to simulate the lightning return-stroke current derivative, 
measured at the Toronto CN Tower [4-6]. 

 This paper presents an in-depth investigation of Heidler 
function and its derivative in order to evaluate its suitability 
to simulate the lightning return-stroke current and its 
derivative, respectively, especially for tall-structures where 
reflections from structural discontinuities play an important 
role in the simulation. As part of the evaluation of Heidler 
function, it is compared with other relevant functions, such 
as the pulse function. 

 In the past, many functions were considered for 
simulating the lightning return-stroke current [7-11]. Some 
of these functions were found to have problems related to 
their discontinuities or the discontinuities of their first and 
second derivatives at the onset time. Such problems appear 
in the double exponential function and its modifications 
(Jones [7], Gardner [8], etc). However, the Pulse function 
and Heidler function do not suffer from such problems [9]. 

 One of the objectives of this work is to simulate the CN 
Tower lightning return-stroke current and its derivative using 
either Heidler function or the Pulse function and their 
derivatives, respectively. And although this work is 
fundamental for the evaluation and development of tall-
structure lightning return-stroke modeling [4], it is necessary 
for the determination of all waveform parameters of the 
current measured at the CN Tower, including the charge. 
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 For CN Tower lightning currents with high signal-to-
noise ratios and fast rates of rise, it is possible to determine 
some of the current wavefront parameters, namely the peak, 
the maximum rate of rise and the 10% to 90% risetime. 
However, other important current parameters, such as the 
pulse width, the decay time and the return-stroke charge, 
have been extremely difficult to determine because of 
current reflections resulting from the CN Tower’s structural 
discontinuities, as well as the time-window limitation of the 
measured current derivative signal. 

 In this paper, all lightning return-stroke current 
waveform parameters are systematically obtained by, 
respectively, matching the simulation function or its 
derivative to the current or its derivative before the arrival of 
reflections. 

 The effectiveness of Heidler function or the Pulse 
function in simulating the CN Tower lightning current is 
evaluated by trying to fit each function to the current and 
determine the quality of the fit in each case. 

2. SIMULATION FUNCTIONS 

 Both the Pulse and Heidler functions have the same 

general formulation that is based on the decoupling between 

a rise function x(t)  and a decay function y(t ) . The rise and 

decay portions of a simulation function are chosen such that 

during the decay phase x(t) = 1  and during the rise 

phase y(t) = 1 . The lightning return-stroke current simulation 

function is expressed in the form: 

I(t) = Imaxx(t)y(t)   (1) 

 Since each of the rise function x(t) and the decay 

function y(t ) is not actually unity during the decay phase and 

the rise phase, respectively, the lightning return-stroke 

current simulation function is modified to: 

I(t) =
Imax x(t)y(t)   (2) 
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2.1. The Pulse Function 

 The Pulse function is another function that is used to 
represent the lightning return-stroke current [3]. It is 
mathematically defined by: 
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 While it’s derivative is given by: 
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 The zero crossing time of the current derivative, which 

corresponds to the current maximum, tmax , is obtained from 

(5), when the current derivative vanishes. 

tmax = 1 ln 1+
n 2

1

  (6) 

 Also, the time of occurrence of the maximum steepness 

tms of the function is a very important current waveform 

parameter. By equating the second derivative of the Pulse 

function to zero we get: 
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 Equation (7) can be analytically solved to determine the 

time of occurrence of the current maximum steepness, tms . 

Since tms  takes place during the rising phase of the current 

where the decay portion y(t) 1 , then the Pulse function can 

be approximated during the rising phase as: 

I(t) =
Imax 1 e

t

1

n
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 Using the second derivative and equating it to zero then a 
general form for tms can be obtained: 

tms = 1 ln(n)   (9) 

2.2. Heidler Function 

 Heidler function is defined as: 
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 While its derivative is: 

dI t( )
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 For Heidler function, the zero crossing of the current 

derivative tmax  is obtained numerically by solving the 

following equation: 
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 An approximate estimation of tmax can be determined by 

assuming that  n 1  and
 
tmax / 1( ) 1 . In this case, we can 

ignore tmax /( )with respect to tmax / 1( )
n+1

and thus tmax can 

be put in the form: 

tmax = 1

n 2

1

n+1   (14) 

 Also, the time of occurrence of the maximum steepness 

tms of the derivative of Heidler function is obtained by 

equating the second derivative of Heidler function to zero 

producing equation (15) 
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 The maximum steepness time tms occurs during the rising 

phase of the current, where the decay phase 

function y t( ) 1 , thus Heidler function, at the rising phase, 

can be approximated to: 

I t( ) =
Imax

t

1

n

1+
t

1

n   (16) 

 Equating the second derivative of Heidler function to 

zero, a general expression for tms can be determined: 

tms
n
= 1

n n 1( )
n +1( )

  (17) 

3. INTIAL VALUE ESTIMATION 

 In order to reach the optimal values of the simulation 
function parameters, the initial value estimation of these 
parameters need to be estimated. The impact of the initial 
condition on the curve fitting technique can be investigated 
by creating an artificial noise-free signal that resembles the 
measured signal before being corrupted by reflections. This 
artificial signal can be produced by having a signal source 
represented by an analytical function, such as Heidler 
function or the Pulse function. Setting the parameters of this 
artificial analytical function produces a continuous 
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waveform. Then, this waveform is made to pass through a 
software digitizer having the same time resolution of the 
lightning current derivative recording system, which results 
in an artificial digital signal that simulates the measured 
signal. 

 Heidler function’s analytical parameters are Imax , 1 , 2  

and n , which are also the parameters of the Pulse function. 

In both cases, the initial value of Imax is known from the 

measurement as the maximum value of the current signal. 

 The decoupling behaviour of the Pulse function is used to 

separate the initial value estimation of 2 from other 

parameters. This can be done by estimating the initial value 

of 1  and n  using the approximation given by (8). 

 Although the value of Imax is known from the 

measurement, two points of the data are enough for 

calculating 1 and n , but for better accuracy three points are 

used to eliminate Imax and  from the equations. These three 

points are chosen based on the explained criterion to form: 

 Using the same procedure for finding 2 by applying the 

current functions on two data points where the locations of 

the data points satisfy the condition that their time of 

occurrences are greater than the time of occurrence of the 

maximum current so that the rising portion of the 

function x t( ) 1 , then we divide the two equation formed 

using the data points to eliminate Imax  and . 
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 The approximation made proved to be very efficient in 
the determination of the initial values of the parameters. It 
was concluded that the simulation of the current derivative 
yield closer fit to the measurement, when compared with the 
fit resulting from simulating the current [12]. 

 

 

4. CURVE FITTING PROCESS 

 The curve fitting technique used in this paper utilizes the 
least square method. It is an approach that minimizes the 
sum of the squares of the residuals between the measured 
data points and the calculated ones. This method is usually 
used when the data exhibit significant degree of error or 
noise; in this case the strategy is to derive a curve that 
represents the general trend of the data. 

 The lightning current derivative signal measured at the 

CN Tower exhibits different kinds of noise, including those 

produced by equipment-limited resolution and reflections 

[13]. Current reflections resulting from CN Tower structural 

discontinuities are the major cause of distortion to the 

lightning return-stroke current, normally injected at the tip of 

the Tower. For example, as shown in Fig. (1), the ground 

reflection produces major peaks in the current and the 

current derivative waveforms after 3.2 μs from initial peaks. 

Therefore, it is necessary when evaluating the quality of the 

curve fitting to use some guidelines together with R2 (Mean 

Square Error) in order to seek the optimal solution. These 

guidelines may include the time location of the current 

wavefront maximum steepness and the current derivative 

zero crossing, which corresponds to the location when the 

current reaches its maximum value. 

 Applying the explained curve fitting technique on the 
measured current derivative using both simulating functions, 
a comparison between the quality of fit using the Pulse 
function and Heidler function can be performed. 

 Using the curve fitting process, Figs. (1, 2) show that the 
guidelines for judging the best fit to the measured signal for 
both functions have not been achieved. The decay portion of 
the simulated current is consistently lower than the measured 
current. The preliminary result showed that a major 
improvement of the simulation was necessary. 

4.1. Estimation of 2 

 As mentioned before, the structure of Heidler function 

and the Pulse function is composed of the rise portion 

x(t) and the decay portion y(t) . By studying the effect of the 

rise term x(t) on each of the simulation functions during the  
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decay of the signal, when 
 
t 1 , it is found that both 

functions are insensitive to the rise term where x t( ) 1 and 

therefore, the decay portion becomes dominant for both 

Heidler and the Pulse functions. In this range, both functions 

take the form: 

I t( ) = Ae
t

2  (23) 

 Also, its derivative will have the form: 

dI t( )
dt

=
A

2

e
t

2  (24) 

 

 In order to obtain 2  separately, the measured current 

derivative signal and its corresponding current, obtained by 

numerical integration, are divided each into three time-

windows. The first time-window represents the initial 

impulse before the arrival of reflections. The second time-

window includes the early decaying part of the waveform, 

which contains reflections. Finally, the third time-window 

represents the decay, where the waveform is less affected by 

reflections in comparison with its behaviour within the 

second time-window. The application of the curve fitting 

technique on the current waveform within the third time-

window, which is represented by an exponentially decaying  

 

 

Fig. (1). Curve fitting results using the Pulse and Heidler function for simulating the measured current derivative. 

 

Fig. (2). Zoomed curve fitting results using the Pulse and Heidler functions for simulating the measured current derivative. 
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function, equation (23), results in a good estimate of the 

decay time parameter, 2 . 

 It is important to point out that the current is used in the 
fitting technique to estimate 2 rather the measured current 
derivative signal. Within the decay time-widow, the 
measured current derivative has a substantially lower signal-
to-noise ratio because of its high frequency noise, when 
compared with the current (see Figs. 1, 2), which leads to the 
failure of the fitting process. 

 By estimating 2 , the parameters of the simulation 

function are reduced to only three parameters, namely, 1 , 

n and Imax . Therefore, the estimation of the decay-time 

parameter will be always the first step in the curve fitting 

process of both the Pulse and Heidler functions. 

 The results of applying the above mentioned curve fitting 
technique on the current are shown in Figs. (3, 4). It is noted 
that the rate of decay of the simulated current becomes 
clearly closer to that of the measured current by the first 

 

Fig. (3). Fitting results using the Pulse and Heidler functions for simulating the measured current derivative. 

 

Fig. (4). Zoomed fitting results using the Pulse and Heidler functions for simulating the measured current derivative. 
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estimating the decay time parameter before the application of 
the curve-fitting technique (see Figs. 1, 3). Furthermore, a 
general comparison, within the first time-window, between 
the simulated current, using the new technique (Fig. 4), and 
that using the ordinary technique (Fig. 2), reveals a 
substantial improvement in the simulation. Similarly, the 
simulated current derivative using the new technique is 
markedly improved (Figs. 2, 4). 

 In case of the Pulse function, the current derivative fitting 
is achieved while the corresponding current experienced 
intolerable error within the maximum current and its time of 
occurrence. For Heidler function, although the current 
derivative fitting is not as good as obtained in case of the 
Pulse function but the corresponding current is much better 
than that of the Pulse function, however, the maximum 
current and its time of occurrence were not achieved as well. 

 Since the maximum current value is a common problem 

it can be adjusted by forcing the maximum current Imax to 

have a certain value. This value can be obtained by visual 

investigation of the integration of the measured current 

derivative signal. By assigning the value of Imax , the number 

of analytical parameters will be reduced to two, namely, n  

and 1 . 

 As shown in Fig. 5, the Pulse function current signal is 
improved while the maximum steepness value, the time of 
occurrence of the maximum steepness and the zero crossing 
of the current derivative need to be improved to best fit the 
measured signal. Heidler function will have the same 
problems encountered using the Pulse function. 

4.2. Constraints 

 Another way for improving the simulation is by 
introducing a constraint to force the analytical parameters to 
reach their optimal values. This constraint is applied by 

adjusting either the time of occurrence of the zero crossing 
of the current derivative or the time of occurrence of the 
maximum steepness of the current to a known value. We 
refer to these constraints in the paper as time-forcing 
constraints. 

 Applying this constraint using the known values of 

2 and Imax , which were previously determined, 1 can be 

expressed in terms of n or vice versa. Accordingly, the 

number of analytical parameters of the functions will be 

reduced to one. 

4.2.1. Zero Crossing 

 Firstly, the time forcing constraint will be applied to 

adjust the zero crossing of the current derivative to its 

measured value. In the case of the Pulse function, applying 

the constraint using equation (6), n can be expressed in 

terms of 1 . By substituting n  in the Pulse function equation 

(3) and its derivative, equation (5), the only unknown 

parameter will be 1 . The function and its derivative can be 

reformatted as follows: 
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 In the case of Heidler function, applying the constraint 

using equation (14), 1 can be expressed in terms of n . By 

 

Fig. (5). Fitting result using the Pulse and Heidler functions for the measured current derivative with fixed 2 and Imax. 
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substituting n in Heidler function, equation (10), and its 

derivative, equation (12), the only unknown parameter will 

be n . The function and its derivative can be reformatted as 

follows: 
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 Fig. (6) shows that an overshoot for the maximum 
steepness value of the current signal occurred leading to a 
very fast current rise. Consequently, the zero crossing 
constraint was not able to achieve the optimal value of the 
analytical parameters. 

4.2.2. Maximum Steepness 

 Secondly, the time forcing constraint will be applied to 

adjust the maximum steepness of the current signal to its 

measured value. In the case of the Pulse function, applying 

the constraint using equation (9), n  can be expressed in 

terms of 1 . By substituting n  in the Pulse function, 

equation (3), and its derivative, equation (5), the only 

unknown parameter will be 1 . The function and its 

derivative can be reformatted as follows: 
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 Similarly, in the case of Heidler function, applying the 

constraint using equation (17), 1 can be expressed in terms 

of n . By substituting n  in Heidler function, equation (10), 

and its derivative, equation (12), the only unknown 

parameter will be n . The function and its derivative can be 

reformatted as follows: 
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Fig. (6). Zoomed fitting results using the Pulse and Heidler functions for simulating the measured current derivative with fixed 2 and Imax 

and with forcing the time occurence of the zero crossing of the current derivative signal. 
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 Forcing the constraint regarding the time occurrence of 
the maximum steepness achieves the best fit for both 
simulating functions as shown in Fig. (7). 

 The descried fitting process represents the best method to 
reach the optimal value for simulating the measured signal. 
Not only fitting the full measured signal including the decay 
part but also calculating all current waveform parameters can 
be achieved. Table 1 compares the current waveform 
parameters extracted manually from the measured signal and 
the ones calculated using the this fitting process for the pulse 
function. Using this fitting process for the Pulse function all 
current waveform parameters can be calculated and full 
statistics of this parameters can be built through which 
lightning protection can be done. 

Table 1. Comparison Between Measured and Calculated 

Current Waveform Parameters 

 

 
Measured  

Signal 

Pulse  

Function 

Maximum Current (kA) 7906.5 7906.5 

Maximum Steepness (kA/ s) 36.98 38.5735 

Rise Time ( s) 0.25 0.2343 

Decay Time ( s) --------- 285.97 

Charge Transferred (C) --------- 0.9393 

Waveform width half of maximum current ( s) --------- 89.204 

 
 It is very important to clarify that the better accuracy and 
the easiness achieved when using the simulated function to 
get the value of the current wave form parameters than using 
the traditional manual methods. Using the simulating 
function gave more freedom for calculating other parameters 
that was difficult to measure using the manual methods such 
as the decay time, charge being transferred and the wave 
form width for half maximum current. 

5. CUMULATIVE STATISTICAL DISTRIBUTION 

 The described fitting process is applied on 15 flashes, 
containing 31 return strokes. The calculated current 
waveform parameters were used to form statistics to 
determine the probability distribution of the value of each 
parameter, including the range and the 50% probability level, 
which is fundamental in building lightning protection 
systems. 

5.1. Current Peak 

 The cumulative distribution of the current peak of the 
lightning return-stroke current for the analyzed signals is 
shown in Fig. (8). The current peak, determined from the 
simulated function, varies from a minimum value of 2.59 kA 
to a maximum value of 11.08 kA. The average value of the 
current peak was found to be 5.57 kA. It was observed that 
in 50% of the recorded lightning strokes, the current peak 
exceeded 5.73 kA, in 5% of recorded signals, the current 
peak exceeded 10.21 kA and in 95% of captured strokes the 
current peak exceeded 2.98 kA. 

5.2. Maximum Steepness 

 For the maximum steepness, its cumulative distribution is 
shown in Fig. (9). The lightning signals analyzed had a 
minimum value of 11.65 kA/ s and maximum value of 
54.68 kA/ s for the maximum steepness. The average value 
for the maximum steepness was found to be 31.33 kA/ s. In 
95% of the signals, the maximum steepness came to be 
higher than 14.31 kA/ s and in 5% of the cases the 
maximum steepness was higher than 51.21 kA / s. The 50% 
probability value for the maximum steepness was found to 
be 34.31 kA/ s. 

5.3. Rise Time to the Current Peak 

 The 10% to 90% risetime to the current peak for each of 
the analyzed signals was determined from the simulated  
 

 

Fig. (7). Zoomed fitting results using the Pulse and Heidler functions for simulating the measured current derivative with fixed 2 and Imax 

and with forcing the time of occurrence of the maximum steepness of current signal. 
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Fig. (8). Cumulative distribution of the current peak. 

 

Fig. (9). Cumulative distribution of the maximum steepness. 

function. Fig. (10) shows the cumulative distribution of the 
current risetime. The minimum recorded risetime to the 
current peak was 124 ns while the maximum recorded value 
was 524 ns with an average of 242.3 ns. It is important 
realize this large range of variation in the current risetime 
when designing lightning protection systems. For the 
analyzed signals, the current risetime exceeds 143 ns, 211 ns 
and 481 ns in 95%, 50% and 5% of the cases, respectively. 

5.4. Decay Time from the Current Peak 

 The decay time of the current peak is an important 
waveform parameter. The 90% to 10% current decay time 
from the current peak for each of the analyzed signals was 
determined. The cumulative distribution of the current decay 
time is shown in Fig. (11). The minimum value of the 
current decay time was found to be 65.88 s with maximum 
value of 537.13 s. The average value of the current decay 
time is 255.64 s. In 95% of the cases, the current decay 
time exceeds 75.26 s and in 5% of the cases, it exceeds 
523.6 s. The 50% probability value of the current decay 
time is 261.3 s. 

 

Fig. (10). Cumulative distribution of the risetime to the current 

peak. 

 

Fig. (11). Cumulative distribution of the decay time from the 

current peak. 
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5.5. Current Pulse Width 

 The current pulse width at the half current peak level for 
each of the analyzed signals was calculated by determining 
the time difference between the time at the 50% level of 
current peak at the decay side of the current pulse and the 
50% level of the current peak at the rising side of the current 
pulse. Fig. (12) shows the cumulative distribution of the 
current pulse width. The minimum recorded current pulse 
width is 21.47 s and the maximum recorded value is 157.51 

s, with an average of 83.99 s. The large range of variation 
in current pulse width is important to take into consideration 
by engineers working on lightning protection methods. For 
the analyzed signals, the current pulse width 75.23 s, 261.3 

s and 512.3 s in 95%, 50% and 5% of the cases, 
respectively. 

5.6. Charge 

 The charge is one of the most important waveform 
parameters in the area of protection. The charge for each of 
the analyzed signals was obtained by integrating the current. 
The cumulative distribution of the charge is shown in Fig. 
(13). The minimum value of the charge is 0.1187 C, while 
the maximum value is 1.897 C. The average value of the 
charge is 0.6642 C. In 95% of the cases, the charge exceeds 
0.154 C and in 5% of the cases, the charge exceeds 1.671 C. 
In 50% of the analyzed signals, the charge exceeds 0.599 C. 

 

Fig. (12). Cumulative distribution of the current pulse width. 

 Table 2 summarizes the cumulative statistics of current 
waveform parameters, including each waveform parameter 
value at 95%, 50% and 5% of the cases. Also, it includes the 
maximum value, the minimum value, and the average value 
of each waveform parameters. 

 

Fig. (13). Cumulative distribution of the charge. 

6. CONCLUSIONS 

 From the previous results, it can be generally concluded 
that the simulation of the current derivative yields closer fit 
to the measurement, when compared with the fit resulting 
from simulating the current. Using artificial signals, which 
are free of noise and reflections, proved to be very efficient 
in the determination of initial value estimation. 

 The decoupling behaviour of the Pulse and Heidler 
functions helped in dividing the signal into three parts and 
avoiding the use of the second part, which is highly distorted 
by reflections, in the fitting process. The third part was used 
for estimating the decay parameter 2. The first part (mainly 
the rise portion of the signal) was used to estimate the other 
parameters. Using the approximation of the decaying part for 
the simulating functions lead to same value of 2 and Imax for 
both functions. 

 Finally, using the time-forcing constraint for the 

maximum steepness of the current for fitting the rising part 

of the signal, given 2 and Imax , reduced the fitting process 

to a single-parameter estimation, and allowed the 

comparison between the Pulse function and Heidler function 

for simulating the measured. Although Heidler function is 

widely used in fitting the return-stroke current signal, the 

Pulse function proved to be a better fit for the lightning 

return-stroke current, measured at the CN Tower. The Pulse 

function is used to calculate the waveform parameters that 

were manually determined. Also, other important parameters 

that could not be determined previously were systematically 

computed. Newly determined parameters are the pulse width 

at half peak level, decay time, charge being transferred. 
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Table 2. Summary of the Cumulative Statistics of the Current Waveform Parameters 

 

Waveform Parameter Minimum Maximum Average 5% 50% 95% 

Current Peak (kA) 2.895 11.08 5.572 10.21 5.73 2.98 

Maximum Steepness (kA/ s) 11.65 54.68 31.3261 51.21 34.31 14.31 

Risetime to Current Peak ( s) 0.124 0.524 0.2423 0.481 0.211 0.143 

Decay Time from current peak ( s) 65.88 537.13 255.64 523.6 261.3 75.26 

Current Pulse Width ( s) 21.47 157.51 83.99 512.3 261.3 75.23 

Charge (C) 0.1187 1.897 0.6642 1.671 0.5986 0.1542 


