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Abstract: Quantum-Inspired Evolutionary Algorithm (QEA) has been shown to be better performing than classical Ge-

netic Algorithm based evolutionary techniques for combinatorial optimization problems like 0/1 knapsack problem. QEA 

uses quantum computing-inspired representation of solution called Q-bit individual consisting of Q-bits. The probability 

amplitudes of the Q-bits are changed by application of Q-gate operator, which is classical analogous of quantum rotation 

operator. The Q-gate operator is the only variation operator used in QEA, which along with some problem specific heuris-

tic provides exploitation of the properties of the best solutions. In this paper, we analyzed the characteristics of the QEA 

for 0/1 knapsack problem and showed that a probability in the range 0.3 to 0.4 for the application of the Q-gate variation 

operator has the greatest likelihood of making a good balance between exploration and exploitation. Experimental results 

agree with the analytical finding. 
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formance analysis, quantum-inspired evolutionary algorithm. 

1. INTRODUCTION 

 Evolutionary Algorithms (EAs) are nature-inspired, spe-
cifically biological evolution based, stochastic search or op-
timization techniques. In EAs, a population of initial candi-
date solutions is evolved into new populations of solutions 
from generation to generation to find out better fit solutions. 
EAs use two apparently conflicting techniques of exploita-
tion and exploration to generate new solutions. These new 
solutions compete for survival and if they are better fit than 
the existing solutions, then they survive and replace some 
lower fit solutions in the population, otherwise they die out. 
In the exploitation technique, characteristics of better fit so-
lutions are preserved into the new solutions with the hope to 
find out much better fit solutions. On the other hand, in the 
exploration technique, a wide solution space is searched to 
find out better fit solutions. In practical applications, a good 
balance between exploitation and exploration is required to 
find out global solutions within a reasonable time. To have a 
good balance between exploitation and exploration, the 
population dynamics such as population size, parent selec-
tion, variation operators, reproduction and inheritance, sur-
vival competition method, etc. are designed properly. 

 A nontraditional evolutionary computation technique 
called Quantum-Inspired Genetic Algorithm was developed 
by Narayanan [1, 2], where the concept of quantum me-
chanical interference was included in a modified crossover 
operator for solving traveling salesman problem. The most 
notable Quantum-Inspired Evolutionary Algorithm (QEA) 
was developed by Han [3-9]. In [3], a probabilistic represen-
tation and a novel population dynamics inspired by quantum  
 

*Address correspondence to this author at the Department of Computer 

Science and Engineering, East West University, 43 Mohakhali, Dhaka 1212, 

Bangladesh; Tel: +8802 9882308; Fax: +8802 8812336;  

E-mail: mhakhan@ewubd.edu 

computing were proposed. In [4], the applicability of QEA to 
a parallel scheme, particularly, PC clustering, was verified 
successfully. In [5], the basic structure of QEA and its char-
acteristics were formulated and analyzed. It was also ex-
perimentally proved that QEA is better than classical GA for 
solving 0/1 knapsack problem. In [6], a QEA-based disk 
allocation method (QDM) was proposed, where the average 
query response times of QDM were equal to or less than 
those of disk allocation methods using GA (DAGA), and the 
convergence speed of QDM was 3.2-11.3 times faster than 
that of DAGA. In [7], QEA was applied to a decision bound-
ary optimization for face verification. Compared with the 
conventional principal components analysis (PCA) method, 
improved results were achieved both in terms of the face 
verification rate and false alarm rate. In [8], some guidelines 
for setting the parameters of QEA were presented. In [9], 
extension of the basic QEA of [5] such as termination crite-
rion, a modified version of the variation operator Q-gate 
called H  gate, and a two-phase scheme were proposed to 
improve the performance of the QEA. 

 In the QEA of [5], Q-gate variation operator is applied on 
all the Q-bits of a Q-bit individual, that is, the variation op-
erator is applied with a probability of 1. In this paper, we 
analyzed the characteristics of the QEA for 0/1 knapsack 
problem and showed that a probability in the range 0.3 to 0.4 
for application of the Q-gate variation operator has the great-
est likelihood of making a good balance between exploration 
and exploitation and improves the performance of QEA for 
0/1 knapsack problem. We experimented with four sets of 
data, which agrees with the analytical finding.  

 The rest of the paper is organized as follows. In Section 
2, background on quantum computing system is introduced. 
The 0/1 knapsack problem and the characteristics of the test 
data set are discussed in Section 3. In Section 4, we discuss 
the structure of the QEA for the 0/1 knapsack problem pro-
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posed in [5]. We analyze the characteristics of the QEA in 
Section 5. In Section 6, we present an analytical model of 
influence of probability of application of the Q-gate variation 
operator on the performance of the QEA for 0/1 knapsack 
problem. We present the experimental results and related dis-
cussions in Section 7. Finally, Section 8 concludes the paper. 

2. BACKGROUND ON QUANTUM COMPUTING 
SYSTEM 

 Understanding of the QEA proposed in [5] requires a 

sound understanding of the quantum computing system. In 

this section, we introduce quantum computing system in 

brief. For more details, readers can see the famous textbook 
by Nielsen and Chuang [10]. 

 The basic unit of information in a quantum computing 

system is a quantum bit (qubit). A qubit exists in either 0  

state or 1  state, which correspond to the logical values 0 or 

1, respectively. These states are called the basis states. A 

qubit may also exist in linear superposition of the basis states 

  
= 0 + 1  

where,  and  are complex numbers representing the 

probability amplitudes of the basis states. After measure-

ment, the qubit  becomes 0  with probability 
2

 and 

1  with probability 
2

, where the normalization condition 

requires that  

  

2

+
2

= 1 . 

 If =±1 2  and =±1 2 , then the probability of 

finding the qubit in basis state 0  and 1  are equal, that 

means, the qubit exists in equal superposition state. A qubit 

can be geometrically visualized as a unit vector located in 

any quadrant of the rectangular coordinate system as shown 

in Fig. (1). In every case, the normalization condition satis-

fies that ±
2
+ ±

2
=1 , which implies that the length of the 

vector is 1. 

 The state of the qubit = 0 + 1  is represented by 

the column vector 

 

 
 

 

 
 . 

 

 The state of a qubit can be changed by a 1-qubit quantum 

gate, which is characterized by a unitary operation U  acting 

on the column vector representing the qubit. The unitary 

operation U  is represented by a 2 2 unitary matrix satisfy-

ing the condition U†U =UU†
= I , where U †

 is the hermitian 

adjoint of U . There are many nontrivial 2 2 unitary matri-

ces, but only a few of them are used in quantum computa-

tion. The frequently used 1-qubit quantum gates are Ha-

damard, Pauli-X (also known as NOT), Pauli-Y, Pauli-Z, 

Phase, 8 , and rotation gates. The readers can see [10] for 

more details on these 1-qubit gates. In [5], the rotation gate 

is used as variation operator. The rotation gate is defined 

below. 

Definition 1. The rotation gate is defined using the unitary 
matrix 

R( ) =
cos sin

sin cos
.          (1) 

If the rotation gate R( )  is applied on the qubit 

= 0 + 1 , then the new state of the qubit will be 

= R( ) =
cos sin

sin cos
=

cos sin

sin + cos
=

= 0 + 1

, 

where, = cos sin  and = sin + cos . 

 The application of the rotation gate on a qubit can be 

geometrically visualized as shown in the polar coordinate 

system of Fig. (2). If  is positive, then the qubit is rotated 

 angle to the counter-clockwise direction. If  is negative, 

then the qubit is rotated  angle to the clockwise direction. 

The rotation of the qubit changes the relative values of  

and  causing the change of probability of finding the qubit 

in 0  and 1  states. 

 Theorem 1. (i) If the qubit is in the first or the third 

quadrant, then a counter-clockwise rotation increases the 

probability of finding the qubit in the basis state 1  and a 

clockwise rotation increases the probability of finding the 

qubit in the basis state 0 . (ii) If the qubit is in the second 

or the fourth quadrant, then a clockwise rotation increases 

the probability of finding the qubit in the basis state 1  and 

 
Fig. (1). Geometric visualization of a Q-bit. 
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a counter-clockwise rotation increases the probability of 

finding the qubit in the basis state 0 . 

 Proof. From Fig. (3a), where the qubit is rotated counter-

clockwise in the first and the third quadrants, we see that 

>  and < . This implies that the probability of 

finding the qubit in the basis state 1  is increased. From Fig. 

(3b), where the qubit is rotated clockwise in the first and the 

third quadrants, we see that >  and < . This im-

plies that the probability of finding the qubit in the basis 

state 0  is increased. This proves the first part of the theo-

rem. From Fig. (3c), where the qubit is rotated clockwise in 

the second and the fourth quadrants, we see that >  and 

< . This implies that the probability of finding the qu-

bit in the basis state 1  is increased. From Fig. 3(d), where 

the qubit is rotated counter-clockwise in the second and the 

fourth quadrants, we see that >  and < . This 

implies that the probability of finding the qubit in the basis 

state 0  is increased. This proves the second part of the 

theorem.  

 An m-qubit quantum computing system exists in linear 

superposition of 
m

2  states. For example, if the three individ-

ual qubits of a 3-qubit quantum computing system are 

  1 = 1 0 + 1 1 , 

  2 = 2 0 + 2 1 , 

  3 = 3 0 + 3 1 , 

then the superposition of the 3-qubit quantum computing 
system is 

123 = 1 2 3 000 + 1 2 3 001 +

1 2 3 010 + 1 2 3 011 +

1 2 3 100 + 1 2 3 101 + 1 2 3 110 + 1 2 3 111

 (2) 

where, the normalization condition satisfies that 

1 2 3

2
+ 1 2 3

2
+ 1 2 3

2
+

1 2 3

2
+ 1 2 3

2
+ 1 2 3

2
+ 1 2 3

2
+ 1 2 3

2
= 1

. 

 An m-qubit quantum computing system represents 2m  

states simultaneously in superposition. However, the meas-

urement of the system yields a single state. If 

 1 = 2 =L= m = 1 = 2 =L= m =±1 2 , then the m-

qubit quantum computing system exists in equal superposi-

tion state, that means, after measurement, the probability of 

finding any of the 2m  states are equal. The state of an m-

qubit quantum computing system can be changed by apply-

ing m-qubit quantum gates on the system or by applying 1-

qubit gates on the individual qubits. An m-qubit quantum 

gate is characterized by a 2m 2m  unitary matrix. 

3. THE 0/1 KNAPSACK PROBLEM AND THE CHAR-
ACTERISTICS OF THE TEST DATA SET 

 In [5], the performance of the QEA is tested using 0/1 
knapsack problem and we also do the same. For this reason, 
understandings of the 0/1 knapsack problem and the charac-
teristics of the test data set should be made clear. 

 The knapsack problem can be described as selection of a 
subset of items from a given set of items, together with their 
weights and profits, such that the total weight of the selec-
tion does not exceed the given bound, that is, the capacity of 
the knapsack and the total profit of the selection is maxi-
mized. The knapsack problem is NP-hard. The 0/1 knapsack 
problem is described as follows. 

 Definition 2. Given a set of m  items with weight 
i

w  

and profit 
i

p  for 
 
i =1,2,L,m  and a knapsack with capacity 

C , find a binary vector 
 
x = (x1x2Lxm )  such that the total 

weight Cxw
m

i
ii

=1

 and the total profit =
=

m

i
ii

xpf
1

)x(  is 

maximum. If xi =1 , then the ith item is selected for the 

knapsack. 

 The performances of the algorithms for the 0/1 knapsack 
problem are normally analyzed and compared by running the 
algorithms on several sets of randomly generated test prob-
lems. Since the difficulty of such problems is greatly af-

 

Fig. (2). Geometric visualization of rotation gate. 
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fected by the correlation between weights and profits [11, 
12], three randomly generated sets of data are usually used: 

• uncorrelated: 

  w i  = uniformly random 
      
1Lv[ ]  

  p i  = uniformly random 
      
1Lv[ ]  

• weakly correlated: 

  w i  = uniformly random 
      
1Lv[ ]  

  p i  = wi  + uniformly random 
      

r Lr[ ] > 0  

• strongly correlated: 

  w i  = uniformly random 
      
1Lv[ ]  

  p i  =   w i + r  

 As reported in [11], higher correlation problems have 

higher expected difficulty. In [5], strongly correlated data 

sets are used and the data sets are generated with 10=v  and 

5=r . 

 In [11], the following two knapsack capacities are sug-
gested: 

• restrictive knapsack capacity: 

    C = 2v  

• average knapsack capacity: 

    

C = 0 .5 w i

i =1

m

 

 As reported in [11], in the knapsack with restrictive ca-
pacity, the optimal solution contains very few items. An 
area, for which conditions are not fulfilled, occupies almost 
the whole domain. In the knapsack with average capacity, 
the optimal solution contains about half of the items. But, 
this statement is not true for strongly correlated data set and 
average knapsack capacity as evident from Theorem 2 and 
Corollaries 1 and 2 below. 

 In [5], experiments are done with strongly correlated data 

set with v =10 , r = 5  and average knapsack capacity. We 

also do the same. This problem requires some in depth dis-

cussion. 

 Theorem 2. In the case of strongly correlated data set 

and average knapsack capacity, the global solution contains 

more than 2m  items with smaller weights, where m  is the 

number of items. 

 Proof. In the case of strongly correlated data set and av-
erage knapsack capacity, the profit can be expressed as 

    

f ( x) = p i x i

i =1

m

= w i x i

i =1

m

+ r x i

i =1

m

.          (3) 

 From (3), we see that the profit consists of two parts – the 

first part is equal to the total weight of the selected items and 

the second part is equal to r  times the number of items se-

lected. Therefore, the profit can be maximized by making the 

total weight of the selected items equal to the knapsack ca-

pacity C  that increases the value of the first part of (3) and 

simultaneously selecting more items that increases the value 

of the second part of (3). These interdependent conditions 

intuitively suggest that selecting more items of smaller 

weights within the capacity constraint will increase the 

profit. The weights of the m  items are uniformly distributed 

in the range 
      
1Lv[ ] . If we sort the m  items in the ascending 

order of their weights, then the weights will be uniformly 

distributed from 1 to v  in the ascending order and will form 

an arithmetic progression. In this case, the total weight of the 

first half of items will be less than the total weight of the 

second half of items. Obviously, the total weight of the first 

half of items will be less than the knapsack capacity C , 

since C  is half of the total weight of all the m  items. There-

fore, if we select more than m 2  items from the lower end 

within the capacity constraints, then the number of selected 

items will be maximum and the profit will also be maximum.  

 Corollary 1. In the case of strongly correlated data set 

with v =10  and average knapsack capacity, the global solu-

tion contains about 0.67m  items with smaller weights, 

where m  is the number of items. 

 Proof. The weights of the m  items are uniformly dis-

tributed in the range 
 
1L10[ ] . If we sort the m  items in the 

ascending order of their weights, then the weights will be 

uniformly distributed from 1 to 10 in the ascending order and 

will form an arithmetic progression with common difference 

    
d = 10 1( ) m 1( ) = 9 m 1( ) . Then the sum of weights 

of all m  items will be 

    
Sm =

m (1 +10 )

2
= 5 .5m  

and the capacity of the knapsack will be 

    
C =

S m

2
=

5 .5m

2
= 2 .75 m .          (4) 

 Now, let us assume that the sum of the weights of the 

first t  items maximizes the total weight satisfying the capac-

ity constraint St C . The sum of the weights of the first t  

items is 

    

St =
t 2 1 + (t 1)d[ ]

2
=

t 2 +
9 t 1( )
m 1

 

 

 
 

 

 

 
 

2
=

t 2m + 9t 11[ ]
2 m 1( )

.  (5) 

Using the equality condition St =C  and from (4) and (5), we 

have 

    

t 2m + 9t 11[ ]
2 m 1( )

= 2 .75 m .           (6) 

After some algebraic manipulation of (6), we have 
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9t 2 + 2m 11( )t + 5.5 5.5m2( ) = 0 .          (7) 

From (7), we have that 

t =
2m 11( ) ± 2m 11( )2 4 9 5.5 1 m2( )

2 9
=

11 2m( ) ± 202m2 44m 77

18

.       (8) 

 If 5>m , then ( )m211  will be negative and we can not 

consider “ ” sign for the 7744202
2

mm  part of (8), 

since we will be working with a large value of m . Then, we 

can write 

    
t =

11 2m( ) + 202 m 2 44 m 77

18
.         (9) 

For known values of m , from (9) we have the values of t  

and mt  as shown in Table 1. 

Table 1. Values of   t  and   t m  from (9) 

 

  m  t    t m  

100 68.3717 0.684 

250 170.1449 0.681 

500 339.7656 0.680 

1000 679.0066 0.679 

 

 As we have considered the equality condition CS
t
=  to 

determine the value of t  rather than considering the capacity 

constraint condition CS
t

, then from Table 1, we can con-

servatively take the value of mt  to be 0.67. Thus, about 

m67.0  items with smaller weights will maximize the se-

lected weight and will also maximize the number of items 

selected. Form (3) and subsequent discussion, we have that 

this selection will produce the global optimal solution. 

 For experimentation, we have generated four sets of 

strongly correlated data set with 10=v  and 5=r  for m  = 

100, 250, 500, 1000. After sorting the generated data sets in 

the ascending order of weights, we have computed the value 

of t  such that the sum of the first t  items maximizes the 

total weight within the capacity constraint CS
t

 as shown 

in Table 2. The experimental data of Table 2 is reasonably 

consistent with the data from Table 1. 

Table 2. Values of   t  and   t m  from Generated Data Sets 

 

  m    t    t m  

100 67 0.670 

250 168 0.672 

500 338 0.676 

1000 675 0.675 

 

 Corollary 2. In the case of strongly correlated data set 

with 10=v  and average knapsack capacity, if less than 

m67.0  items, where m  is the number of items, maximize 

the total selected weight within the capacity constraint, then 

the selection will produce a local solution. 

 Proof. From Corollary 1, we see that if less than m67.0  

items maximize the total weight within the capacity con-

straint, then the selected items will be of higher weights and 

the total number of items selected will be very small. From 

(3), we see that this selection can not produce a global solu-

tion and therefore, will produce a local solution.  

 Corollaries 1 and 2 can be used to develop new heuristics 
for exploiting the search mechanism. 

4. THE QUANTUM-INSPIRED EVOLUTIONARY 
ALGORITHM FOR 0/1 KNAPSACK PROBLEM 

 In the QEA proposed in [5], two simultaneous represen-

tations of the solutions onto the individuals are used – one is 

qubit based representation and the other is binary solution 

corresponding to the vector x  as defined in Definition 2. 

The representation of the binary vector x  is already clear. 

Here, we describe the qubit based representation from [5]. 

Definition 3. A Q-bit is defined as the smallest unit of in-

formation in the QEA, which is defined as a pair of numbers 

( ),  as 

 

such that 1
22

=+ . 
2

 gives the probability the Q-bit 

will produce a 0 and 
2

 gives the probability that the Q-bit 

will produce a 1. 

 The Q-bit is an adaptation of the concept of qubit for the 
QEA. Like qubit, a Q-bit may be in the “1” state, in the “0” 
state, or in a linear superposition of the two. 

Definition 4. A Q-bit individual is a string of m  Q-bits de-

fined as 

m

m

L

2

2

1

1
 

such that 1
22

=+
ii

 for mi ,,2,1 L= . 

 The advantage of representing solution using Q-bit indi-

vidual is that, from (2), we see that a single Q-bit individual 

is capable of representing 
m

2  binary solutions probabilisti-

cally. 

 The QEA maintains four data structures as described 
below. 

 Population of Q-bit individuals: The population of Q-

bit individuals denoted 
      
Q(t ) = q 1

t ,q 2
t ,L ,q n

t{ }  is a popula-

tion of n  (size of the population) Q-bit individuals of length 

m  (length of each individual), t  is the generation number, 

and   q j
t

 for       j = 1,2,L , n  is defined as in Definition 4. 
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 Population of observed binary solutions: The popula-

tion of observed binary solutions denoted 

      
P(t ) = x1

t , x 2
t ,L , x n

t{ }  is a population of n  binary strings 

of length m  each observed from )1(tQ , where t  is the 

generation number and 
t

jx  is observed from 
1t

j
q  for 

nj ,,2,1 L= . The observation is made by the QEA opera-

tion make and will be discussed latter on. 

 Population of stored binary solutions: The population 

of stored binary solutions denoted 
 
B(t) = b1

t ,b2
t ,L,bn

t{ }  is a 

population of best n  binary strings of length m  each se-

lected from the populations )(tP  and )1(tB . The popula-

tion )(tB  stores the best n  solutions so far generated. 

 The best binary solution: The best binary solution de-

noted b  stores the best binary solution so far generated. 

 The structure of the QEA for the 0/1 knapsack problem is 
given below.  

Procedure QEA for the 0/1 Knapsack Problem 

begin 

  0t  

(i) initialize     Q(t )  

(ii) make     P (t )  by observing     Q(t )  

(iii) repair     P(t )  

(iv) evaluate     P(t )  

(v) store )(tP  in     B (t )  

 while (t < MAX_GEN) do 

 begin 

      t t +1 

(vi)  make     P(t )  by observing     Q(t 1)  

(vii)  repair     P(t )  

(viii)  evaluate     P(t )  

(ix)  update     Q(t )  

(x)  store the best n  solutions among     B (t 1)  and 

)(tP  into     B (t )  

(xi)  store the best solution among     B (t )  to   b  

(xii)  if (global migration condition) 

  then migrate b  to     B (t )  globally 

(xiii)  else if (local migration condition) 

  then migrate 
t

jb  in     B (t )  to     B (t )  locally 

 end 

end 

The steps of the QEA are discussed below step wise 

 Step i: In the step of “initialize     Q(t ) ”, values of 
i
 and 

i
 for       i = 1,2,L , m  of all     q j

0
 for       j = 1,2,L , n  are ini-

tialized to   1 2 . It means that one Q-bit individual, 
0

jq  rep-

resents the linear superposition of all 
m

2  possible binary 

solutions with equal probability. 

 Step ii: This step makes binary solutions in )0(P  by ob-

serving the states of )0(Q , where 
      
P(0 ) = x1

0 , x 2
0 ,L , x n

0{ }  

at generation 0=t . One binary solution, 
0

jx  for 

      j = 1,2,L , n  is a binary string of length m , which is 

formed using the following make (  x ) procedure, which is a 

QEA operation. The make operation probabilistically deter-

mines the state of a Q-bit to be either 0 or 1 depending on the 

value of the probabilities 
2

i
 and 

    i

2

. Thus, a binary 

string of length m ,     x j
0

 is formed from the Q-bit individual 

0

j
q , which represents a solution observed from the Q-bit 

individual 
0

j
q . For notational simplicity,   x j

t
 is written as x  

in the procedure make (  x ). 

Procedure make (  x ) 

begin 

     i 0  

 while (  i < m ) do 

 begin 

      i i +1 

  if random [    0 L1] < 
    i

2

 

  then     x i 1 

  else     x i 0  

 end 

end 

 Step iii: This step repairs the binary solution     x j
0

 for 

      j = 1,2,L , n  in )0(P  for overfilled and under-filled cor-

rections using the following repair (  x ) procedure, which is 

a QEA operation. If the knapsack is overfilled, then the first 

while loop of the repair (  x ) procedure converts some ran-

domly selected 1s to 0s to reduce the total weight within the 

capacity constraint. If the knapsack is under-filled, the re-

pair (  x ) procedure converts some randomly selected 0s to 

1s to maximize the total weight within the capacity con-

straint. 

Procedure repair ( x ) 

begin 

 knapsack-overfilled  false 
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 if (

    

w i x i > C
i =1

m

) 

 then knapsack-overfilled  true 

 while (knapsack-overfilled) do  

 begin  

  randomly select an i  such that 1=
i

x  

      x i 0  

  if (

    

w i x i C
i =1

m

) 

  then knapsack-overfilled  false  

 end 

 while (not knapsack-overfilled) do  

 begin  

  randomly select an i  such that 0=
i

x  

      x i 1 

  if (

    

w i x i > C
i =1

m

) 

  then knapsack-overfilled  true  

 end 

     x i 0  

end 

 Step iv: In this step of “evaluate )(tP ”, the fitness of 

each of the initial binary solution 
0

j
x  for nj ,,2,1 L=  in 

)0(P  is computed using the profit equation 

    

f ( x ) = p i x i

i =1

m

. 

 Step v: In this step, the initial binary solutions in )0(P  is 

stored in )0(B  as best solutions so far generated. 

 Step vi: This step, within the while loop, makes the bi-

nary individuals in     P(t )  by observing the Q-bit individuals 

in     Q(t 1)  as in step ii. 

 Step vii: This step repairs the binary individuals in     P(t )  
as in step iii. 

 Step viii: This step evaluates the binary solutions in 

    P(t )  as in step iv. 

 Step ix: In the “update     Q(t ) ” step, Q-bit individuals in 

    Q(t )  are updated by using the update ( q ) procedure, which 

uses Q-gates as variation operator as defined below. 

 Definition 5. A Q-gate is defined as a variation operator 

of the QEA, by which the values of  and  of a Q-bit are 

updated to  and  such that the normalization condition 

  
  
2

+   
2

= 1  is satisfied. 

 In [5], the rotation gate     R( )  as defined in Definition 1 

is used as a Q-gate. From Theorem 1, we see that the rotation 

gate )(R  as a Q-gate rotates the Q-bit  angle towards 

either 0 or 1 depending on the sign of the angle  and the 

quadrant of the Q-bit. The value of the angle  is deter-

mined as a function of the ith bit of the best solution 
t

j
b  and 

the ith bit of the observed binary solution 
t

j
x . In [5], the ex-

perimentally found best value of  as a function of the ith 

bit of the best solution 
t

j
b  and the ith bit of the observed 

binary solution 
t

j
x  is reported as in Table 3.  

Table 3. Experimentally Found Best Value of  Used in the 

Rotation Gate     R( )  as Variation Operator in [5] 

 

  x i    b i  
    f ( x j

t ) f (b j
t )   

0 0 false 0 

0 0 true 0 

0 1 false 0.01  

0 1 true 0 

1 0 false 0.01  

1 0 true 0 

1 1 false 0 

1 1 true 0 

 

 The update (  q ) procedure is given below.  

Procedure update (  q ) 

begin  

     i 0  

 while ( mi < ) do 

 begin 

      i i +1 

   determine 
i
 from Table 3.  

   if ( q  is located in the first or third quadrant) 

  then 

    

  i

  i

 

 
 

 

 
 = R( ) i

i

 

 
 

 

 
  

  else 

    

  i

  i

 

 
 

 

 
 = R( ) i

i

 

 
 

 

 
  

 end 

   q  q  

end 

 The rotation gate used as a Q-gate in the update ( q ) 

procedure induces the convergence of each Q-bit to either 0 
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or 1. However, a Q-bit converged to either 0 or 1 cannot es-

cape the state by itself, the make ( x ) procedure will always 

observe the converged value restricting any further explora-

tion of the solution space. To prevent the premature conver-

gence of Q-bit, a modified form of the rotation gate is pro-

posed in [9] and called H  gate as defined in Definition 6. 

 Definition 6. A H  gate is defined as a Q-gate extended 

from the rotation gate as 

    

  

  

 

 
 

 

 
 = H ( , , )  

where for 

    

   

   

 

 
 

 

 
 = R( )

 

 
 

 

 
 : 

(i)  if 
2

 and 1
2

, then 

  

  

  

  

 

 
 

 

 
 =

1

 

 

 
 

 

 

 
 
; 

(ii)  if 1
2

 and 
2

, then 

  

  

  

  

 

 
 

 

 
 =

1
 

 

 
 

 

 

 
 
; 

(iii) otherwise 

  =  

where   0 < << 1, )(R  is the rotation gate, and  is the 

rotation angle. 

 The H  gate can be visualized as shown in Fig. (4). [9], 

where )(lim
0

H  is the same as the rotation gate. While 

the rotation gate makes the probability of 
2

 or 
2

 con-

verge to either 0 or 1, H  gate makes it converge to  or 

)1( . It should be noted that if  is too big, the conver-

gence tendency of a Q-bit individual may disappear. In [9], 

01.0=  is suggested. 

 

Fig. (4).   H  gate based on rotation gate [9]. 

 Step x: In this step, the best n  solutions among     B (t 1)  

and )(tP  are selected and stored into )(tB . 

 Step xi: In this step, if the best solution stored in )(tB  is 

fitter than the stored best solution b , then b  is replaced by 

the best solution stored in )(tB . 

 Step xii: In this step, after a specified period known as 

global migration period, the best solution b  is copied to all 

binary individuals in )(tB . 

 Step xiii: In this step, after a specified period known as 

local migration period, the best solution 
t

j
b  among some of 

the solutions in )(tB  is copied to them.  

5. ANALYSIS OF THE QEA FOR 0/1 KNAPSACK 
PROBLEM 

 In this section, we analyze the characteristics of the QEA 
operations. 

 Theorem 3. The make ( x ) procedure explores the solu-

tion space. 

 Proof. From Definition 3, we see that a Q-bit is repre-

sented by two probability amplitudes  and , where 
2

 

is the probability that the Q-bit will produce a 0 and 
2

 is 

the probability that the Q-bit will produce a 1. Thus, from 

Definition 4, we see that a Q-bit individual of length m  rep-

resents all 
m

2  solutions probabilistically. The make ( x ) 

procedure produces either 0 or 1 depending on the value of 
2

 of the Q-bit and the random number generated within 

the procedure. Though, there is a bias of producing either 0 

or 1 depending on the value of 
2

, but probabilistically any 

of 0 or 1 may be generated, which practically explores the 

search space. 

 Theorem 4. The repair ( x ) procedure leads the solution 

towards a local optima. 

 Proof. If the knapsack is overfilled, then the repair ( x ) 

procedure reduces the total weight within the capacity con-

straint by reducing the number of 1s in the solution, but the 

possible maximum weight is produced. This maximizes the 

first part of (3). The number of 1s may be small by selecting 

higher-weight items or large by selecting lower-weight 

items. As there is no idea about the number of 1s in the re-

paired solution, we have no idea whether the second part of 

(3) is maximized or not. As the first part of (3) is maximized, 

we can say that the solution goes towards local optima. If the 

knapsack is under-filled, then the repair ( x ) procedure in-

creases the total weight by increasing the number of 1s in the 

solution. In this case, both the first part and the second part 

of (3) are increased and the solution goes towards local op-

tima, if not the global optima. 

 Theorem 5. (a) If     f ( x j
t ) f (b j

t )  is false, then the up-

date (  q ) procedure converges the Q-bit individual 
t

jq  to 

β

1 1

2β

∈

α
11

θ

0 11−

1

0

0 1∈
∈ 2α

∈

1− 0 1∈ α

gate  (a) ∈H sconstraint  (b)∈
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binary solution 
t

jb  and (b) if     f ( x j
t ) f (b j

t )  is true, then the 

update (  q ) procedure keeps the Q-bit individual 
t

jq  un-

changed. 

 Proof. From the update ( q ) procedure and Table 3, we 

see that if     f ( x j
t ) f (b j

t )  is false, that is, the fitness of the 

observed binary individual 
t

j
x  from the Q-bit individual 

t

jq  

is less than the fitness of the corresponding stored binary 

solution   b j
t

: 

(i) If     x i = 0 ,     b i = 1, and the Q-bit is located in the first or 

the third quadrant, then the rotation angle is 01.0= , 

which increases the probability of 1 as evident from 

Theorem 1. That means, the Q-bit converges to 1=
i

b . 

(ii) If     x i = 0 ,     b i = 1, and the Q-bit is located in the second 

or the fourth quadrant, then the rotation angle is 

01.0= , which increases the probability of 1 as evi-

dent from Theorem 1. That means, the Q-bit converges to 

1=
i

b . 

(iii) If     x i = 1 ,     b i = 0 , and the Q-bit is located in the first or 

the third quadrant, then the rotation angle is 01.0= , 

which increases the probability of 0 as evident from 

Theorem 1. That means, the Q-bit converges to 0=
i

b . 

(iv) If xi =1 ,     b i = 0 , and the Q-bit is located in the second 

or the fourth quadrant, then the rotation angle is 

01.0)01.0( == , which increases the probability 

of 0 as evident from Theorem 1. That means, the Q-bit 

converges to 0=
i

b . 

(v) If 0==
ii

bx  or 1==
ii

bx , and the Q-bit is located in 

any of the four quadrants, then the rotation angle is 

0= , which does not change the probabilities of 0 and 

1. In this case, the Q-bit is already converged to 
i

b . 

 The above discussions reveal that the update ( q ) proce-

dure converges the Q-bit individual 
t

jq  to stored binary solu-

tion 
t

jb , which proves the part (a) of the theorem. 

 If )()( t

j

t

j
bfxf  is true, that is, the fitness of the ob-

served binary individual 
t

j
x  from the Q-bit individual 

t

jq  is 

greater than or equal to the fitness of the corresponding 

stored binary solution 
t

j
b , then for any combination of 

i
x  

and 
i

b , and for any location of the Q-bit in any quadrant, the 

rotation angle is 0= , which does not change the probabili-

ties of 0 and 1. The condition )()( t

j

t

j
bfxf  happens due to 

probabilistic exploration of the search space by the make 

( x ) procedure. This new better fit 
t

jx  will be then stored in  

B(t) in step x. This proves part (b) of the theorem. 

 Theorem 6. The update ( q ) procedure exploits the 

property of the already generated best solutions. 

 Proof. From the proof of Theorem 5, we see that if 

)()( t

j

t

j
bfxf  is true, then the Q-bit individual is not 

changed. But, if )()( t

j

t

j
bfxf  is false, then the update ( q ) 

procedure converges the Q-bit individual 
t

jq  to the stored 

binary solution 
t

j
b , which exploits the already generated best 

solution. 

 Theorem 7. The migration operation allows the QEA to 

escape local optima. 

 Proof. If the probabilities of all m  Q-bits of the Q-bit 

individual 
t

jq  for 
 
j =1,2,L,n  converged to the correspond-

ing bits (either 0 or 1) of the stored binary solution 
t

j
b  for 

 
j =1,2,L,n , then the make ( x ) procedure will produce the 

same observed binary solution 
t

jx  repeatedly in the subse-

quent generations and the produced 
t

jx s will be exactly 

equal to the corresponding stored binary solution 
t

jb s. In this 

situation, no 
t

jb  will be replaced in step x and the QEA will 

be stuck in local optima. In this situation, if the best solution 

b  is copied to all 
t

jb s as the global migration process, then 

the update ( q ) procedure will have scope to change the 

probabilities of some Q-bits of some Q-bit individuals and 

the make ( x ) procedure will have scope to explore new so-

lutions to escape the local optima. Similarly, if the probabili-

ties of all m  Q-bits of a subset of Q-bit individuals con-

verged to the corresponding bits of their corresponding 

stored binary solutions, then that subset will suffer from 

similar problem. In this situation, copying the best solution 
t

j
b  of the set to all solutions of the set as the local migration 

process will help to escape the problem. 

 Theorem 8. If the stored best solution b  and the stored 

best solutions 
t

j
b  for nj ,,2,1 L=  in )(tB  are equal, then 

the migration process fails to escape the local optima. 

 Proof. If all of the stored best solutions 
t

j
b  for 

nj ,,2,1 L=  in )(tB  are equal to the stored best solution b , 

then both local and global migration will fail to change any 

of the stored binary solution in )(tB . Therefore, the QEA 

will be stuck at local optima.  

 The migration conditions are design parameters and 
should be carefully determined to make balance between 
exploration and exploitation. 

6. INFLUENCE OF PROBABILITY OF VARIATION 
OPERATOR ON THE PERFORMANCE OF THE QEA 

FOR 0/1 KNAPSACK PROBLEM 

 From Theorem 4, we see that the repair ( x ) procedure 

generates local solutions. On the other hand, from Theorems 

5 and 6, we see that the update ( q ) procedure exploits the 

stored local solutions and converge the Q-bit individuals to 

those local solutions. From Theorem 7, we see that by using 

migration we can escape from being stuck into these local 
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solutions. But, from Theorem 8, we see that the QEA may 

fail to escape from local optima. The primary reason is that 

the update ( q ) procedure converges the Q-bit individuals to 

already generated local solutions. Therefore, in the subse-

quent generations, the make ( x ) procedure fails to explore 

new solutions. In general, we can say that the proposed QEA 

exploits more than explores. To improve the performance of 

the QEA, we should investigate some other means of making 

balance between the exploitation and exploration, such that 

the QEA can reach the global solution. In this section, we 

investigate the influence of the probability of application of 

the variation operator Q-gate in the update ( q ) procedure 

on the performance of the QEA. 

 Definition 7. The Hamming distance 
d

H  of two binary 

strings, 
1

x  and 
2

x , is the number of positions where the bits 

of the two strings are not equal and is computed as 

( )
=

=
m

i

iid
xxxxH

1
2121 )),(  

where, m  is the length of the binary strings and  is 

modulo 2 addition. 

 Theorem 9. The entropy of the probability distribution 

for the search space explored by the QEA with probability 

v
p  of application of the Q-gate variation operator in the up-

date ( q ) procedure is 

    

H =
m !

h! m h( )!
1 pv( )

m h( )
pv

h log 2 1 pv( )
m h( )

pv
h

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

h =0

m

 (10) 

where m  is the length of the Q-bit individual. 

 Proof. Let 
t

j
x  be the observed binary solution from the 

Q-bit individual 
t

j
q  and 

t

j
b  be the corresponding stored bi-

nary solution. Let h  be the hamming distance between 
t

j
x  

and 
t

j
b . In the update ( q ) procedure, h  Q-bits of the Q-bit 

individual 
t

j
q  will converge to their corresponding bits in the 

t

j
b  with a probability of 

v
p . Then the probability of con-

verging to 
t

j
b  is 

    p (b j
t ) = (1 pv )(m h ) pv

h
, 

and the number of all possible 
t

j
b  is 

    
n(b j

t ) =
m !

h!(m h )!
. 

 Therefore, the entropy [13] of the probability distribution 

for the search space explored by the QEA with probability 

v
p  of application of the Q-gate variation operator in the up-

date ( q ) procedure is 

H = n(bj
t )p(bj

t )log2 p(bj
t )( )

h=0

m

=
m!

h! m h( )!
1 pv( )

m h( ) pv
h log2 1 pv( )

m h( ) pv
h( )( )

h=0

m
  

 The expression of entropy of the probability distribution 

for the search space of (10) is valid for 10 <<
v

p .  

 Theorem 10. The probability of application of the Q-gate 

variation operator in the range 0.3 to 0.4 will have the great-

est likelihood of making a good balance between the explo-

ration and the exploitation. 

 Proof. We have computed the value of the entropy H  of 

the search space from (10) for 30,20,10=m  and different 

values of 
v

p  and tabulated in Table 4. From Table 4, we see 

that 5.0=
v

p  provides the highest exploration of the search 

space and is not desirable. If we choose 5.0>
v

p , then ex-

ploration will be reduced but more Q-bits of the Q-bit indi-

vidual 
t

j
q  will be converged to the stored binary solution 

t

j
b  

and will provide more exploitation leading to local optima. If 

we choose 5.0<<
v

p , then exploration will be reduced but 

very few Q-bits of the Q-bit individual 
t

j
q  will be converged 

to the stored binary solution 
t

j
b  and will provide very small 

exploitation. Therefore, there is the greatest likelihood of 

making a good balance between the exploitation and explo-

ration for the value of 
v

p  in the range 0.3 to 0.4. 

Table 4. Entropy H of the Search Space for Different Values 

of pv and m 

 

    m   

  pv  10 20 30 

0.01 0.81 1.62 2.42 

0.1 4.69 9.38 14.07 

0.2 7.22 14.44 21.66 

0.3 8.81 17.63 26.44 

0.4 9.71 19.42 29.13 

0.5 10.00 20.00 30.00 

0.6 9.71 19.42 29.13 

0.7 8.81 17.63 26.44 

0.8 7.22 14.44 21.66 

0.9 4.69 9.38 14.07 

0.99 0.81 1.62 2.42 

 

7. EXPERIMENTAL RESULTS 

 To verify the claim of Theorem 10, we experimented 

with four knapsack problems with 100, 250, 500, and 1000 

items. We considered strongly correlated data set with 

10=v  and 5=r , and average knapsack capacity. The data 

were unsorted. We experimented with two QEAs. The popu-

lation sizes of QEA1 and QEA2 were 1 and 10, respectively. 

The global migration period for QEA2 was 1 generation and 

local migration was not used. For each QEA, both rotation 

gate and H  gate were used as variation operators. The 

probability of the application of the variation operator was 

taken to be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. 

As the performance measure, we collected the best solution 
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found within 1000 generations and averaged them over 30 

runs. In every run, the random generator was seeded with 

random seed. The results are summarized in Table 5. In 

every case, the best profit is shown in bold face. From Table 

5, we see that best results are found for three cases at 

3.0=
v

P , for one case at 4.0,3.0=
v

P , for ten cases at 

4.0=
v

P , for one case at 5.0=
v

P , and for one case at 

6.0=
v

P . From these observations, we see that 
v

P  in the 

range 0.3 to 0.4 will give the greatest likelihood of getting 

the best result, which agrees with the Theorem 10. 

 We also have collected the best solution generated in 

every generation and averaged them over 30 runs. The con-

vergence trends for QEA2 with 1000 items and rotation gate 

as variation operator for 
v

p  = 0.1, 0.4, 0.7, 1.0 are shown in 

Fig. (5). From Fig. (5), we see that 
v

p  = 0.1 converges very 

slowly and generates the smallest profit, which indicates that 

it provides very small exploitation and randomly explores 

the search space. On the other hand, 
v

p  = 0.7 and 1.0 pre-

maturely converged due to more exploitation than explora-

tion and produced local solution. 
v

p  = 0.4 reasonably ex-

plored and exploited and generated the best solution. 

CONCLUSION 

 In [5], a non-traditional evolutionary algorithm called 
Quantum-Inspired Evolutionary Algorithm (QEA) was pro-
posed and showed to be better performing than classical Ge-
netic Algorithms for 0/1 knapsack problem. In [9], some 
improvements were proposed. In this paper, we analyzed the 
characteristics of the QEA operators and showed that the 

QEA may fail to produce global solution due to over exploi-
tation than exploration. In the QEA of [5], the variation op-
erator was applied with probability 1. We analytically show 
that a lower probability of application of the variation opera-
tor will provide a good balance between the exploration and 
exploitation. A very low probability of application of the 
variation operator exploits less and explores the search space 
randomly and takes larger number of generation to produce 
even the local solution. A large probability of the application 
of the variation operator exploits more and prematurely con-
verged to local solution. We show that the probability of 
application of the variation operator in the range 0.3 to 0.4 
will have the greatest likelihood of providing good balance 

Table 5. Experimentally Found Average Best Profit Generated within 1000 Generations over 30 Runs 

          pv       

Item QEA Q-gate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 QEA1 R 582.4 587.6 589.2 590.4 589.5 588.4 590.1 588.0 586.8 587.3 

100  H  582.3 587.7 591.0 589.7 589.8 589.5 588.7 586.4 587.0 586.8 

 QEA2 R 593.7 599.6 600.5 599.5 600.8 599.2 599.5 599.2 597.3 597.9 

  H  593.8 598.7 601.4 599.9 600.1 599.2 599.9 598.8 598.7 598.3 

 QEA1 R 1414.1 1430.7 1436.7 1440.8 1439.5 1440.2 1438.0 1436.1 1433.3 1433.1 

250  H  1414.5 1434.5 1441.0 1440.1 1437.6 1442.0 1437.1 1434.1 1434.0 1432.7 

 QEA2 R 1443.2 1469.0 1473.9 1473.9 1473.5 1470.3 1467.4 1465.1 1465.1 1463.5 

  H  1443.4 1468.2 1473.5 1474.0 1470.9 1469.1 1470.3 1466.4 1464.2 1464.5 

 QEA1 R 2780.4 2810.1 2820.1 2827.4 2823.6 2820.1 2820.2 2812.8 2812.4 2810.7 

500  H  2779.8 2808.4 2820.4 2821.9 2821.7 2817.6 2814.9 2816.0 2814.2 2811.9 

 QEA2 R 2824.8 2876.2 2886.3 2885.7 2877.6 2878.8 2873.6 2868.0 2870.0 2868.2 

  H  2826.4 2872.2 2885.0 2885.6 2883.4 2876.8 2875.1 2871.2 2868.0 2863.1 

 QEA1 R 5479.4 5525.3 5548.5 5560.5 5550.5 5542.2 5542.8 5544.3 5540.2 5532.9 

1000  H  5481.4 5530.8 5552.1 5558.7 5546.8 5545.8 5542.3 5545.4 5535.1 5533.4 

 QEA2 R 5557.0 5629.5 5651.7 5658.1 5645.2 5640.8 5631.0 5633.0 5627.4 5630.8 

  H  5560.6 5633.1 5651.3 5652.8 5646.6 5638.6 5635.5 5626.0 5624.2 5620.8 
 

 

Fig. (5). Convergence trends for QEA2 with 1000 items and 
rotation gate variation operator for different values of probabil-
ity of application of the variation operator. 
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between exploration and exploitation. The experimental re-
sults agree with the claim. 

 We analyzed the behavior of the knapsack problem with 
strongly correlated data set and average knapsack capacity 
and showed that the global solution contains more than 50% 
items with lower weights. This knowledge can be used to 
device new heuristic to improve the performance of the QEA 
for 0/1 knapsack problem.  
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