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Abstract: Basophil activation is a key finding in allergic reactions and also observed quite frequently in infectious dis-
eases and autoimmune disorders. In allergic reactions, basophil-derived mediators such as histamine, contribute essen-
tially to clinical symptoms. During IgE-dependent degranulation of basophils, a number of cell surface membrane and cy-
toplasmic molecules become activated, show altered expression, or are translocated into the cell surface. Although little is 
known so far about the exact role of these activation-linked cell surface antigens, several of them are employed as diag-
nostic parameters in allergic disorders. Other molecules are involved in the process of signalling and the consecutive re-
lease of pro-allergic mediators, and have therefore been proposed as potential targets of therapy. The current article pro-
vides a summary on activation-linked cell surface and cytoplasmic antigens in basophils, with special reference to poten-
tial mechanisms underlying re-translocation or over-expression in activated cells, relevant signalling pathways, and clini-
cal implications. 
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INTRODUCTION 

Blood basophils are unique effector cells of the immune 
system. These cells contribute essentially to allergic and in-
flammatory reactions [1-4]. Unlike mast cells, basophils are 
circulating cells and originate from granulocytic progenitors 
[5-7]. Basophils also differ from mast cells in cytokine re-
ceptor expression, response to various interleukins (ILs) and 
tissue hormones, and expression of chymotryptic enzymes 
and proteoglycans (Table 1) [8-12]. Nevertheless, basophils 
and mast cells share several important features, including 
expression of the IgE receptor, production and storage of 
histamine and other proinflammatory mediators, and expres-
sion of certain cell surface antigens including CD9, CD33, 
CD45, and CD63 (Table 1).  

In common with all other circulating leukocytes, baso-
phils originate from immature uncommitted CD34+ bone 
marrow progenitor cells [5-7]. A number of different cytoki-
nes and other factors are involved in the regulation of 
growth, differentiation, and maturation of lineage-committed 
and multipotent basophil precursor cells. The most important 
growth factor for basophils appears to be IL-3 [13-15]. Other 
cytokines contributing to basophilopoiesis are IL-5, granulo-
cyte macrophage colony-stimulating factor (GM-CSF), and 
nerve growth factor (NGF) [15-17]. These cytokines act on 
immature and mature basophils through specific receptors 
[18-20]. In fact, these regulators not only trigger differentia-
tion and maturation of basophils but also the function of ma 
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ture blood basophils, including survival, adhesion, chemo-
taxis, releasability, and cytokine production [21-27]. Mature 
basophils also express high affinity receptors for IgE, which 
play an essential role in allergic diseases [28-30]. Notably, 
during an allergic reaction, IgE receptors are cross-linked on 
basophils by an allergen via specific IgE, resulting in de-
granulation and mediator release, and thus in specific symp-
toms in allergic reactions [28-30]. 

During the past few decades, our knowledge on basophil 
activation through IgE-dependent reactions or cytokine me-
diation has increased considerably [28-30]. Moreover, a 
number of additional cell surface antigens involved in baso-
phil activation have been identified [31-40]. The current arti-
cle provides a summary of our current knowledge on cell 
surface activation-linked antigens on human basophils, with 
special focus on biochemical mechanisms underlying ex-
pression and activation of these antigens, and potential clini-
cal implications. 

CELL SURFACE PHENOTYPE OF RESTING BLOOD 
BASOPHILS  

Resting blood basophils express a unique composition of 
cell surface antigens, including the high-affinity receptor for 
IgE, receptors for various interleukins such as IL-3 and GM-
CSF, chemokine receptors, various complement receptors 
including CR1 (CD35) and the C5a receptor (CD88), several 
adhesion molecules such as beta 1 and beta 2 integrins, or 
ICAM-1 (CD54), and various other myeloid cell surface 
antigens [9-12,18-20,33,41-45] (Table 1). In common with 
all leukocytes, basophils display the pan leukocyte antigen 
CD45 and the hyaluronan receptor CD44 [9-11] (Table 1). 
Unlike mast cells, resting blood basophils do not express 
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substantial amounts of KIT (CD117) or vitronectin receptor 
(CD51/CD61) [9-11]. However, immature basophil progeni-
tor cells may express low amounts of KIT, and the same may 
hold true for rapidly mobilized (activated) blood basophils 
[46-48].  

A unique and rather specific marker for basophils and 
their progenitor cells is the ecto-enzyme ectonucleotide py-
rophosphatase/phosphodiesterases 3 (ENPP-3) clustered as 
CD203c [33,37-40]. In fact, CD203c is expressed on imma-
ture basophil-committed CD34+ progenitor cells, immature 
bone marrow basophils, and mature blood basophils [33]. As 

will be discussed below, CD203c is also an activation-linked 
cell surface antigen on human basophils. Other blood leuko-
cytes do not express substantial amounts of CD203c. How-
ever, tissue mast cells express low levels of CD203c, and 
when activated or transformed (neoplastic mast cells), the 
levels of CD203c on mast cells increase substantially [49]. 
Other cell surface antigens that have been described as acti-
vation-linked markers and are detectable on resting blood 
basophils include aminopeptidase N (CD13), the lysosomal 
membrane antigens LAMP-1 (CD107a), LAMP-2 
(CD107b), and LAMP-3 (CD63), and endolyn (CD164) [37-
40,50-53]. Most of these antigens are not only detectable on 

Table 1. Differentiation Antigens Expressed in Basophils and Mast Cells 

Expressed in 
Antigen 

Basophils  Mast Cells 

Function and/or 

Clinical Impact 

Surface  

IgER/Fc RI + + mediator release 

IL-2R/CD25 + -(+)* unknown 

IL-3R/CD123-CD132 + - multiple (basophils) 

IL-4R/CD124 + + unknown 

Siglec-3/CD33 + + target (neoplastic cells) 

CR1/CD35 + - complement activation 

Pgp-1/CD44 + + hyaluronan receptor 

CLA/CD45 + + pan leukocyte marker 

ICAM-1/CD54 + + adhesion 

C5aR/CD88 + +/- chemotaxis, release 

SCFR/KIT/CD117 -(+)** + multiple (mast cells) 

IL-8RA/CD128 + - chemotaxis 

IL-18R + - unknown 

Mediators 

Histamine + + mediator of allergy 

Heparin - + ATIII and tPA co-factor 

Tryptase +/-(+)** + protease, IHC marker 

Chymase - + protease, IHC marker 

Activation Antigens 

AP-N/CD13 + +/- upregulated (IgE+allergen) 

LAMP-3/CD63 + + classical baso test 

LAMP-1/CD107a + +/- upregulated (IgE+allergen) 

LAMP-2/CD107b + +/- upregulated (IgE+allergen) 

Endolyn/CD164 +/- - upregulated (IgE+allergen) 

E-NPP3/CD203c + +/- upregulated by IgE+  allergen or 

IL-3 (basophils) 

Other Granule Antigens 

Basogranulin/BB1 + - IHC marker (basophils) 

2D7 + - IHC marker (basophils) 

*In systemic mastocytosis, neoplastic mast cells aberrantly express CD25. **Immature basophils express low amounts of KIT and tryptase. SCF, stem cell factor; IHC, immunohis-
tochemistry; AP-N, aminopeptidase-N. 
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the surface of basophils but also in cytoplasmic (lysosomal) 
membranes within basophils. 

CONSEQUENCES OF IgE RECEPTOR CROSS-
LINKING  

During IgE receptor cross-linking, a number of signal 
transduction events and biochemical processes are initiated 
that lead to basophil activation and consecutive degranula-
tion [2,8,10,28,29]. Signalling molecules that are involved in 
IgE receptor activation and downstream signalling cascades 
in basophils (and mast cells) include (among others) Fyn, 
Syk, and Lyn, the PI3-kinase, Akt, and phospholipase C, 
Ras, Raf and the MAP kinases, as well as Src, Btk, Jnk, and 
PKC [2,8,10,28-30,54-57]. In addition, Jak2 and Stat5 acti-
vation may be initiated after IgE receptor cross-linking in 
basophils [54-57]. Most of these signalling pathways are 
interconnected and are considered to act together to lead to 
basophil activation with consecutive degranulation and me-
diator release as well as cytokine production, cytokine re-
lease, and generation of lipid mediators in basophils 
[2,8,10,28-30,54-57]. Moreover, upon IgE-receptor cross 
linking in basophils, a number of cell surface membrane an-
tigens appear to be translocated from cytoplasmic (lysoso-
mal) membranes onto the cell surface [37-40,50-53]. These 
upregulated cell surface membrane molecules include 
(among others) CD11b, CD13, CD63, CD107a, CD107b, 
and CD203c. IgE-mediated upregulation of these antigens 
may depend on distinct signalling pathways including the 
PI3 kinase/Akt pathway [39,40,50,58].   

EFFECTS OF INTERLEUKIN-3 AND OTHER IN-
TERLEUKINS 

Interleukin-3 (IL-3) not only promotes the differentiation 
and survival of human basophils but also releasability, adhe-
sion, migration, cytokine production, and surface receptor 
expression [15,18-24,59-61]. In allergic patients, IL-3 may 
even induce mediator secretion in the absence of other ago-
nists (i.e. allergens) [22]. An important aspect is that IL-3 
markedly triggers the expression of other cell surface anti-
gens on human basophils. Such upregulated antigens include 
CD203c and the receptor for IL-33 (ST2) [62,63]. The no-

tion that IL-3 promotes the expression of CD203c has to be 
taken into account when using CD203c as a basophil activa-
tion marker in allergic reactions [40,64]. An interesting as-
pect is that ST2 (IL-33 receptor) is not detectable on resting 
normal basophils by conventional flow cytometry but is de-
tectable on IL-3-exposed (primed) basophils (Fig. 1). In line 
with this observation, IL-33 synergizes with IL-3 in promot-
ing basophil activation and mediator secretion [63]. Similar 
to IL-3, IL-5 and GM-CSF can also activate human blood 
basophils and promote their releasability [15,19,23-25]. In 
addition, the receptors for IL-3, IL-5, and GM-CSF on baso-
phils share a common signal-transducing beta-chain [19,20]. 
However, despite expression of a common signalling recep-
tor-chain, not all effects of IL-3 on basophils are mimicked 
by IL-5 and GM-CSF, or are less pronounced upon exposure 
to GM-CSF or IL-5 compared to effects seen with IL-3. 
Other cytokines and interleukins such as nerve growth factor 
(NGF) or IL-33 also trigger the activation of resting human 
blood basophils [17,63]. However, again, the effects of these 
cytokines usually are less pronounced compared to effects 
provoked by IL-3 [65]. All in all, IL-3 appears to be a most 
effective cytokine-agonist for human blood basophils. 

Following cytokine exposure, a complex network of sig-
nal transduction molecules and pathways are activated in 
basophils. Key signalling molecules contributing to basophil 
activation after exposure to IL-3 are similar or the same 
compared to that involved in IgE receptor downstream sig-
nalling, and include the PI3-kinase/Akt/mTOR pathway, the 
MEK/ERK pathway, and the JAK/STAT pathway. An inter-
esting aspect is that signalling through the IL-3 receptor and 
IgE receptor share many similarities [66,67]. Moreoever, it 
has been reported that the FcR gamma-chain, which can 
serve as component of the IL-3 receptor, is required for IL-3-
induced production of IL-4 in mouse basophils [45]. 
Whether this holds also true for human blood basophils re-
mains at present unknown. 

Recently, the effects of various novel cytokines on signal 
transduction in human basophils have been explored and 
compared to IgE-dependent and IL-3-induced activation. 
Interestingly, the signalling pathways triggered by IL-33 in 

 

 

 

 

 

 

 
Fig. (1). Effects of IL-3 on expression of IL33-R and CD203c on human basophils. 

Peripheral blood basophils obtained from a healthy donor (left panel) and from a patient with chronic myeloid leukemia (right panel) were 
incubated with control medium (black line, open histogram) or recombinant interleukin-3, IL-3 (100 ng/ml) (grey histogram) at 37°C for 15 
minutes. Then, basophils were stained with an antibody against the IL-33 receptor ST2 and an antibody against CD203c, and were analyzed 
by multicolor flow cytometry. Incubation with IL-3 resulted in an enhanced (de novo) expression of the IL-33R (ST2) in normal basophils 
(left panel) and CML basophils (not shown), and in an enhanced expression of CD203c on normal basophils (not shown) and CML basophils 
(right panel). The grey line (open histogram) shows the isotype-matched control antibody. 
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blood basophils are different from that triggered by IL-3. 
Whereas IL-3 primarily activates the JAK/STAT pathway 
and ERK-activation in human basophils, IL-33 was found to 
activate the NFkB and p38 MAP-kinase pathway [63]. In 
line with this observation, IL-33 did not mimic all effects of 
IL-3 on human basophils. Likewise, in contrat to IL-3, IL-33 
did not prime human basophils for C5a-induced LTC4 gen-
eration [63]. Furthermore, unlike IL-3, IL-33 does not pro-
mote the expression of CD203c or other surface molecules in 
human basophils (unpublished observation). This is of inter-
est as IL-33 has been described to trigger releasability in 
human basophils [63,68,69]. All these observations suggest 
that translocation of membrane antigens onto the cell surface 
is not invariably linked to (not sufficient for) mediator secre-
tion in basophils. 

EFFECTS OF OTHER NATURAL LIGANDS 

Apart from IL-3 and other interleukins, a number of addi-
tional natural ligands can promote basophil activation. 
Among these natural regulators are the interferons, the com-
plement products C5a and C3a, and various chemokines 
such as MCP-1 or IL-8 [2,3,23-25,41-44,70-77]. Whereas 
interferon-alpha and interferon-gamma promote basophil 
releasability after exposure for 12-24 hours (presumably via 
effects mediated by accessory cells) [70,71], C5a and the 
chemokines rapidly induce mediator secretion as well as 
chemotaxis in basophils [41,44,72,73]. There are a number 
of other effects these natural ligands have on basophils, in-
cluding the regulation of cytokine production and release, 
survival, and adhesion [75-77]. Together, a number of dif-
ferent cytokines and chemokines regulate basophil function 
relevant to allergic or other inflammatory reactions. It is as-
sumed that these ligands act together to trigger basophil acti-
vation. Moreover, a number of additional intrinsic and ex-
trinsic factors, including the underlying disease, genetic 
background, micro-environment, presence and type of mi-
crobes, and drug intake may play a role and may determine 
releasability in human blood basophils [78-81].  

BASOPHIL ACTIVATION ASSAYS  

A number of different assays for measuring basophil ac-
tivation have been proposed in the past. The first robust as-
say based on IgE-dependent upregulation of a cell surface 
antigen on basophils was the CD63-test, also known as ba-
sophil-activation-test or ´baso-test´ [31,32,34,52,53,82,83]. 
Although exhibiting several limitations, the assay is em-
ployed as a standard in various centers. One limitation is that 
CD63 is not specific for basophils and is a less sensitive ac-
tivation parameter. An alternative assay that exhibits high 
sensitivity and specificity is based on IgE-dependent upregu-
lation of CD203c [36-40,64,84,85]. The advantage of this 
assay is that CD203c is specific for blood basophils (not 
found on other blood leukocytes) and that CD203c is a sensi-
tive activation parameter [36-40]. On the other hand, CD63 
may be more specific for allergic (IgE-dependent) reactions 
and may be less susceptible to non-specific upregulation by 
cytokines or other factors [36-39,62]. However, CD63 is not 
specific for basophils and may sometimes show false nega-
tive results because of its relatively low sensitivity. As a 
consequence, we recommend that basophil activation is 
measured by employing both CD63 and CD203c in a com-
bined approach by multi-color flow cytometry [38,64]. An-

other important aspect is that not only the percentage of reac-
tive basophils should be counted, but also the mean fluores-
cence intensity (MFI) [38,64]. In fact, using a standardized 
approach measuring the MFI of the test marker against the 
MFI of the isotype control should yield reliable and repro-
ducible results for allergen-induced basophil activation 
[38,64]. Finally, it is important to select the optimal set and 
type of allergen(s) to explore the allergic status at the effec-
tor cell level. Today, the use of recombinant allergens is rec-
ommended in basophil activation assays whenever possible 
[38,64]. 

SIGNALLING AND EFFECTOR MOLECULES AS 
POTENTIAL TARGETS OF THERAPY 

A number of signalling molecules and downstream effec-
tor molecules are critical to basophil activation and the con-
secutive release of pro-inflammatory mediator substances 
[2,8,10,28-30,54-57]. Several of these signalling molecules 
have recently been discussed as potential targets of therapy 
in allergic disorders [86-90]. A list of potential targets and 
some targeted drugs are shown in Table 2. In fact, there are a 
number of targeted drugs recognizing critical kinases and 
other targeted drugs used in clinical trials to treat cancer pa-
tients or patients with severe autoimmune disorders [91-96]. 
However, most of these drugs also have significant side ef-
fects, especially when multiple targets are identified [91-96]. 
Notably, most signal transduction inhibitors are not specific 
drugs, but are broadly acting drugs recognizing a number of 
different target kinases in various effector cells [97-99]. As a 
result, most kinase-targeting drugs cannot be used in patients 
with allergic disorders. Good examples for multi-kinase in-
hibitors that are applied in cancer patients and block IgE-
dependent histamine release by interfering with signal trans-
duction pathways in basophils are dasatinib and midostaurin 
(PKC412) [100,101]. Many more kinase blockers are avail-
able and applied in cancer patients, but their effects on baso-
phils or mast cells have not been investigated yet. More spe-
cific kinase inhibitors have also been developed, and some of 
them show inhibitory effects on basophil activation [102-
111]. Several of these inhibitors interact with and block Syk, 
suggesting that this kinase may play a particular role as po-
tential drug target in basophils. Several of the above targets 
may also be involved on the translocation of activation-
linked cell surface antigens (including CD63 and CD203c) 
on basophils. Indeed, basophils may be less capable of 
upregulating activation-linked cell surface antigens and to 
release proinflammatory mediators during treatment with 
multikinase inhibitors [112]. Whether such drug effects on 
IgE-mediated upregulation of CD antigens can be employed 
to monitor drug effects (on basophils) in these patients re-
mains at present unkown. 

CONCLUDING REMARKS AND FUTURE PERSPEC-
TIVES 

Activation-linked cell surface membrane antigens on ba-
sophils are increasingly used in research and in practice, in 
order to explore the biology of basophils, their role in vari-
ous pathologic reactions, and to determine their responses to 
allergens in allergic disorders. Moreover, basophil activation 
antigens are increasingly employed to screen for drug effects 
and to determine disease activity and responses to immuno-
therapy and other drugs in patients with allergic diseases. 
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During the past few years basophil activation antigens have 
been linked to certain signalling pathways and signalling 
molecules relevant to degranulation and mediator release. 
Several of these signalling molecules may represent potential 
drug targets. There is hope for the future that basophil re-
search will employ these basophil-targets and basophil-
activation markers with the goal to improve diagnostic as-
says as well as therapy in allergic patients. 
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