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Abstract: We propose a new iterative algorithm for the retrieval of the microphysical properties of stratospheric and 

tropospheric aerosols from multiwavelength lidar data. We consider the basic equation as an ill-posed problem and solve 

the system derived from spline collocation via a Padé iteration. The algorithm takes special care of the fact that the 

reconstruction of the distribution via spline collocation is very sensitive to the choice of base points of the chosen spline 

basis. The algorithm makes use of this fact by changing the base points used for the spline collocation at certain iteration 

steps. In addition, the effects of projection to ensure a nonnegative solution are examined. We tested how well this and 

other algorithms are suitable for retrieving the complex refractive index of the particles as well. We also examine whether 

the algorithm is capable of distinguishing between different, very small imaginary parts of the refractive index, which is 

often a main problem in practice. Finally, the algorithm is applied to real multiwavelength Raman lidar data and our 

results are partially validated by the thermodynamic chemical model Isorropia II. 
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1. INTRODUCTION 

 Aerosol particles in the Earth's atmosphere are having a 
wide range of influences on local and global climate and 
weather, such as on clouds and precipitation. They are 
important to understanding the chemical processes 
happening in the troposphere and the stratosphere, see [1]. 
Also, the direct and indirect effects of aerosols are the two 
largest contributions to the total uncertainty of the radiative 
forcing, which roughly describes the difference between 
incoming and outgoing energy of the tropopause, and thus 
can be used in researching global climate change. 

 There exist several methods to measure the concentration 
and attributes of aerosol particles, like the refractive index to 
estimate the single scattering albedo, or for instance aerosol 
size. One such method is lidar (light detection and ranging). 
In this paper, we will discuss a new algorithm to extract 
information about the distribution of the particles from 
multiwavelength lidar data, or more specifically, from 
extinction and backscatter coefficients gained from the 
respective profiles. 

 For multiple wavelength lidar we can obtain the 
following equation, in this case for number distribution of 
the particles 

( ) =
rmin

rmax r2Q /ext (r, , m)n(r)dr.          (1) 
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 Note that these functions Q  are the Mie kernel functions 

for spherical particles for backscatter ( ) and extinction 

(ext) wavelengths, respectively (see [2]). Here,  is the 

backscatter or extinction coefficient, m  the complex 

refractive index,  the wavelength and n(r)  the particle 

size distribution. The radii rmin  and rmax  are sensible lower 

and upper bounds for the size of the particles. 

 In common measurement setups, we expect a lidar setup 
consisting of 3 backscatter wavelengths (at 355, 532 and 
1064 nm) and 2 extinction wavelengths (at 355 and 532 nm). 

 Equation (1) is an integral equation of first Fredholm 

kind, thus, an ill-posed problem requiring regularization (see 

[3]). As can be seen from equation (1), the kernel function of 

this integral equation depends on the radius r  (which is the 

integration variable), the wavelength  and the refractive 

index m. 

 Much research has been done already in the area of 
solving this inverse equation. One approach that has been 
followed in [4,5] makes use of spline collocation and 
truncated singular decomposition. Also, to solve the 
nonlinear problem with unknown refractive index, the 
retrieval of the refractive index is handled by calculating 
solutions on a predefined grid and manually picking out 
solutions from that grid by criteria like the residual error. 
This is also done in the algorithm from [6], except that a 
Tikhonov method is used for the regularization here. 
Moreover, [6] employs a two-dimensional regularization 
approach which reduces extensive data postprocessing 
procedures. Also, there is lots of research into the questions 
on how special a priori information on the solution can be 
used to improve the results. In [7], for instance, a special 
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algorithm for the retrieval of bi-modal distributions is 
proposed. Another example can be found in [8], which takes 
special care to incorporate a priori information on the 
solution in the form of a nonnegativity constraint. Also, new 
mathematical methods have been considered, like for 
instance the maximum entropy method in [9] or Runge-Kutta 
type iteration methods in [10]. In this paper, we propose a 
novel method of finding a general formula for retrieving the 
aerosol microphsyical properties from inversion of 
multiwavelength lidar data, which can be used in a wide area 
of applications, not specializing on certain cases where lots 
of a priori information about the particles is already given. 

 Assuming the refractive index to be unknown (and thus, 
treating it as a variable for the equation) leads to a nonlinear 
ill-posed problem; we will not look at this approach. Instead, 
it is possible to look at the linear problem with fixed 
refractive index for each point on a predefined refractive 
index grid containing all viable possibilities, see [5], which 
will also be the method we will use here. 

 In this paper, we will focus solely on the retrieval of the 
volume distribution and refractive index, and the properties 
derived from it, like the effective radius or the volume 
concentration; of course, there exist several other problems 
on the chain from lidar signal data to microphysical 
properties, like obtaining the extinction and backscatter 
profiles from the preprocessed signals (see [11,12]), the 
recognition of homogenous aerosol layers in these profiles, 
see [6], or the computational complexity of the whole 
problem (see [13]). The EARLINET measurements started in 
May 2000 and are still ongoing; up to now, the EARLINET 
database represents the largest database for the aerosol 
distribution on a continental scale. It contains more than 
20000 aerosol profiles in terms of extinction, backscatter and 
lidar ratio, where the lidar ratio data has been retrieved from 
simultaneous and independent lidar measurements of aerosol 
extinction and backscatter, see [14]. Currently, the 
EARLINET network is running the EARLINET-ASOS 5-
year EU project, whose main objective is to provide 
accurate, well-defined, and easily accessible data products 
for use in science and environmental services. In particular, 
the optimization of the algorithms for the retrieval of the 
aerosol optical and microphysical properties is a crucial 
activity, with the main objective of providing a processing 
chain for the evaluation of lidar data, from raw signals to 
final products, see [15]. 

2. REGULARIZATION 

 The problem is, as mentioned, an ill-posed Fredholm 
integral equation of first kind. Thus, we regard the equation 

y(s) = Ax =
a

b
k(s, t)x(t)dt.           (2) 

 In this case, we assume A  to be a compact operator 

between separable Hilbert spaces X  and Y .  This is always 

the case for t [a,b]  and s [c,d],  thus X = L2[a,b]  and 

Y = L2[c,d]  and k L2 ([c,d] [a,b]).  Note here that 

L2[a,b]  denotes the space of square-integrable functions on 

the interval [a,b],  and L2 ([c,d] [a,b])  on the two-

dimensional interval [c,d] [a,b]  accordingly. This type of 

operator is always ill-posed in the sense of the Hadamard 

definition (see [3]). 

 We cannot just invert the operator A  to get A 1
 for the 

simple reason that A 1
 usually does not exist. We achieve 

existence and uniqueness by looking for the minimum-norm 

solution of 
 

x Xinf Ax y ,  which exists roughly spoken for 

all regular cases, and can be obtained via the Moore-Penrose 

inverse and the normal equations 

A*Ax = A*y,             (3) 

thus 

x = A+ y := (A*A) 1 A*y =
j=1

y, vj

j

u j .          (4) 

 Here, y, vj  denotes the inner product and A*
 denotes 

the adjoint operator of A.  We know that such a compact 

operator has a singular system {( j ;u j , vj )},  with the j  

being the singular values and the u j , vj  being the singular 

vectors. Usually, the singular values are ordered in 

descending order. The problem here that produces the 

instability is the fact that the singular values cluster at zero, 

thus amplifying the high frequencies which are usually 

present in noisy data. 

 So, the minimum-norm solution usually has no value at 

all; regularization is needed. Well-known and examined 

regularization techniques include the Truncated Singular 

Value Decomposition (TSVD), see [4], which just cuts off 

all the frequencies below a certain threshold , thus 

RTSVDy =
j=1

n y, vj

j

u j            (5) 

with n  and n+1 < .  Another technique that is widely 

used is the Tikhonov-Phillips Regularization (TPR), which 

shifts the spectrum of the operator (see [3,6,7]), thus 

RTPR y =
j=1

y, vj

j +
2 u j            (6) 

for a certain 
 .  Yet another method often used is the 

iterative Landweber method; the iteration equation is 

xi+1 = (I A*A)xi + A*y,           (7) 

where  is the relaxation parameter and acts as a sort of 

step-length for the iteration. Here, the number of iteration 

steps performed until the iteration is stopped (denoted k*
) 

acts as the regularization parameter. 

 This iteration converges to A+ y  for 
 

(0, 2/ A 2 ).  

 In all cases, the question remains on how to choose the 

regularization parameter (in our examples, ,  and k*
); this 

is done by parameter choice rules or stopping rules. The 

problem about the Landweber method (7) is its slow speed of 

convergence. From there, alternative iteration methods were 

developed which converge to a specified tolerance much 
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faster because the constraints on the relaxation parameter  

can be dropped. The method we are going to present here is 

of preconditioner type; that is, our iteration equation 

becomes 

xi+1 = (I TA*A)xi + TA*y,           (8) 

where T  is the preconditioning operator. The methods we 

are looking at in this paper are called Padé iterations (or, 

closely related, the Runge-Kutta iterations) and have been 

examined in [10,16,17]. These methods are derived from 

Padé approximations to the exponential function; indeed, it 

can be shown that using Showalter's method, solving the 

ordinary differential equation 

 
x + A*Ax = A*y             (9) 

with x(0) = 0  using the explicit Euler method results in the 

Landweber iteration, with the steplength of the Euler method 

corresponding to the relaxation parameter. Using other 

Runge-Kutta schemes, or Padé approximations to the 

exponential function, results in other regularization 

techniques; furthermore, for certain types of these iterations, 

the constraints on the relaxation parameter can be dropped 

and theoretically an arbitrary speed of convergence can be 

achieved. One of those methods is the (2,1)-Padé iteration, 

see [16], denoted by the operator P(2,1)
; the preconditioner 

here is defined by the polynomial 

t(s) =
1+ s / 3

1 2s / 3 + s2 / 6
,          (10) 

which results in the iteration equation 

P(2,1)xi := xi+1 = xi +  

j=0

1+
j
2

3

1 2 j
2

3
+

2 j
4

6

A*y A*Axi ,u j u j .        (11) 

 Note here that Padé is mainly chosen here for the 

massive speedup that can be obtained from using it, as there 

is no restriction on the relaxation parameter; the quality of 

the solution of a pure Padé iteration is nearly exactly the 

same as for the Landweber iteration. Finally, to get a 

regularization in the mathematical sense, we also need a 

stopping rule that stops the iteration after a finite number of 

steps, when the reconstruction fulfills certain properties. 

Here, we will use Morozov's discrepancy principle (see [3]), 

which stops at the index k*
 with 

  
k* = kmin y Axk ,  with > 1  and 

 
y y*

 for 

y*
 the unperturbed right-hand side, y* = Ax*.  Note that, for 

numerical stability reasons, we are reconstructing the particle 

volume distribution instead of the size distribution; however, 

these two distributions can be directly calculated from each 

other. 

 Since we are trying to reconstruct the particle volume 

distribution, it is obvious that our true solutions are functions 

x*(t)  with x*(t) 0  for t [rmin , rmax ]  (i.e., nonnegative 

functions). This condition on the solution, however, will 

usually not be fulfilled for a reconstructed solution x(t) . It is 

possible to include the information of nonnegativity as a 

priori information on the solution, though. We will do this by 

performing an orthogonal projection on the set of 

nonnegative functions after each iteration step; thus, the 

iteration equation (11) becomes 

xi+1 =P
L
+

2 [rmin ,rmax ]
P(2,1)xi ,          (12) 

where P
L
+

2 [rmin ,rmax ]
 denotes the orthogonal projector onto the 

set of nonnegative square-integrable functions. See Fig. (1) 

for the effects of projection on our regularized solution. Note 

that the plot shown in Fig. (1) is the volume distribution 

v(r)  of the particles. The volume concentration vt  is usually 

given for aerosols in m
3
/cm

3
. As the volume distribution is 

defined as 
dvt

dr
,  the resulting unit for v(r)  is the given 

m
3
/(cm

3
m). This is the unit often used in the context of 

aerosol volume concentration, for instance in [6,7]. In that 

figure, see the reconstruction of a mono-modal log-normal 

distribution; the definition of the multi-modal log-normal 

distribution, 

n(r) =
j=1

M Nt , j

2 r ln j

exp
(ln r ln rmed, j )

2

2(ln j )
2 ,       (13) 

where Nt , j  is the total number concentration, j  the 

geometric standard deviation and rmed, j  the median radius of 

the mode j.  The number of modes is described by M ,  so in 

the mono-modal case we have M = 1,  and we can omit the 

index j.  

3. DISCRETIZATION 

 For the measurement case, we look at the semi-discrete 

problem A : L2[rmin , rmax ] n ,  which maps from the 

infinite-dimensional space of square-integrable functions on 

[rmin ,  rmax ]  to the finite-dimensional space of real vectors 

with n  entries. This is due to the fact that in practice we 

only have a finite number of data points (in lidar case, 

backscatter and extinction coefficients at certain 

wavelengths). Now, for actually calculating solutions, we 

also need to discretize in a fitting way. It has been shown 

that discretization by projection in itself is already a 

regularization, with the coarseness of the discretization 

acting as a sort of regularization parameter. Several methods 

can be used for discretizing the space L2[rmin , rmax ],  such as 

standard quadrature approaches or Galerkin discretization. In 

this paper, we will make use of spline collocation using B-

splines, thus projecting to a finite-dimensional space. For 

more information on B splines than the quick introduction 

here, please refer to [18]. 

 Assume our data is available for n  wavelengths, 

 1 < 2 < … < n .  Let us project the space L2[rmin , rmax ]  to 

dimension l;  for spline collocation, that means we have a 

spline basis with l  elements for the space. Let us choose a 
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vector of base points 
 
b = (b1,…,bn )  and a degree d  for the 

B splines. In this case, we have l = n + d 2.  The actual 

splines of degree d  can be calculated by the recursion 

defined by 

Ni,1(r) = [bi ,bi+1] (r)          (14) 

and 

Ni,d (r) =
r bi

bi+d 1 bi

Ni,d 1(r) +
bi+d r

bi+d bi+1

Ni+1,d 1(r).  

 We will denote this basis of B splines of degree d  by 

 
{ 1, 2 ,…, l }.  We now have to solve the equation 

Ax = y( i ),           (15) 

where the matrix  A
l ,n

 is computed by 

Aij =
rmin

rmax r2Q /ext (r, i , m) j (r)dr.         (16) 

 We will use the (2,1)-Padé iteration to solve (15). As a 

stopping rule, the usual discrepancy principle will be 

applied, which stops the iteration at the index k*
 with 

 

y Ax
k* < y Axk         (17) 

for all 
 
k = 0,1,…, k* 1  and some > 1.  The data error is 

denoted by  and fulfills the property 
 

y y* .  To 

ensure regularization properties of this method in the 

mathematical sense, we just turn off the projection after a 

certain number of projected iterations p  and restart the 

iteration with the last iterate as starting value and without 

projection, thus our iteration equation becomes 

 
xi+1 =P

L
+

2 [rmin ,rmax ]
P(2,1)xi          (18) 

for i < p  and 

xi+1 = P(2,1)xi           (19) 

for i p,  theoretically rendering the method a normal Padé 

iteration equation (without projection), with a starting value 

calculated by a certain algorithm (a projected iteration). The 

main difference here to the algorithm presented in [10] is the 

projection in the first p  iteration steps. For results obtained 

by this algorithm, take a look at the result sections, 5 and 6. 

 

Fig. (2). Reconstruction of a monomodal distribution with 

rmed = 0.1, = 1.6  and Nt = 1.  The solid line is the true solution, the 

dashed line the reconstruction with 80 splines and the dotted line 
with 3 splines. 

 As mentioned above, discretization is in itself already a 
regularization. It is well known though that the regularizing 
effect of discretization is small, so additional regularization 
is needed in most cases except when the problem is very 
mildly ill-posed. This also directly pertains to the question 
on how to choose the number of base points (or splines, as 
these numbers are directly dependent on each other). While 
choosing far too few or too many base points results in the 
known effects of over- or underregularization (see Fig. 2), all 
values that are less extreme are expected to lead to sensible 
results. In Fig. (2), there was no data error added. Still, it is 
possible to see how very extreme choices can already 
prevent proper regularization. Of course, a completely 
general conclusion as the number of splines cannot be made 
because it is always dependent on the input data, too. What 
we can roughly say is that any number in the 8-20 range is 
acceptable for the kind of input data we usually expect in our 
lidar environment. If the number of splines is chosen in that 
area, the methodology works in all cases we have tried so 
far. Of course, as always with ill-posed problems, large error 
levels can make the results unfeasible; again, this cannot be 

Fig. (1). Reconstruction of a monomodal distribution with rmed = 0.1, = 1.6  and Nt = 1.  On the left, the solution is reconstructed without 

projection, on the right, without sliding the base points, but with projection. The solid line marks the true solution x* ,  the dashed line the 

reconstruction after thirty iterations x30 .  The  symbols mark the base points at that iteration. 
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generalized because it heavily depends on the input data 
itself. 

4. ADAPTIVE CHOICE OF BASE POINTS 

 In the following section, a newly developed algorithm 
will be compared to two other algorithms. The Padé 
algorithm without base point adaptation and without 
projection from [10] will be referred to as algorithm 2, and 
the hybrid regularization method (TSVD) from [4] equipped 
with the discrepancy principle as algorithm 1. 

 There is a strong connection between the choice of base 

points and the quality of the reconstruction of the volume 

distribution. To take that into consideration, the authors 

propose an algorithm that adapts the base points according to 

certain parameters. Indeed, it is easy to see how the solution 

is strongly smoothed out in areas with only a few base 

points, and sharp features require lots of base points in their 

vicinity to be reconstructed accurately. To respect that fact, 

our idea is to slide the base points according to some 

scheme. Thus, we propose to make the base points of the 

splines variable, sliding them towards the points that have 

more weight in the function. This can be done a certain 

number of times, always projecting the iteration in between. 

Of course, the iteration operator P(2,1)
 has to be recalculated 

after every base point change. Denote the vector of base 

points in iteration step k  with bk .  After we get a final set of 

base points, we restart the Padé iteration with our last 

projected iterate as starting value, and stop with the 

discrepancy principle, thus rendering the algorithm a 

regularization in the mathematical sense. Indeed, in our 

experiments, the discrepancy principle always stopped after 

the first iteration, hinting at the fact that the starting value is 

already close to the solution. Let us now formalize this 

algorithm, further referred to as algorithm 3. 

4.1. Adaptive Base point Padé Algorithm 

1. Choose an equidistant grid of base points b0  with 

 
b0

n
 and a degree d  for the B splines. Calculate P(2,1) .  

Set index i = 0.  

2. Perform k1  projected Padé iterations, see equation (12). 

3. After k1  iterations, compute volume distribution vi (r).  

 from spline coefficients xi  as a linear combination with 

the splines. Equidistantly discretize vi (r)  to a vector 

 
vi

P .  Choose new base points 
 
(bi ) j , j = 1,…,n  according 

to this formula: 

(bi ) j =
N
min

p=1

N

(vk )p wj
p=1

P

(vk )p ,        (20) 

 where  w
n

 with rmin = w1 < w2 < w3 <… < wn = rmax .  

With the vector of new base points (bi ),  recalculate P(2,1) .  

Calculate the new xi  as the best approximation to the old xi  

in the new spline space. 

4. Repeat steps 2 and 3 l  times. 

5. Perform k2  projected Padé iterations. If discrepancy 

principle 
 

y Ax
k*  is satisfied, exit with current 

iteration x
k*  as solution. 

6. Perform Padé iteration steps xi+1 = P(2,1)xi ,  (not 

projected!) until discrepancy principle is satisfied. k*
 is the 

stoppping index, x
k*  our regularized solution. 

 Remark. If (bi )  contains double entries, i.e. a base point 

has been chosen more than once, it is always possible to 

increase m  and repeat step 3 until this no longer occurs. 

This is more of a pathological condition though, that did not 

occur yet in our experiments. 

 Described in words, what this algorithm accomplishes is 

shifting the base points of the splines towards the points with 

larger function values in their vicinity; the vector w  

describes a set of weights that are applied to the partial sums 

of the function up to a specific index. When the sum is 

greater than a certain portion of the total sum over the 

discretized function, the corresponding place will be added 

to the list of base points. By setting w0 = rmin  and wn = rmax  

respectively, we ensure that the left and right end of the 

interval considered are always included in the list of base 

points. The whole procedure of shifting the base points is 

done l  times. This, together with the projection of the spline 

coefficients, is the large improvement of the algorithm; using 

a pure Padé iteration without an adaptation of base points or 

projection will result in speedups, but not in noticeably better 

results. The adaption of base points and the projection, is 

also exactly what distinguishes algorithm 3 from algorithm 

2. 

 Let us take a look at the example presented in Fig. (3). 

The true solution here is a monomodal log-normal 

distribution with the values rmed = 0.1 , = 1.6  and Nt = 1,  

example 1 from Table 1. We will consider the distribution in 

the interval [0,1]  (note here that the unit for the radius will 

always be m in this paper). We start the Padé iteration with 

nine equidistant base points on the interval [0,1].  In all our 

pictures, the solid line denotes the true solution, the dashed 

line our reconstruction, and the  symbols mark the base 

points. One can see this very well in Fig. (3a) how the 

solution after one iteration step already takes a form with a 

peak at about the same radius as the true solution, but 

heavily smoothed out. In the next plot (b), the first change of 

base points has taken place; it is possible to see that, while 

the smoother parts of the reconstruction stay smooth, the 

peak becomes more pronounced. Observe how the base 

points have already moved to the left here. In plot (c), after 

ten iteration steps, this effect is still stronger. Plot (d) is the 

final iteration step with a reconstruction error of about 8%.  

The input error on the data y  was 3%.  This is not a 

spectacular result, as this is one of the more unproblematic 

distributions for this inversion. 
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 It is possible to see here that both our projection and the 

base point change are beneficial to the algorithm; in Fig. (1a), 

the projection is turned off, in (b), the base point change. The 

relative errors here are 30%  or 18%,  respectively. If the 

solution is not projected, the distribution is marred by an artifact 

near the end of the distribution, where the function drops below 

zero. If the base points are left distributed equidistantly, the 

reconstructed mode will become too wide and the median 

radius not reconstructed properly. 

 We will now consider another monomodal log-normal 

distribution, case 2 from Table 1. This distribution is known 

to be quite problematic in the reconstruction, insofar as 

standard algorithms as in [4,6] fail to deliver sensible results 

here. Our algorithm seems to work very well with it, though. 

Look at Fig. (4) to see the reconstruction after 30 steps. the 

reconstruction error for an input error of 1%  was less than 

6%. 

5. NUMERICAL RESULTS 

 Now we will see how well the presented algorithm will 
do in lidar simulation. For all the simulation setups used, 
look at Table 1. 

 For all our test runs, we chose the spline degree d = 4,  

the vector of starting base points b0  with 9 components, the 

number of projected iteration steps p = 30  (for algorithm 3), 

the discrepancy principle parameter =1.1  and the 

relaxation parameter 
 

= 1/ A 2
 for algorithm 2 and 

= 100/ A 2
 for algorithm 3. 

 Note here that all the simulations we made have been 
made with a wavelength setup of 3+2, meaning backscatter 
wavelengths at 355, 532 and 1064 nm and extinction 
wavelengths at 355 and 532 nm. These are the wavelengths 
usually found in application setups, see for instance [14]; of 

 

Fig. (3). Reconstruction of the distribution from Fig. (1) with algorithm 3. From the left to the right, the reconstruction is shown after 1, 5, 10 

and 30 iteration steps as the dashed line. The solid line is the true solution, the  symbols mark the base points at each shown iteration. 

Observe how the base points adapt themselves to the structure of the true solution. 

Table 1. Simulation Cases for Microphysical Retrieval. The Parameters rmed  (in m),  and Nt  are the Ones Defining a Mono-

Modal Log-Normal Distribution, see Equation (13), m is the Complex Refractive Index 

 

Case   Number of Modes   rmed       Nt    m  

 1   1   0.1   1.6   1   1.5 + 0.01i 

2   1   0.5   1.2   1   1.4 + 0.05i 

3   2   (0.1, 0.5)   (1.6, 1.2)   (1, 0.05)   1.4 + 0.075i  

4   2   (0.1, 0.5)   (1.6, 1.2)   (0.5, 0.01)   1.7 + 0.005i  
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course, simulating more wavelengths may generate better 
results, but these experiments have been omitted because 
such data will usually not be available in an application 
scenario. We performed our simulations (also see [15] for 
the more general framework) for this case exclusively as it is 
the most common setup used that is viable for the retrieval of 
the volume distribution at all (for less than 3+2 wavelengths, 
we do not expect any good results, see [10,5]). For the 
future, especially setups with more extinction wavelengths 
can become interesting as the Lidar data could for instance 
be combined with sun photometer measurements, see [19]. 

 

Fig. (4). Reconstruction of case 2 for * = 1%  with algorithm 3. 

 Note that while all these calculations could also be done 

for the number density function n(r)  (see equation (1)), we 

actually perform them with the volume distribution for 

numerical stability reasons. The volume distribution is given 

by v(r) =
4 r3

3
n(r),  so number and volume concentration 

can be directly calculated from each other. All our examples 

given will be mono- or multimodal log-normal distributions, 

defined already in equation (13). We will work with the 

associated volume distribution accordingly. All the data 

perturbations we perform will be Gaussian random, fulfilling 

the property 
y y*

y* = *,  so *  denotes the noise level in 

percent. 

 Throughout the paper, we will do simulations on four 

different noise levels: 1%,5%,15%  and 25%.  The perturbed 

signals are gained by applying a Gaussian error to the data 

and normalizing the error so that 

 

y y

y
= *

 is satisfied. 

For now, we will compare the quality of the reconstruction 

for the effective radius of the particles; this is derived from 

the particle surface-area concentration (which has the unit 

m
2
cm

3
), 

at = 3
v(r)

r
dr,           (21) 

and the volume concentration (which has the unit m
3
cm

3
), 

vt = v(r)dr,           (22) 

and is defined by 

reff = 3
vt

at

.            (23) 

 Later on, we will also try to retrieve the complex 
refractive index of the particles, see section 6. 

 Now, let us take a look at the results in Tables 2 and 3. 
For all four cases, the effective radius has been retrieved 100 
times for each of the four different error levels. That means 
that a set of 100 different sets of perturbed data were 
processed by each algorithm. 

Table 2. Retrieval Results for the Effective Radius for the 

Cases 1 and 2 from Table 1. The First Row Always 

Gives the mean Value and Standard Deviation of the 

Retrieved Effective Radius for 100 Runs, the Second 

Row the Median/Mean Retrieval Error in Percent. 

Note that the Unit for reff  is m 

 

 Noise Level   Algorithm 1   Algorithm 2   Algorithm 3  

 Case 1. reff = 0.17.   

1%    0.26 ± 0.04    0.13 ± 0.003    0.14 ± 0.003   

  53% / 53%    26% / 26%    20% / 21%   

 5%    0.19 ± 0.055    0.14 ± 0.007    0.14 ± 0.006   

  31% / 26%    22% / 22%    19% /19%   

 15%    0.20 ± 0.061    0.15 ± 0.023    0.15 ± 0.019   

  20% /12%    17% /16%    13% /11%   

 25%    0.25 ± 0.043    0.16 ± 0.04    0.17 ± 0.033   

  48% / 48%    21% / 22%    17% /18%   

Case 2. reff = 0.54.   

 1%    0.28 ± 0   0.58 ± 0.368    0.63 ± 0.211   

  50% / 50%    45% / 35%    28% / 22%   

 5%    0.28 ± 0   1.17 ± 0.698    0.51 ± 0.148   

  50% / 50%    132% /103%   20% /12%   

 15%    0.28 ± 0    1.28 ±1.14    0.48 ± 0.067   

  50% / 50%    146% / 82%   12% /15%   

 25%    0.32 ± 0.09    0.64 ± 4.767    0.40 ± 0.323   

  42% / 42%    230% / 53%   41% / 33%   

 

 Case 1 is a standard example that most algorithms for the 
retrieval of microphysical parameters have little trouble with. 
Indeed, this can be observed here too. One can see algorithm 
1 struggling here, as small error levels have the interesting 
effect of completely invalidating the results. For higher error 
levels, algorithm 1 becomes better suited. While the Padé 
algorithms seem to have a slight problem about always 
underestimating the effective radius (which could be 
produced by the discrepancy principle stopping too early, 
which is a common problem for low error levels), the hybrid 
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method (algorithm 1) overestimates. Also, the higher the 
error level gets, the more pronounced the difference between 
the projected algorithm 3 and the unprojected algorithms 1 
and 2. Note that sometimes, solution seem to be better for 
higher error levels; this could be attributed to the fact that the 
solution for errorless data already has some error (due to the 
ill-posedness), while higher errors have a tendency towards 
randomizing the results more, away from the solution for 
errorless data. 

Table 3. Retrieval Results for the Effective Radius for the 

Cases 3 and 4 from Table 1. The First Row Always 

Gives the Mean Value and Standard Deviation of the 

Retrieved Effective Radius for 100 Runs, the Second 

Row the Median/Mean Retrieval Error in Percent. 

Note that the Unit for reff  is m 

 

 Noise Level   Algorithm 1   Algorithm 2   Algorithm 3  

 Case 3. reff = 0.34.   

1%    0.37 ± 0.002    0.31 ± 0.054    0.32 ± 0.063   

  9% / 9%    15% /11%   13% / 9%   

5%    0.30 ± 0.057    0.29 ± 0.034    0.29 ± 0.04   

  22% / 20%    17% /17%    17% /17%   

15%   0.28 ± 0.038    0.29 ± 0.273    0.30 ± 0.046   

  20% /18%    41% / 28%    15% /14%   

25%   0.20 ± 0.035    0.24 ± 0.219    0.26 ± 0.054   

  41% / 41%    33% / 33%    23% / 21%  

Case 4. reff = 0.27.   

1%    0.23 ± 0.003    0.21 ± 0.015    0.21 ± 0.018   

  15% /15%    22% / 21%    22% / 21%   

5%    0.21 ± 0.025    0.21 ± 0.012    0.21 ± 0.026   

  20% / 20%    25% / 24%    20% / 20%   

15%   0.21 ± 0.049    0.20 ± 0.026    0.21 ± 0.020   

  28% / 20%    26% / 26%    20% /19%   

25%   0.30 ± 0.071    0.20 ± 0.030    0.21 ± 0.029   

  40% / 30%    28% / 27%    21% / 20%   

 

 The situation in case 2 looks quite different. Algorithms 

1 and 2 completely fail here. Algorithm 2 has big problems 

because of the “empty space” before the mode, see Fig. (4) 

in the range from 0 0.3 m; a large chunk of negative 

distribution is produced here (not shown). Something similar 

is true for algorithm 1; because this algorithm does not 

assume the base points to be distributed equidistantly, but by 

the zeros of Chebyshev polynomials, there are much more 

base points in the lower radius range than in the higher, 

resulting in a distribution which looks nothing the one to be 

reconstructed (not shown); also, because it is extremely 

smoothed out, it is nearly not possible to see any difference 

for the different error levels. Algorithm 3 is the only one 

who fares well in this example, because the projection 

counters the effect of large negative areas in the 

reconstruction. 

 All algorithms fare reasonably well for case 3 (see Fig. 5 
for an example with algorithm 3); algorithm 2 has some 
outliers though, making that algorithm slightly less reliable 
than the others. This can mostly be seen by the high standard 
deviation for the higher error levels. Also, algorithm 1 seems 
to have slight problems at the higher error levels. 

 

Fig. (5). Reconstruction of case 3 for * = 1%  with algorithm 3. 

 Case 4 also gets reconstructed fairly well by all 
algorithms, with a slight advantage for algorithm 3, 
especially at higher error levels. 

 Note here that we exclusively looked at simulation 

examples where the maximum sensible radius for the size of 

the particles can be set to 1 m. This is due to some 

restrictions. For one, our algorithm for calculating the kernel 

function is based on the one found in [2], which works in a 

recursive way and requires many more calculations for large 

radii; thus, integrating over this implementation of the kernel 

needs a lot more calculation time if the maximum radius is 

set to a high value. Much more important are the physical 

restrictions, though; as we are looking at Mie theory here, we 

know that we need the measuring wavelengths and the 

particle size in roughly similar magnitudes. Since we are 

looking at lidar data, we know that in practice our largest 

available wavelength is 1064 nm, making much larger radii 

infeasible to retrieve. Of course, this does not concern the 

algorithm itself, but only the source data; if the lidar data 

could, for instance, be combined with sun photometer data at 

larger wavelengths, the algorithm should still provide 

sensible results. To test this, we experimented with a 

simulated mono-modal distribution with rmed = 0.1, = 2.5  

and Nt = 1,  and assumed a maximum radius of 6 m. A data 

error of 5%  was added. First, we ran the algorithm with the 

same five wavelengths as before (extinction and backscatter 

each at 355 and 532 nm and backscatter at 1064 nm). See the 

result in Fig. (6). It is possible to see how the data obviously 

contains very little information behind a certain point, while 

the area with smaller radii is still reconstructed in an 

acceptable manner. For the second experiment, we added an 

extinction wavelength at 1064 nm, backscatter and extinction 

wavelengths each at 1596 and 3192 nm and a backscatter 
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wavelength at 6384 nm. Note that these wavelengths are 

purely artificial, and have been chosen as to roughly 

approximate the spacing of the true available lidar 

wavelengths. See Fig. (7) for the result. The algorithm was 

able to perform a good reconstruction up to a radius of 6 m. 

 

Fig. (6). Reconstruction of a very wide mode with with 

rmed = 0.1, = 2.5  and Nt = 1,  for * = 5%,  performed with the usual 

five wavelengths and algorithm 3. 

 

Fig. (7). Reconstruction of a very wide mode with with 

rmed = 0.1, = 2.5  and Nt = 1,  for * = 5%,  performed with the usual 

five wavelengths plus an extinction wavelength at 1064 nm, 

backscatter and extinction wavelengths each at 1596 and 3192 nm 
and a backscatter wavelength at 6384 nm and algorithm 3. 

6. UNKNOWN REFRACTIVE INDEX 

 Now, the question remains how to retrieve the complex 

refractive index m  in the case it is not known, which will be 

the usual case in an application scenario. Note here that this 

has not been done yet with a Padé iteration. This is usually 

solved by breaking down the nonlinear problem into a finite 

set of linear problems, by separately calculating solutions for 

the problem at every point of a discretized grid of refractive 

indices. This has been done in [4], for instance. Note that the 

procedure used there fails here; while the algorithm from [4] 

calculates a certain set of different solutions at every point of 

the refractive index grid and chooses the one with the 

smallest residual (in other words, min y Ax , with the x  

being from the set of possible results mentioned earlier), the 

algorithms here calculate only one solution per refractive 

index; furthermore, since we are using a true regularization 

algorithm stopped by the discrepancy principle, it is obvious 

that using the grid of residuals y Ax  cannot lead to 

sensible results. Because the discrepancy stops the iteration 

at the step where 
 

y Ax
k*  holds, the retrieved 

residual will be nearly identical for all refractive indices, 

rendering that criterion worthless in this case. So, our 

approach must be slightly altered here; instead of using the 

discrepancy principle, we stop the iteration after a fixed 

number of iterations that is determined in some way by the 

input error level, thus ensuring that over- and 

underregularization is restricted. Experiments have shown us 

that the very simple formula 

k* = ( * ) 1           (24) 

is sufficient for that, where the ( * ) 1  operator denotes the 

integer part of the real number ( * ) 1
. 

 This procedure has led to some very interesting results. 

The grid used was always the same, 21 equidistant points on 

the real axis from 1.3  to 1.8  and 21 points on the imaginary 

axis from 0  to 0.1.  

Table 4. Simulation Cases for Refractive Index Retrieval. 

The Parameters rmed  (in m),  and Nt  are the 

Ones Defining a Mono-Modal Log-Normal 

Distribution, see Equation (13), m is the Complex 

Refractive Index 

 

 Case   rmed       Nt    m  

 1   0.1   1.6   1   1.4 + 0.075i 

2   0.5   1.2   1   1.7 + 0.005i 

 

 Experiments have shown (see [4]) that we expect to see a 
diagonal structure in the retrieved refractive index grid, 
ideally with the point of lowest residual error on the diagonal 
and close to the true solution. See Table 4 for the two test 
cases examined here. Generally, retrieval works better in 
cases where the ill-posedness of the problem is smallest for 
the true solution, i.e. in cases with high real and low 
imaginary part of the refractive index, meaning case 2 in our 
experiment cases, see Fig. (8). The diagonal is present and 
very sharply defined, making it easy to pick out a suitable 
refractive index as solution. For more ill-posed problems, 
like case 1, retrieval of the refractive index is much less 
stable and more prone to error, see Fig. (9). The diagonals 
here get noticeably larger, needing human interaction to pick 
out suitable refractive indices. It is possible to see that the 
other algorithms are prone to picking a “best solution” 
somewhere on the border of the examined grid. 

 The results of the refractive index retrieval have been 
summarized in Table 5. Note that the solution with the 
smallest residual as reconstructed refractive index was 
automatically picked. For every error level, example and 
algorithm, we performed 100 test runs. We always use 
21x21 grids for the refractive index, which according to 
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computational experiments (see [13]) is a good compromise 
between speed and accuracy for the retrieval of the refractive 
index (on a normal workstation PC, one run needs about 15 
minutes to complete). 

 Now, let us take a look at Table 5. For the mean value of 

a vector 
 
n1,…,nk  we assume the usual definition 

n =
1

k j=1

k
n j .  Also, if we assume the values are sorted like 

 
n1 n2 … nk ,  the median value is defined by 

 
n = n(k+1)/2  

for odd k  and 
 

n =
nk /2 + n(k+1)/2

2
 for even k.  One can see 

that the quality of the reconstruction not only depends on the 

algorithm, but also on the example. For the two examples, 

which are very different in nature (low real part and high 

imaginary part of the refractive index means a very high 

degree of ill-posedness, the opposite a lower degree), one 

can see that the quality of the results differ greatly. While all 

algorithm are able to produce acceptable results for case 2, 

case 1 is much more tricky. Both examples here get handled 

best by the new algorithm 3, though. 

 Also note that in contrast to previous algorithms, the 
numbers in Table 5 are generated automatically  no user 
interaction whatsoever was done to obtain these results. This 
might get us a big step closer to the goal of fully-automated 
lidar data processing as outlined in [15]. 

 Now, keep in mind that one of the reasons we try to 

retrieve the refractive index is because we are trying to 

discern the particles present in the examined layer. A big 

problem here is distinguishing the different kinds of particles 

that have very low imaginary parts of the refractive index, 

about (m) < 0.01.  To see how well our algorithms          

can cope with that problem, we  perform  another  simulation  

 

experiment. We only try to retrieve the imaginary part of the 

refractive index now, and sort them into different bins. We 

propose to define the bins between the imaginary values 0, 

0.001i, 0.005i, 0.0075i and 0.01i. Then we take the mono-

modal distribution from case 2 from Table 4, and assume 

different refractive indices of mj = 1.5 + qj ,  where 

q = (0, 0.0005, 0.002, 0.004, 0.006, 0.009)        (25) 

and see if they are sorted into the correct bins by the 

different algorithms. Again, this is done a hundred times per 

error level, with algorithm 3. The grid used was 21x21 

points, but with a maximum imaginary part of (m) = 0.01.  
See Table 6 for results. One can see that distinguishing the 

imaginary part with the help of the bins leads to satisfactory 

results. The accuracy for all cases lies in similar dimensions 

as the input error level, which is a good result. Thus, this 

algorithm might also be suited, maybe with some future 

extensions and modifications, to accurately distinguish 

between particles with a low imaginary refractive index. 

 

Fig. (8). Refractive index grids for case 2 from Table 4 with a data error of 5% for algorithms 2 ((a) on the left) and 3 ((b) on the right). The 
circle denotes the true refractive index, the  mark the retrieved one. Also (m)  denotes the real part and (m)  denotes the imaginary part 

of the complex number m.  

 

Fig. (9). Refractive index grids for case 1 from Table 4 with a data error of 5% for algorithms 2 ((a) on the left) and 3 ((b) on the right). 
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Table 5. This Table Shows the Retrieval Results for the 

Refractive Index for Cases 1 and 2 with Algorithms 

1-3. Displayed is the Median Reconstruction Error 

(Real Part/Imaginary Part. Real and Imaginary 

Parts were Examined Separately for the Median, but 

they are Written in One Line for Clarity) 

 

 Noise Level   Algorithm 1   Algorithm 2   Algorithm 3 

 Case 1. m = 1.4 + 0.075 i.  

 1%   0.1/0.02i   0.1/0.015i   0.1/0.015i  

 5%   0.15/0.04i   0.125/0.025i   0.15/0.025i  

 15%   0.15/0.04i   0.175/0.03i   0.175/0.025i  

 25%   0.2/0.05i   0.225/0.035i   0.175/0.03i  

 Case 2. m = 1.7 + 0.005 i.  

 1%   0.05/0.005i  0.05/0   0.05/0  

 5%   0.05/0.005i  0.05/0   0.05/0  

 15%   0.05/0.01i   0.05/0.005i   0.05/0.005i  

 25%   0.075/ 0.015i  0.1/0.015i   0.075/0.01i  

7. APPLICATION CASE STUDY 

 To validate our algorithm, we applied it to real 
multiwavelength Raman lidar data for a specific height 
above the Planetary Boundary Layer (i.e. between 2000 and 
2500 m). The measurements were taken during a biomass 
burning event that occurred on June 28-30, 2007, over 
Athens, Greece. 

 In this paper, the lidar measurements taken on June 29, 

2007 are examined. At this date, the smoke was still quite 

fresh (about 1-1.5 hours old), so it is expected for the 

aerosols to be very weakly absorbing (see [20,21]). Also, 

concurrent radiosonde data of the relative humidity gave a 

value of the order of 50% and a potential temperature of 285 

K. Then, we used our algorithm to retrieve both the volume 

distribution and the refractive index of the aerosols (see Figs. 

(10, 11 for details); as there was no available information of 

the error level, we fixed the iteration to 30 steps. As can be 

expected, the diagonal in the refractive index grid is clearly 

visible in Fig. (10), with a minimum residual error at 

m = 1.37  and an average index for the ten best points of 

m = 1.386 + 0.006i.  The refractive index  calculated  by  our  

 

Table 6. Results for Distinguishing Particles of Low Imaginary Refractive Index. The Real Part of the True Refractive Index was 

1.5. The Percentages Say how Often the Refractive Index was Put in the Respective Bin. Each Column Marks a Specific 

Bin, with the Lower and Upper Bound Given in the Column Header. The Asterisk Symbols Mark the Correct Bin 

 

Noise Level 0 – 0.001   0.001 – 0.005    0.005 – 0.0075  0.0075 – 0.01 

(m) = 0.0005  

1%  *88%   12%   0%   0%  

5%  *77%   23%   0%   0%  

15%  *61%   39%   0%   0%  

25%  *53%   47%   0%   0%  

(m) = 0.002  

1%  0%   *100%  0%   0%  

5%  11%   *89%   0%   0%  

15%  28%   *69%   3%   3%  

25%  43%   *57%   0%   0%  

(m) = 0.004  

1%  0%   *100%  0%   0%  

5%  0%   *93%   7%   0%  

15%  6%   *71%   22%   1%  

25%  17%   *47%   33%   3%  

(m) = 0.006  

1%  0%   4%   *93%   3%  

5%  0%   16%   *77%   7%  

15%  1%   20%   *56%   23%  

25%  3%   21%   *41%   35%  

(m) = 0.009  

1%  0%   0%   4%   *96%  

5%  0%   0%   18%   *82%  

15%  0%   2%   31%   *67%  

25%  1%   9%   37%   *53%  
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algorithm is in accordance with the values given in [20] and 

the references therein. 

 

Fig. (10). Refractive index grid for the measurement data from June 

29, 2007 from Athens. A diagonal line is clearly visible. The 

minimum refractive index can be found at the value m = 1.37 , while 

the proposed solution consisting of the average of the ten best 

points is m = 1.386 + 0.006i.  

 We can see in Fig. (11) that the aerosol volume 

distribution that has been retrieved is bimodal (modes 

centered around 0.06  and 0.33  m in radius, respectively). 

This is plausible, since it is expected that the fresh smoke 

(larger) aerosols are quickly mixed with anthropogenic 

(smaller) ones emitted by various sources over the city of 

Athens, resulting in a mixture of quite fresh smoke aerosols 

and anthropogenically polluted ones. This effect could 

explain the bi-modal particle volume distribution found in 

our case. Indeed, in situ measurements of quite fresh 

biomass burning aerosols during the DABEX experiment in 

West Africa (see [21]) showed that this type of particles 

followed a nearly bi-modal size distribution and had 

preponderant radii of particles of the order of 

0.051 0.35μm,  while similar and slightly larger values, 

including the aging of particles, were found in [20] and [22] 

over Germany during European and Canadian forest fires. 

However, it has to be noted that the latter paper [22] tackled 

the effect of mixing anthropogenic pollution and biomass 

burning particles, where again bi-modal particle size 

distributions were found. Therefore, our results on the 

volume distribution (and thus, the size distribution) and the 

range of the particle radii are in agreement with previous 

observations of mixing of biomass burning and 

anthropogenic particles. 

 As a next step, using as an input the measured value of 

the relative humidity and temperature of the atmosphere into 

the chemical thermodynamic model ISORROPIA II (see 

[23]), we inferred, after an iteration procedure, the most 

probable chemical composition of the sampled aerosols: 2% 

black carbon (BC) and 98% organic carbon (OC) for the 

bigger particles (radii between 0.15 and 0.6 m), and 1% 

BC, 49% ammonium sulfate and 50% water for the smaller 

particles (radii between 0.01 and 0.15 m) sampled. This 

corroborates our hypothesis about mixing of biomass 

burning and anthropogenic particles over the city of Athens. 

In addition, ISORROPIA II calculated the most probable 

values of the refractive index of the aerosols: 

m = 1.4059 + 0.006i  for the larger particles and 

m = 1.4062 + 0.006i  for the smaller particles. This is in very 

good agreement with the retrieved refractive index of 

m = 1.386 + 0.006i  inferred by our proposed algorithm. It is 

worth mentioning here that there is a need for the accurate 

retrieval of the imaginary part of the aerosols, as it is 

sometimes very hard to distinguish particles of low refractive 

index with (m) < 0.01,  as stated before. 

 

Fig. (11). The reconstructed distribution for the measurement data 

from June 29, 2007 from Athens for the refractive index at 

m = 1.37.  Note here that there are clearly two modes, a fine and a 

coarse one. Our experiments suggest that while these have a quite 

different chemical composition, the refractive indices are very 
similar, making the retrieval possible at this point. 

 Thus, our retrieved refractive index data by both the 

mathematical algorithm and the ISORROPIA II model are in 

good agreement with values reported by several authors for 

mixing of biomass burning with anthropogenic particles (see 

[20,22]) where the complex refractive indices ranged from 

1.37 up to 1.6 (real part) and the mean imaginary part was 

always < 0.01i.  

8. CONCLUSION 

 A new algorithm for the retrieval of the volume 
distribution and/or effective radius of aerosol layers from 
lidar data was presented and tested for its viability. 
Additionally, the possiblity of retrieving the complex 
refractive indices via this algorithm have been investigated. 
Indeed, as already shown in [10], by using Padé iteration the 
computer runtime can be drastically reduced. Moreover, our 
experiments so far prove that by choosing a suitable spline 
basis for the reconstruction space, better convergence results 
can be obtained. Also, by using the discrepancy principle for 
stopping, the method we presented becomes a regularization 
in the mathematical sense, incorporating the starting value 
and choice of base points as a priori information on the 
solution; this is also made possible by the fact that projection 
at the start of the iteration seems to make projection at the 
end unnecessary. Retrieval of the complex refractive index 
produces good results. Indeed, in our experiments it was 
possible in most cases to retrieve the refractive index fully 
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automatically. Also, we have examined in how far it is 
possible to also distinguish between particles with small 
imaginary refractive indices, with promising results. 

 More validations, maybe with in situ measurements, will 
have to be performed to further assess the quality of the 
algorithm. Additionally, applicability of the algorithm to 
non-spherical particles needs to be examined. 

 Also, there remains the restriction that the algorithm can 
only retrieve one refractive index for one layer; this is 
problematic in cases with different aerosols with distinct 
refractive indices being present. Further research will be 
done on how to lift or work around that restriction. 
Moreover, determination of the regularization parameter, i.e. 
the number of iterations, for cases where the error level is 
unknown has to be furhter investigated. 
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