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Abstract: Empirical mode decomposition (EMD) is a self-adaptive analysis method for signal process. Because the EMD 

method is highly efficient in non-stationary and nonlinear data analysis. It has been widely applied to fault diagnosis of 

rotating machine. However, EMD method is not suitable for the Intelligent fault diagnosis, because the number of intrin-

sic mode functions (IMFs) is unfixed. In this paper, a classification method based on correlation coefficient was present, 

which can establish a one-on-one relationship between IMFs which decomposed from different signals by EMD method. 

And then, the feature of each IMFs is extracted and evaluated by using Support vector machines (SVMs). That will make 

the intelligent fault diagnosis possible. In order to prove the effectiveness of the method, the proposed method is applied 

to fault diagnosis on the signals get from a test rig. 
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1. INTRODUCTION 

With rapid development of scientific technology, me-
chanical equipment in modern industry is growing more 
automatic and more sophisticated. So Intelligent fault diag-
nosis plays a more and more important role in modern  
industry. 

 Intelligent fault diagnosis usually include two aspects. 
The first, the specific parameters which can characterize the 

mechanical status are extracted from the measured signal. 

Then the modern artificial intelligence methods (such as neu-
ral networks, support vector machines, etc) are introduced on 

the characteristics classification and identification. 

According to existing research, although some mechani-

cal equipment failure is very complex, but still has its own 

pattern, and these pattern can be described by "frequency 
channel" or "time-frequency channel". In other words, the 

fault occur and develop through the "channel". For example, 

rotor imbalance fault, activity channel is rotating frequency. 
When the imbalance is weak, the energy pass by the rotating 

frequency channel is limited, when the imbalance is serious, 

then the energy pass by rotating frequency channel is large. 
For rotor misalignment fault, activity channel is rotating fre-

quency and its octave. For more complex fault such as rub-

impact fault, its pattern also can be described by a specific 
"frequency channel" in frequency domain or "time-frequency 

channel" in time-frequency domain. When the rotor is run-

ning at different status, the energy passing by a particular 
channel is different, and some channels are closed. If we can 

identify the fault-related "frequency channel" or "time-  
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frequency channel", then we can get a comprehensive 
evaluation of the entire mechanical equipment by the amount 
of energy pass through various channels.  

 In order to realize the above ideas, we need a self-
adaptive decomposition method which can decompose the 
signal in accordance with the frequency band or time-
frequency band. So we use EMD method to solve this prob-
lem. 

According to existing research the EMD method is an 
effective self-adaptive dyadic filter bank [1], and has a series 
of advantages over other signal analysis methods for its abil-
ity of handling nonlinear and non-stationary signals. Because 
EMD method is a self-adaptive analysis method which can 
decompose a complicated signal into a collection of intrinsic 
mode functions (IMFs) based on the local characteristic time 
scale of the signal and is particularly effective for the de-
composition of nonlinear and non-stationary signal. It has 
been developed and widely applied in fault diagnosis of ro-
tating machinery, for example, rolling bearing fault diagno-
sis [2-4], gear fault diagnosis [5], and rotor fault diagnosis 
[6, 7]. 

 But as a relatively new signal processing methods, EMD 
method also not very mature and suffers from some unsolved 
deficiencies, which brought a number of problems in prac-
tice. Such as mode mixing [8] and the end swings near the 
ends of signal [9]. Moreover, EMD method is not suitable 
for intelligent fault diagnosis. Because the EMD method is a 
self-adaptive analysis method, the number of IMFs which 
decomposed from a signal is determined by the complexity 
of the signal. The IMFs represent the natural oscillatory 
mode embedded in the signal and work as the basis func-
tions, which are determined by the signal itself, rather than 
pre-determined kernels [8]. Under such conditions, if the 
criterion to terminate the calculation are the same, then the 
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number of IMFs which decomposed from different signals 
may be different. For example, two simulative signals:  

x(t) = sin(2 10t + )sin(2 0.1t)+ 20sin(2 0.3t)     (1) 

 y(t) = 3sin(2 10t)sin(2 0.1t)+12 sin(2 0.3t)+ 3sin(2 2t)    (2) 

All the IMFs of x ( t ) and y ( t ) have been shown in Fig. 
(1a), and (1b), respectively. 

From Fig. (1), we can find that, although the amplitude is 
different, the IMFx1 in Fig. (1a) and IMFy1 in Fig. (1b) illus-
trate the same frequency intrinsic mode , and the IMFx2 in 
Fig. (1a) and IMFy3 in Fig. (1b) illustrate the same frequency 
intrinsic mode. So, these IMFs which have the same fre-
quency characteristics should be placed together to observe 
and compare in signal analysis. 

• But if the two series of IMFs are compared one-on-one in 
accordance with the order, the two IMFs contain the 
same physical meaning will not be able to compared, and 
naturally can not get the correct results. 

• From the principle of EMD method, each IMFs should 
have a clear physical meaning. Only when we know the 
precise physical meaning of each IMFs, can we put the 
IMFs which decomposed from different signal together 
for comparison. When the EMD method is used, a signal 
processing expert is required to complete the above-
mentioned work, so it is difficult to use EMD method for 
intelligent fault diagnosis. 

• To alleviate the above-mentioned problem. An improved 
method is presented in this article to assess the degree of 
similarity of two IMFs, and the IMFs which decomposed 
from signal are reordered in accordance with this ap-
proach. 

• Recently, fault diagnosis of mechanical equipment has 
widely used artificial intelligence methods. Such as arti-
ficial neural networks and support vector machines 

(SVMs) have been successfully used in practical applica-
tions [10-12]. SVMs is a universal learning algorithm, 
which implement the structure risk minimisation (SRM) 
principle proposed by statistical learning theory (STL), 
gradually become the hot research point in the field of ar-
tificial intelligence for its favorable generalisation ability. 
In this paper, the task of the intelligent identification and 
classification is completed by SVMs. 

• This paper is organised as follows. Section 2 gives a brief 
review of the EMD method and SVMs. In Section 3, the 
pre-processing on IMFs which decomposed from two 
simulative signals x(t) and y(t) based on correlation coef-
ficient are introduced. The experiments and data sets are 
introduced in Section 4. Section 5 discussed the classifi-
cation performance. The conclusion of this paper is given 
in Section 6. 

2. A BRIEF REVIEW OF EMD METHOD AND SVMS 

2.1. EMD Algorithm 

EMD method is developed from the simple assumption 
that any signal consists of different simple intrinsic modes of 
oscillations. Each linear or non-linear mode will have the 
same number of extrema and zero-crossings. There is only 
one extremum between successive zero-crossings. Each 
mode should be independent of the others. In this way, each 
signal could be decomposed into a number of intrinsic mode 
functions (IMFs), each of which must satisfy the following 
definition [13]:  

(1)  In the whole data set, the number of extrema and the 
number of zero crossings must either equal or differ at 
most by one. 

(2)  At any point, the mean value of the envelope defined 
by local maxima and the envelope defined by the local 
minima is zero. 

 

Fig. (1). IMFs of two different signal:(a) x(t) and (b) y(t). 
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 The IMFs indicate the simple oscillation mode involved 
in the signal. EMD, a "sifting" process, is used to extract the 
IMFs by the following steps [13]: 

(1)  Identify all the extrema of the signal, and connect all 
the local maxima by a cubic spline line as the upper en-
velope. Repeat the procedure on the local minima to 
produce the lower envelope. 

(2)  Designate the mean of the two envelopes as m1, and the 
difference between the signals s(t) and m1 as the first 
component, h1, i.e. 

s(t) m1(t) = h1(t).              (3) 

If h1 is an IMF, take it as the first IMF of x(t). If h1 is not 
an IMF, take it as the original signal and repeat the steps 
above until h1k is an IMF, and designate h1k (t) as c1(t): 

c1(t) = h1k (t).              (4) 

(3)  Separate the first IMF c1(t) from x(t) by 
s(t) c1(t) = r1(t).              (5) 

(4)  Treat residue r1(t) as the original signal and subject it to 
the same process as above, so that we can get other 
IMFs, c2, c3, ..., cn, which satisfy 

 

r1(t) c2 (t) = r2 (t)

rn 1(t) cn (t) = rn (t)

          (6) 

(5)  By summing up Eq. (5) and Eq. (6), we finally obtain: 

s(t) = ci (t)
i=1

n

+ rn (t).              (7) 

 Thus, one can achieve a decomposition of the signal into 
n-empirical modes, and a residue rn(t), which is the mean 
trend of s(t). The IMFs c1(t), c2(t), . . . , cn(t) include different 
frequency bands ranging from high to low. The frequency 
components contained in each frequency band are different 
and change with the variation of signal s(t). So, EMD is a 
self-adaptive signal decomposition method. 

2.2. Support Vector Machines 

SVMs is a learning algorithm, which come from an op-
timal separating hyper-plane in case of linearly separable, 
were developed by Vapnik and his co-workers [14]. Its core 
idea is to map the original pattern space into the high dimen-
sional feature space Z through some non-linear mapping 
functions, and then construct the optimal separating hyper-
plane in the feature space. Thus, the non-linear problem in 
low dimensional space corresponds to the linear problem in 
the high dimensional space [15]. 

 The input vector v is mapped into the high dimensional 
space Z through the non-linear mapping function (v), and 
the linear function sets 

f (v, ) = ( (v))+ b   (8) 

The corresponding constraint optimisation problem is 

 

min
1

2

2
+C ii=1

l

s.t. {wi ( (vi ))+ b 1 i , i = 1,…, l

i 0, , i = 1,…, l

  (9) 

where the coefficient C is a penalty factor, and it imple-
ments a trade-off between empirical risk and confidence in-

terval. The coefficient i is a slack factor.  

 Eq. (9) is a classical convex optimisation problem. The 
calculation can be simplified by converting the problem with 

Kuhn–Tucker condition into the equivalent Lagrangian dual 

problem, which will be: 

min L( ,b, ) =
1

2
2

iwi ( (v)+ b)+ i

i=1

l

i=1

l

.   (10) 

The solution of Eq. (10) can be resolved by vanishing the 

derivation of L with respect to o and the derivation of L with 
respect to , and then the following equation can be ob-

tained: 

= iwi (vi ),
i=1

l

iwi = 0,
i=1

l
  (11) 

where i is the Lagrangian multiplier. Combining Eqs. 
(20) and (11), we can get the dual quadratic optimization 
problem 

 
max L( ) = i

i=1

l 1

2 i jwiw j (vi ) (vj ),
i, j=1

l   (12) 

 
s.t. i 0, iwi

i=1

l

= 0.
  (13) 

Thus, by solving the dual optimisation problem, one ob-
tains the coefficient i which is required to express the  to 

solve Eq. (13). This leads to non-linear decision function: 

f (x) = sign( iwi ( (vi ) (vj ))+ b
i=1

l

).   (14) 

In Eq. (14), the inner product (vi) (vj) needs to be 
computed in the feature space. According to kernel function 

theory, we can use the kernel function K(vi, vj) in the input 

space, which satisfies the Mercer condition, to compute the 
inner product. So Eq. (14) can be expressed as: 

f (x) = sign( iwiK(vi , vj )+ b
i=1

l

).   (15) 

 The typical examples of kernel function are polynomial 
kernel, radial basis function (RBF) kernel, sigmoid kernel 

and linear kernel. In many practical applications, the RBF 

kernel obtains the highest classification accuracy rate than 
other kernel functions, so, in the present paper, we mainly 

consider the RBF kernel. 

 Support vector machines were originally designed for 

binary classification. Currently there are several methods 

that have been proposed for multi-class classification, such 
as "one-against-one", "one-against-all". In this study, we 

adopt "one-against-one" method [16] to identify the different 

faults. 
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3. THE PRE-PROCESSING ON IMFS 

3.1. IMFs Selection 

From the EMD method, we can find that the IMFs should 
be a kind of complete, adaptive and almost orthogonal repre-
sentation for the analysed signal under ideal circumstances. 
But in practice, there are always some undesirable IMFs 
generated during the process of EMD, especially in the low-
frequency components [9]. These undesirable IMFs are con-
sidered as pseudo-components of the signal, not only does 
not contain any useful information, but have an adverse im-
pact on the signal analysis and identification. These pseudo-
components should be eliminated before the classification 
and sorting of the IMFs. 

From [9] we can find that these pseudo-components are 
caused by end swing effect. The end swing effect is usually 
encountered in the analysis of a finite length signals. Using 
EMD method is destined to have pseudo-components. 

However, we find that the amplitude of pseudo-
components is very sensitive to the boundary change of the 
original signal, this is a clear distinction with true IMFs. 

In this paper, we will have two different EMD decompo-
sition operation for the same original signal y(t). In the first 
operation, y(t) will be cut at both ends of 15%, then the re-
mainder will be decomposed by EMD method, we call the 
obtained IMF as IMFce. 

In the second operation, we will decomposed the original 
signal by EMD method at first, then the IMFs will be cut at 
both ends of 15%, we call the obtained IMF as IMFec. 

Through the EMD decomposition of y(t), the IMFec and 
IMFce are shown in Fig. (2a) and Fig. (2b) separately. 

In this paper, we use correlation coefficients to determine 
similarity of two IMFs. The correlation coefficient is a quan-
tity that gives the quality of a least squares fitting to the 
original data. The correlation coefficient is 1 in the case of 
the two IMFs are equal, 1 in the case of the two IMIFs have 
a opposite relationship, and some value in between in all 
other cases.  

Theoretically speaking, the two groups of IMFs we ob-
tain through two process are come from the same original 
signal. If the IMF is true component, then the correlation 
coefficient of two corresponding IMFs should be equal or 
very close to 1. If the IMF is pseudo-component, then it is 
generated by end swing effect, because the end conditions in 
two process are different, the correlation coefficient of two 
corresponding IMFs should be smaller. 

Through the comparison of Fig. (2a) and Fig. (2b), we 
can find that the first three IMFs of two groups are consistent 
on the amplitude and phase. So we consider them as true 
components, and the rest IMFs as pseudo-components. The 
correlation coefficients of corresponding IMFec and IMFce 
were shown in (Table 1). 

In order that the computer can automatically remove 
these pseudo-components. We set a hard threshold =0.9, so 
that the computer can automatically remove these IMFs 
whose corresponding correlation coefficients are less than .  

 After IMFs selection, pseudo-components have been 
eliminated, and the residual IMFs are shown in (Fig. 3). 

3.2. Re-Sequencing of IMFs 

As mentioned earlier, EMD method is developed from 
the simple assumption that any signal consists of different 

 

       (a)                                                     (b) 

Fig. (2). (a). IMFec (b). IMFce  
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Table 1. The Correlation Coefficients of IMFec and IMFce 

 1 2 3 4 5 

Corrcoelation coefficients 0.999 0.992 0.999 0.816 -0.930 

 

 

Fig. (3). Residual IMFs. 

 
simple intrinsic modes of oscillations. This assumption is 
coincide with the practical situation in most cases. 

Because the vibration frequency caused by a particular 

physical effects always confined to a specific frequency 

band, so the IMFs which decomposed from a signal obtained 
by actual measurement are also confined to a specific fre-

quency band too, then from the spectrum can we judge the 

existence of similar relations between the IMFs, that is to say 
whether these IMFs are the result of the same intrinsic mode. 

However, the Fourier transform is not suitable for the fre-

quency domain analysis of nonlinear signal, we have to use 
power spectral density (PSD) to analysis the frequency do-

main of the IMFs. 

Power spectral density (PSD) is used to describe the 
power of a signal distributes with frequency. It is a statistical 

method generally used for random vibration analysis. In this 

paper, we use Burg method to make an estimate of the power 
spectral density (PSD) of the IMFs. 

Burg’s method has the particular advantage of always 
producing stable models and handling short data records 

well. More information about Burg’s method can be found in 

[17]. The PSDs of each IMFs are shown in (Fig. 4). 

From Fig. (5), we can find that the PSD of IMFx1 are very 
similar to IMFy1, the PSD of IMFx2 and IMFy3 are very simi-
lar, too. 

In order to better understand their relationship, we put 
them on the same figure and the PSDs of these IMFs have 
been normalised at first so as to reduce the interfere of am-
plitude. 

The similarity of PSD shows that these IMFs have the 
same power distribution in the frequency domain. So we can 
consider these IMFs are generated by the same type of vibra-
tion mode. In other words, these IMFs can be considered as 

from the same ‘channel’. If we can find the similar to the 
above one-on-one relationship among these IMFs which 
decomposed from different signal, then a effective and accu-
rate comparison among these IMFs can be carried out. 

In accordance with the requirements of intelligent diag-
nosis, the results of the comparison can not come from the 
subjective judgments of the operator, so we need a quantity 
to represent the similarity of different PSDs. In this paper, 
we have adopted the frequency-domain correlation coeffi-
cient (CorFreq)to represent the similarity relationship between 
PSDs. 

The correlation coefficient, sometimes also called the 
cross-correlation coefficient, is a quantity that gives the qual-
ity of a least squares fitting to the original data. Correlation 
coefficient indicates the strength and direction of a linear 
relationship between two random variables. 

Correlation coefficient is often used in the correlation 
and similarity analysis of two time-domain signal, but the 
correlation coefficient has been used to analysis the similar-
ity of optical spectrum [18]. 

In [18], a database was set up at first which contains the 
optical spectrum of various plants. Then, when the species of 
a plant need to be identified. An optical spectral analysis was 
carried out on this plant, and the spectral correlation analysis 
was carried out between the obtained optical spectrum and 
the optical spectrum stored in the database. When the spec-
tral correlation coefficient between the unknown plant and a 
known plants stored in database is greater than a threshold, 
the unknown types of plant belongs to the corresponding 
plant species. In this way, the species of plants which contain 
complex composition can be determined automatically. 

 In this paper, we also adopted a similar approach. We set 
a hard threshold =0.5, so that the computer can automati-
cally determine the one-on-one relationship between IMFs. 
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Fig. (4). PSDs of IMFs. 

 

       

     (a)                                                                                (b) 

Fig. (5). (a). The PSD of IMFx1 and IMFy1 (b). The PSD of IMFx2 and IMFy3. 

 
If the CorFreq of two IMFs is greater than , we consider 
these two IMFs are from the same 'channel'. 

The CorFreq of IMFs between IMFx1, IMFx2 and IMFy1, 
IMFy2, IMFy3 are shown in (Table 2). 

 

Table 2.  CorFreq Between IMFs 

 IMFy1 IMFy2 IMFy3 

IMFx1 0.999 -0.040 -0.041 

IMFx2 -0.041 -0.040 0.999 

 
From Table 2, we can easily find that IMFx1 is corre-

sponds to IMFy1, IMFx2 is corresponds to IMFy3 and can not 
find an IMF corresponds to IMFy2 among the IMFs which 
decomposed from x(t). Therefore, if we need to set up a one-
on-one relationship between these two groups of IMFs, we 
should have two groups of IMFs rearranged, as shown in 
(Fig. 6). 

In this paper, we first set up a PSD data sample series, 
and re-sequencing them in accordance with their power dis-
tribution in frequency domain. And then, the signal which 
need for identification and classification will be decomposed 
into IMFs, and PSDs of each IMFs will be acquired and 

these PSDs will have a comparison with the PSDs in the data 
sample by virtue of correlation coefficient. Through the use 
of correlation coefficient, the relationship between these 
IMFs are determined. After that, the IMFs which need to be 
analyzed are sorted in accordance with the position of their 
corresponding IMFs in sample series. If some of IMFs in 
data sample series can not be found in IMFs which decom-
posed from the signal been analyzed, then series of all zeros 
will be added into the corresponding location. 

3.3. The Selection of Feature  

The IMFs which decomposed by EMD method on behalf 
of a certain channel with a characteristic scales, and the 
amount of energy go through the channel can characterize 
the operation of the machine. Therefore, we select the energy 
of each IMFs as the feature parameters.We define the energy 
of a IMF as EIMFi, and the total energy as E. 

= dttE ii
)(IMF

2
IMF   (16) 

=

=

n

i

IMFi
EE

1

  (17) 

Considering that the energy values are often large, in or-
der to facilitate follow-up analysis and calculation, we make 
these energy value normalized. 
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Fig. (6). Rearranged IMFs. 

 

E

E
E

i

i

IMF

IMF =   (18) 

E IMFi is the normalized feature parameters. 

After these feature parameters have been obtained, the 
SVM technology can be used to classify and assess these 
parameters. The operation procedure of the whole intelligent 
fault diagnosis is shown in (Fig. 7). 
 

 

Fig. (7). The operation procedure of intelligent fault diagnosis. 

4. EXPERIMENT AND DATA SET 

4.1. Experiment 

In order to validate the proposed method, a experiment 
was carried out. The data of two types of fault status and 
normal status were obtained from a test rig. The test rig 
shown in (Fig. 8) is used for modeling different fault types 
such as local rub-impact, imbalance and misalignment fault. 

Vibration data was collected using eddy current dis-
placement sensor,which was attached to the foundation with 
magnetic base. Eddy current displacement sensor was placed 
close to the disk. Vibration signals were collected using a 
data acquisition card with sample rate 3 K/s. The experimen-
tal rotating speed is about 1500 rpm. 

As shown in Fig. (8), the test rig is driven by a DC mo-
tor. In order to reduce the influence of motor's vibration on 
shaft, the coupling between the motor and main shaft is 
flexible. 

As mentioned earlier in this paper, data of three different 
status were measured, there are normal status, imbalance 
fault status and rub-impact fault status.There are totally 360 
samples were obtained, each status have 120 samples and 
each sample in the data sets includes 1000 points. 

 

 

Fig. (8). Test rig. 

 
4.2. The Selection and Re-Sequence of IMFs 

Fig. (9) is the EMD decomposition result of three differ-
ent signal. All the IMFs of vibrations signals from the same 
testing rig at the same speed with normal, imbalance fault 
and rub-impact fault have been shown in Fig. (9a), (9b) and 
(9c) respectively. 
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(a)                                         (b)                                   (c) 

Fig. (9). IMFs of three different signals:(a) normal status (b) imbalance falut (c) rub-impact fault. 

 
After IMF selection with IMF selection criterion, only 

the first three IMFs of IMFi (decomposed from signal in 
normal status) and IMFi' (decomposed from signal in imbal-
ance status) are retained, and when it comes to the analysis 
of the signal with rub-impact fault only the first six IMFs of 
IMFi" are retained, the others are eliminated. The retained 
IMFs are shown in (Fig. 10). 

Because the signal"(rub-impact) decomposed of the larg-
est number of IMFs (there are six IMFs decomposed from 
signal", we define them as IMFi"), we set IMFi" as the sam-
ple series. Calculate the CorFreq between IMFi (which de-
composed from signal in normal status) and IMFi", CorFreq 
between IMFi' (which decomposed from signal in imbalance 
status) and IMFi" are also calculated correspondingly. The 
calculation result were shown in (Table 3 and Table 4), and 
the largest frequency domain correlation coefficient of each 
IMFs is denoted in bold face. 

From Table 3 and Table 4, we can find that IMF1 and 
IMF1' have the largest CorFreq with IMF2", IMF2 and IMF2' 
have the largest CorFreq with IMF3", IMF3 and IMF3' have the 
largest CorFreq with IMF6". 

We can find from the distribution of PSD that these IMFs 
have very similar distribution of power on the frequency 
domain, as shown in (Fig. 11, Fig. 12 and Fig. 13). 

In this way, we set up a one-on-one relationship between 
these groups of IMFs, and then acquired the three groups of 
IMFs by re-sequencing these IMFs, as shown in (Fig. 14). 

4.3. Classification Performance of the Energy 

 In this paper, we use energy as the feature to characteri-
zation of each IMFs. Energy value is essentially a measure 

of how many energy go through a particular frequency chan-

nel. When the condition of mechanical equipment changed, 
the energy of each IMFs will be different from the normal 

condition. Thus the energy contains the fault information and 

can be used as a feature for diagnosis. In order to evaluate 
the classification performance of the energy, the SVMs are 

used to train and test on these three data sets, corresponds to 

normal status, imbalance fault and rub-impact fault. For the 
above three kinds of status, there are 72 study samples for 

each status.  

 We adopt "one-against-one" method to identify the dif-
ferent faults. Radial basis kernel function was chosen as ker-

nel function.Finding optimal model parameters by discrete 

grid search in parameter space [2
-5

,2
-10

].  

 After the study, there are 144 test samples ( each status 

has 48 test samples) for SVMs to test the classification accu-
racy rate of SVMs. Test result show that 137 samples have 

been correctly classified and 7 samples have been wrongly 

classified, the validation classification accuracy rate of 
SVMs is 95.14%, (C, ) represents the optimal parameters of 

SVMs, the (C, )=(2
10

,2
3
) in this test. The classification ac-

curacy rate implies that the method proposed in this paper 
can correctly discriminate the condition of machinery. 
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               (a)                                      (b)                                         (c) 

Fig. (10). The retained IMFs after selection:(a) normal status (b) imbalance falut (c) rub-impact fault. 

 

Table 3.  The Frequency Domain Correlation Coefficient Between IMFi and IMFi" 

 IMF1" IMF2" IMF3" IMF4" IMF5" IMF6" 

IMF1 -0.098 0.694 0.148 -0.068 -0.154 -0.025 

IMF2 -0.149 0.107 0.783 0.225 -0.027 -0.014 

IMF3 -0.015 -0.032 -0.022 -0.011 -0.007 0.866 

 

Table 4.  The Frequency Domain Correlation Coefficient Between IMFi' and IMFi" 

 IMF1" IMF2" IMF3" IMF4" IMF5" IMF6" 

IMF1' -0.056 0.650 -0.097 -0.192 -0.179 -0.016 

IMF2' -0.144 0.265 0.694 -0.018 -0.137 -0.014 

IMF3' -0.011 -0.025 -0.017 -0.008 -0.006 0.993 

 

 
Fig. (11). PSD of IMF1, IMF1' and IMF2". 
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Fig. (12). PSD of IMF2, IMF2' and IMF3". 
 

 

Fig. (13). PSD of IMF3, IMF3' and IMF6". 

 

 

Fig. (14). Rearranged IMFs: (a) normal status (b) imbalance falut (c) rub-impact fault. 
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Fig. (15). Frequency mixing. 

 
4.4. Result Analysis 

By analyzing the signal which were wrongly classified, 

we find that the main causes of classification error is due to 

the frequency mixing problem. That is to say, in some case, 
adjacent IMFs will contain the same frequency components 

in a EMD decomposition. Usually, EMD decomposition can 

effectively decompose different frequency component into 
different IMFs, frequency mixing will be under effective 

control. But sometimes the degree of frequency mixing can 

be very serious, as shown in (Fig. 15). We can see from the 
PSD that the two IMFs all have a large power density distri-

bution in the region marked with a red circle. This leads to 

larger error of energy value, eventually causing classification 
errors. 

5. DISCUSSION 

(1)  Through the analysis of simulation data and experiment 
data, it can be seen that EMD is a powerful tool for 

fault diagnosis in rotating machinery. And by using 

correlation coefficient, we set a one-on-one relationship 
between different IMFs. This made it feasible for the 
intelligent fault diagnosis based on EMD method.  

(2)  Although we verified the feasibility and effectiveness 
of the intelligent fault diagnosis based on the EMD 

method, this method still need to be improved in many 

fronts. Especially the phenomenon of frequency mix-
ing., which seriously reduced the accuracy of classifica-

tion. How to make each IMF has a more specific physi-

cal meaning is still a problem need to be solve. The 
authors would like to investigate this topic in future. 

6. CONCLUSIONS 

 The empirical mode decomposition (EMD) method pro-
vides a powerful tool for nonlinear and non-stationary signal 
analysis. However, EMD method does not suitable for intel-
ligent fault diagnosis due to some characteristics of its own. 
To overcome this shortcoming, we propose a new method 
based on correlation coefficient to set up a one-on-one rela-
tionship between these IMFs which decomposed from dif-
ferent signal. In this paper, three kinds of vibration signals 

from a test rig are analyzed using the proposed method to 
diagnose the faults. The application results show that the 
proposed method is able to correctly discriminate the condi-
tion of machinery.  
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