
Send Orders for Reprints to reprints@benthamscience.net

38 The Open Automation and Control Systems Journal, 2013, 5, 38-44

 1874-4443/13 2013 Bentham Open

Open Access
Comparison and Analysis of Parallel Computing Performance Using
OpenMP and MPI

Shen Hua1,2,* and Zhang Yang1

1Department of Electronic Engineering, Dalian Neusoft University of Information Dalian, 116023/Liaoning, China
2Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian Univer-
sity of Technology, Dalian, 116024/Liaoning, China

Abstract: The developments of multi-core technology have induced big challenges to software structures. To take full
advantages of the performance enhancements offered by new multi-core hardware, software programming models have
made a great shift from sequential programming to parallel programming.

OpenMP (Open Multi-Processing) and MPI (Message Passing Interface), as the most common parallel programming
models, can provide different performance characteristics of parallelism in different cases. This paper intends to compare
and analyze the parallel computing ability between OpenMP and MPI, and then some proposals are provided in parallel
programming. The processing tools used include Intel VTune Performance Analyzer and Intel Thread Checker. The find-
ings indicate that OpenMP is in favor of implementation and provides good performance in shared memory systems , and
that MPI is propitious to programming models which require nodes performing a large number of tasks and little commu-
nications in processes.

Keywords: Parallel computing, Multi-core, multithread programming, OpenMP, MPI.

1. INTRODUCTION

As the number of transistors has increased to fit within a
die according to Moore’s Law, manufacturers try packing
more cores onto one single chip. However, adding cores is
not synonymous with increasing computational power [1].

A new high performance computation technique involv-
ing multiple processors on a single silicon die is quickly
gaining popularity. Most applications do not commonly util-
ize the new features of a hardware platform. In this case, few
applications currently make efficient use of multiple proces-
sors to enhance single application performance. Processors
are assigned to separate applications, resulting in suboptimal
single application performance and frequent processor idle
cycles from having too few applications available to execute.
In this day and age of multi-core architectures, programming
language support is in urgent need for constructing programs
that can take great advantage of machines with multiple
cores [2].

OpenMP (Open Multi-Processing) and MPI (Message
Passing Interface) are the most popular parallel program-
ming technologies [1]. OpenMP is an Application Program
Interface (API) that can be used to explicitly direct multi-
threaded. Shared memory parallelism comprised of three
primary API components: compiler directives, runtime

*Address correspondence to this author at the Department of Electronic
Engineering, Dalian Neusoft University of Information Dalian,
116023/Liaoning, China; Tel: +86-411-84832209; Fax: +86-411-84832210;
E-mail: shenhua@neusoft.edu.cn

library routines and environment variables. OpenMP em-
ploys the fork-join model, where different tasks are imple-
mented by multiple threads within the same address space.
Programs are written in high-level application-specific op-
erations. These operations are partially ordered according to
their semantic constraints [3].

MPI is a message-passing library specification proposed
as a standard by a committee of vendors, implementers and
users [13]. It is designed to support the development of par-
allel software libraries. The primary functions of MPI are
sending and receiving messages among different processes.

In this study, we compare the implementations by show-
ing the results achieved between OpenMP and MPI when
executing the same concurrent collections application. Our
experiments show that significant improvements in program
performance are obtained using multi-threading and parallel
computing techniques. The CPU time used in a computation
has been greatly reduced, in turn, reduces the usage of CPU
resource.

The paper is organized as follows. Section 1 provides the
research background and methodology. Section 2 reviews
the parallel programming models, including OpenMP and
MPI. Section 3 introduces a typical parallel programming
environment: Intel Composer XE 2013, utilizing Loop Pro-
filer and VTune Amplifier to analyze bottleneck and over-
load of programs. Section 4 provides a practical example to
reflect the computation power of the multi-core processor by
adding parallelism to a C++ application. Section 5 discusses
the analytic results and Section 6 concludes the paper.

Comparison and Analysis of Parallel Computing Performance The Open Automation and Control Systems Journal, 2013, Volume 5 39

2. PARALLEL PROGRAMMING MODELS

2.1. OpenMP

OpenMP is an Application Programming Interface (API),
widely accepted as a standard for high-level shared-memory
parallel programming. It is a portable, scalable programming
model that provides a simple and flexible interface for de-
veloping shared-memory parallel applications in FORTRAN,
C and C++. Now its latest version is OpenMP 3.1. Standard
is jointly defined by a group with members from major com-
puter hardware and software vendors like IBM, Silicon
Graphics, Hewlett Packard, Intel, Sun Microsystems and The
Portland Group, etc [3, 4].

OpenMP was structured around parallel loops and was
meant to handle dense numerical applications. The simplicity
of its original interface, the use of a shared memory model,
and the fact that parallelisms of a program are expressed in
directives. Those are loosely-coupled to the code. Recently,
OpenMP is attracting widespread interest because of its
easy-to-use portable parallel programming model.

A. OpenMP API
OpenMP API consists of the following components [3]:

- Compiler directives: Instructs the compiler to process
the code section following the directive for parallel
execution.

- Library routines: Routines that affect and monitor
threads, processors and environment variables. It also
has routines to control thread synchronization and get
timings.

- Environment variables: Variables controlling the exe-
cution of the OpenMP program.

B. Working Mechanism of OpenMP

Parallel execution in OpenMP is based on the fork-join
model, where the master thread creates a team of threads for
parallel execution [3].

- Program execution begins as a single thread of execu-
tion, called the initial thread.

- A thread encountering a parallel construct becomes a
master, creates a team of itself and additional threads.

- All members of the team execute the code inside par-
allel construct.

Each thread has a temporary view of the memory, which
is like a cache and a private memory not accessible other
thread.

- Relaxed consistency, the thread's view of memory is
not required to be consistent with the memory at all
times.

- Flush operation causes the last modified variable in
the temporary view to be written to memory.

- Private variables of a thread can be copies of data
from memory and cannot be accessed by other threads.

The parallel construct can be nested arbitrary number of
times. Thread encountering parallel becomes the master.

OpenMP has been very successful in exploiting struc-
tured parallelism in applications. With increasing application
complexity, there is a growing need for addressing irregular
parallelism in the presence of complicated control structures.
This is evident in various efforts by the industry and research
communities to provide a solution to this challenging prob-
lem. One of the primary goals of OpenMP is to define a
standard dialect to express and efficiently exploit unstruc-
tured parallelism.

2.2. MPI

MPI is a specification for a standard library for message
passing, defined by the MPI Forum in April 1992. During
the next eighteen months the MPI Forum met regularly, and
Version 1.0 of the MPI Standard was completed in May
1994 [12, 14]. Some clarifications and refinements were
made in the spring of 1995, and Version 1.1 of the MPI
Standard is now available [13].

Multiple implementations of MPI have been developed in
many different versions：MPICH, LAM, and IBM MPL, etc
[13]. In this paper we discuss the set of tools that accompany
the free distribution of MPICH, which constitute the begin-
nings of a portable parallel programming environment.

A. Features of MPI
MPI is a library which specifies the names, calling se-

quences and the results of functions. MPI can be invoked by
C and FORTRAN programs; the MPI C++ library consisting
of classes and methods can also be called. MPI is a
specification, not a particular implementation. A correct MPI
program should be able to run on all MPI implementations
without change [12, 16].

- Messages and Buffers
Sending and receiving messages are the two fundamental

operations of MPI. Messages can be typed with a tag integer.
Message buffers are more complex than a simple buffer.
User can create their own data types by giving options to
address combination.

- Communicators
The notions of context and group are combined in a sin-

gle object called a communicator, which becomes an argu-
ment to most point-to-point and collective operations. Thus,
the destination or source specified in send or receive opera-
tion always refers to the rank of the process in the group
identified by a communicator.

- Process Groups
Processes belong to groups. Each process is ranked in its

group with a linear numbering. Initially, all processes belong
to one default group.

- Separating Families of Messages
MPI programs can use the notion of contexts to separate

messages in different parts of the code. It is very useful for
writing libraries. The context is allocated at run time by the
system in response to user (or library) requests.

B. Basic Frame of MPI Functions

The initialization and end processes of MPI environment are
given as follows:

40 The Open Automation and Control Systems Journal, 2013, Volume 5 Hua and Yang

(1) Before calling MPI routines, each process should be
implemented by MPI_INIT;

(2) Call MPI_COMM_SIZE to get default group (group);
(3) Call MPI_COMM_RANK to get the size of the de-

fault group of logical Numbers (starting from 0);
(4) Send messages to other nodes or meet news from the

other nodes through MPI_SEND and MPI_RECV
according to the needs;

(5) Uses MPI_FINALIZE to eliminate MPI environment
when there is no need to call any MPI routines. The
process can either end at this time or continue to exe-
cute another irrelevant statement of MPI.

A minimum routine of MPI program with the six func-
tions mentioned above is given below [14][15]:

int MPI Init(int *argc, char ***argv) /*Initialize MPI*/
int MPI Comm size(MPI Comm comm, int *size) /* Find

out how many processes there are */
int MPI Comm rank(MPI Comm comm, int *rank) /*

Find out which process I am */
MPI_Send(address, count, datatype, destination, tag,

comm) /* Send a message */
MPI_Recv(address, maxcount, datatype, source, tag,

comm, status) /* Receive a message */
int MPI Finalize() /*Terminate MP*/

3. INTEL PARALLEL PROGRAMMING ENVIRON-
MENT

Intel Composer XE 2013 is a parallel programming envi-
ronment. It includes C++ compiler, VTune amplifier and
threading building blocks, etc. These entire modules can
delivers outstanding performance for applications that run on
systems using Intel Core or Xeon processors, including Intel
Xeon Phi coprocessors, and IA-compatible processors. It
combines all the serial and parallel tools from Intel C++
Composer XE 2013 with those from Intel FORTRAN Com-
poser XE 2013. Visual Studio 2008, 2010 or 2012 is a pre-
requisite on Windows and the gnu tool chain is supported on
Linux [8].

3.1. Intel C++ Compiler

Intel C++ compilers are not available as stand-alone
compilers. They are available in packages, some of which
include other build-tools, such as libraries, and other which
include performance and threading analysis tools.

Intel C++ is part of Intel Parallel Studio XE and Intel
C++ Studio XE for Windows and Linux. It includes per-
formance analysis and thread-diagnostic tools. Intel C++
Composer XE (available for Windows, Linux and Apple OS
X) and Intel Composer XE, which also includes Intel Fortran
(available for Windows and Linux); It does not include the
analysis and thread-diagnostic tools. Intel compilers are also
included in Intel Cluster Studio (no analysis tools) and Intel
Cluster Studio XE (analysis tools included). The cluster tools
are available for Windows and Linux. Packages that include
Intel C++ also include the Intel Math Kernel Library (Intel
MKL), Intel Integrated Performance Primitives (Intel IPP)

and Intel Threading Building Blocks (Intel TBB). Fortran-
only packages only include Intel MKL [8].

Intel C++ compiler has many advanced performance fea-
tures, such as High Performance Parallel Optimizer (HPO),
Automatic Vectorization, Guided Auto Parallelization (GAP),
Inter-procedural Optimization (IPO), Loop Profiler, Profile-
Guided Optimization (PGO) and OpenMP 3.1[9].

3.2. VTune Amplifier XE 2013

VTune Amplifier XE 2013 has lightweight hotspots
analysis that uses the Performance Monitoring Unit (PMU)
on Intel processors to collect data with very low overhead.
Increased resolution can find hot spots in small functions
that run quickly [9].

When developing, optimizing or tuning applications for
performance on Intel architecture, it is important to under-
stand the processor micro-architecture. Having said that, an
insight into how the applications are performing on the mi-
cro-architecture is gained through performance monitoring.
The Intel VTune Performance Analyzer provides an interface
to monitor performance of the processor and gain insights
into possible performance bottlenecks.

The Intel VTune Performance Analyzer is a powerful
software-profiling tool available on both Microsoft Windows
and Linux OS. VTune helps to understand the performance
characteristics of software at all levels: system, application
and micro-architecture. The main features of VTune are
sampling, call graph and counter monitor [9]. In this study,
we focus on the event based sampling feature of VTune and
on how to choose these VTune events and ratios for monitor-
ing performance.

While VTune is used to sample an application, it may not
be necessary to use all the events and ratios that are available
in the tool. The most commonly used events are clockticks
and instructions retired which are selected by VTune when
you create a new event.

3.3. Intel Threading Building Blocks

Profiling is a technique for measuring where software
programs consume resources, including CPU time and mem-
ory. Code profiling tools are visual instruments that help to
expose performance bottlenecks and hotspots that inhibit to
achieve the desired code parallelism. The instrumentation is
done by gathering information, such as execution times and
number of calls, during execution of program's entities such
as functions and loops. The outcome is visualized graphi-
cally on the screen and enables the programmer to detect, for
example, the imbalance in either computation or communi-
cation that is present in an algorithm.

Intel Thread Profiler is a profiling tool that identifies bot-
tlenecks that limit parallelism of threaded applications and
locates overheads due to synchronization, stalled threads and
long blocking times. Thread Profiler supports applications
threaded with Windows threads, POSIX threads and
OpenMP [4, 11].

 Thread Profiler creates two kinds of views for analyzing
the behavior of threaded application: Profile view and Time-
line view. While the Timeline view is more intuitive to the
way a sequential programmer think, the Profile view de-

Comparison and Analysis of Parallel Computing Performance The Open Automation and Control Systems Journal, 2013, Volume 5 41

mands to think in parallel which is a different way of think-
ing.

Intel Threading Building Blocks (Intel TBB) is a widely
used, award-winning C++ template library for creating high
performance, scalable parallel applications. It includes scal-
able memory allocation, load-balancing, work-stealing task
scheduling, a thread-safe pipeline and concurrent containers,
high-level parallel algorithms, and numerous synchroniza-
tion primitives.

4. REALIZATION METHODS FOR PARALLELIZA-
TION

In this section we use an example to demonstrate how
parallel programming can be realized on a computing appli-
cation, and compare performance indicators of programming
parallelization between OpenMP and MPI.

The parallel programming example we have chosen is an
application of Newton iteration algorithm. It is a non-liner
algorithm, has multi-scales, and is easy to modulate. We
assume that Newton iteration algorithm is used in computing
temperature compensation for platinum resistance. The cen-
tral processor computes each of the temperature data in itera-
tions, utilizing the computation power of the multi-core
processors. Dedicated threads are used for the data conver-
sion as well as Newton iteration.

4.1. Newton Iteration Algorithm

The resistances of platinum resistor, R(t), with respect
temperature t are:

R(t) = R

0
[1+ at + bt

2
+ c(t !100)t3] (1)

Where -200 ≤ t ≤ 0;

R(t) = R

0
(1+ at + bt

2) (2)

Where 0 ≤ t ≤ 850, a= 3.90802E-3, b=-5.802E-7, and c=-
4.2735E-120.

Using Newton iteration algorithm, consider

R
' (t) =

R(t
n
) ! R(t

n!1
)

t
n
! t

n!1

 (3)

 Rearranging we get,

t
n
= t

n!1
+

R(t
n
) ! R(t

n!1
)

R
' (t

n!1
)

 (4)

 From equation R (t), we obtain

t
n
= t

n!1
+

R !100(1+ at + bt
2
!100ct

3
+ ct

4)

100(a + 2bt ! 300ct
2
+ 4ct

3)
 (5)

Simplifying the equation

t
n
= t

n!1
+

R !100(1+ at + bt
2)

100(a + 2bt)
 (6)

Let the relationship between R and t be linear. We choose
the first approximation

t
0
=

R

100
!1

a
 (7)

Assuming that the stopping criteria is not a fixed value,
the program iterates until

t

n
! t

n!1
 is less than the given stop-

ping criteria of temperature.

4.2. Multi-Thread Model

The threaded applications can communicate via the in-
herently shared memory of the process, avoiding the tradi-
tional more expensive inter-process communication facili-
ties(pipes, sockets, etc.). Furthermore, the concurrence and
the synchronization of the various tasks, that generally need
a large effort in a multi-process program, are easily obtained
with specific system calls that co-ordinate in a natural man-
ner the activity of the threads [6].

To evaluation the effectiveness of multi-threads, and re-
duce the overload among threads, we construct a multi-
thread model. The Newton iteration algorithm is run on the
central processor. To achieve high-speed data processing and
demonstrate the computation power of the dual-core proces-
sor, several threads, a receive-data pool, and a send-data pool
are used. Fig. (1) below depicts the relationship of the main
elements of data processing above. In particular, the receive
thread reads the data from receive-data pool, and then pushes
it into the receive queue. Two process threads, performing
identical functions and running in parallel, constantly moni-
tor the status of the receive queue. If it is not empty, the two
push the data into the send-data pool; Main thread reads data
from the send-data pool.

4.3. Analysis Indicators of Parallel Programming Per-
formance

The testing tools were used by Intel VTune Performance
Analyzer, Intel Thread Checker and Intel Thread Profiler.
For each case, three data parameters, Memory size, CPU
time and speed up ratio are collected for comparison. Speed
up ratio can be calculated in follow formula:

 Speed up Ratio =
(Sequential Execution Time – Parallel computing Execu-

tion time)*100 / Sequential Execution Time.

5. DISCUSSION

In this section we introduce a special application based on
Newton iteration algorithm. At first, we make a sequential
program, then using multi-threads, and then parallelizing this
program. The processor is Intel Core i5, and the development
environment is Intel Composer XE 2013.

Our methodology is divided into three phases:
The first phase is to compare the performance between

single thread and dual threads, and then get performance
analysis using Intel VTune Performance Analyzer in order to
identify performance optimization opportunities and detect
bottlenecks.

The second phase is to modify the original sequential
program to accommodate paralleling computing using
OpenMP, and then conduct performance analysis using Intel

42 The Open Automation and Control Systems Journal, 2013, Volume 5 Hua and Yang

VTune Performance Analyzer to identify performance opti-
mization opportunities and detect bottlenecks [9].

In the third phase, we rewrite the sequential program of
Newton iteration algorithm using MPI, then we allocate data
races, memory leakage and debug the multithreaded applica-
tions, using Intel Thread Checker [10, 11].

Experiments are conducted to demonstrate the perform-
ance of the three programs implementing the Newton itera-
tion algorithm. A comparative study is conducted on the per-
formances of the program using single thread and dual-
thread, using OpenMP or MPI, respectively.

5.1. Performance Analysis of Multithreads

The testing tools used are Intel VTune Performance Ana-
lysers, Intel Thread Checker, and Intel Thread Profiler. A
most CPU-intensive computation thread was chosen to per-
form the tests. The experiments are conducted under single-
thread and dual-threads cases. For each case, three data pa-
rameters, Counter Values, instructions Retired and Clock-
ticks, are collected for comparison. Table 1 below summa-
rizes the results.

In Table 1, it can be seen that significant improvements
on several key parameters in dual-threads, such as Processor
Queue Length, Context Switches/sec and Memory available

bytes and Processor Time, are obtained using dual-threads
and the optimization technique. It shows that the number of
instructions used in the computation is reduced to 5% or be-
low from 80%~90%, using dual-threads and optimization.
This, in turn, greatly reduces the usage of CPU resource, a
drop from 25%～50% to below 15%.

5.2. OpenMP Parallel Realizations

In order to measure the performance speed up ratios of
OpenMP over a sequential algorithm, we write a sequential
program that computes temperature compensation for plati-
num resistance using the Newton iteration algorithm, then
modify the program to support parallel computing using
OpenMP. And finally, the run time of the Newton iteration
algorithms are compared.

We use “#pragma omp parallel” statement to open the
switch of OpenMP in this algorithm code. Only small
changes are required in OpenMP to expose data locality, so a
compiler can transform the code. Our notion of tiled loops
allows developers to easily describe data locality. Further-
more, we employ two optimization techniques: one explicitly
uses a form of local memory (the thread pool) to prevent
conflict cache misses, whereas the second modifies the paral-
lel programming pattern with dynamically sized blocks to
increase the number of parallel tasks [5-7].

Fig. (1). the Model of Multithread Processing.

Table 1. Performance using Single- and Dual-Threads

Object Counters Instructions-Retired Clockticks

Processor Queue Length（1.298）

Context Switches/sec(17542)

Memory available bytes(619M)

Single thread

(Un-optimized, Microsoft compiler)

Processor Time(59.367%)

80%～90% 25%～50%

Processor Queue Length(2.941)

Context Switches/sec(4995)

Memory available bytes(552M)

Dual-thread

(Optimized,

Intel compiler)
Processor Time(51.64%)

<5% <15%

Comparison and Analysis of Parallel Computing Performance The Open Automation and Control Systems Journal, 2013, Volume 5 43

In order to obtain accurate run-time measurements, each
algorithm is executed in loops and the total run-time is de-
pended on the cycle times of each loops. The run-time of the
algorithm is the average value of each loop. In addition, each
program takes one command argument, argv, as a number of
loop-backs at run-time, so that the total execution time of the
programs can be controlled.

Experiments were conducted to evaluate the performance
of different programming implementations of the applica-
tion-specific Newton iteration algorithm. A comparative
study is conducted on the performances of the program be-
tween sequential program and parallelization program addi-
tional OpenMP. The testing tools used are Intel VTune Per-
formance Analyzer, Intel Thread Checker and Intel Thread
Profiler. For each case, three data parameters, Memory size,
Execution time and Speed up ratio, are collected for com-
parison.

We set the cycle times from 1000 to 10000, and then
compare the memory size and execution time between se-
quential program and OpenMP program based on different
cycle times. The results of experiments are shown in Table 2.

Observing the data in Table 2, it can be seen that
OpenMP does not obviously improve the performance of
Newton iteration algorithm over the sequential program
when the cycle times are small (e.g., 1000). The speed up
ratio increases significantly when the cycle times raise from
1000 to 10000.

The experimental results in Table 2 show that OpenMP
does increase the performance compared to sequential pro-
grams when cycle times are smaller. The parallel algorithm
in OpenMP has significantly improved the performance,
especially if the cycle times reach a large value.

5.3. MPI Parallel Realizations

Similarly, comparative studies were made using MPI
programming environment. Processors P0 and P1 are used as

the master and the slave processors, respectively. Unlike the
OpenMP program, the MPI program splits the computing
task into two subtask: P0 computes the first subtask, sends
the second subtask to P1, and collect the result from P1 to
come up with the final result [15].

In the first iteration (or even iteration) processors P0 and
P1 both computing their data sets. Then, processor P0 per-
forms a send operation of its first subtask to processor P1
using MPI_Send. Processor P1 receives data from P0, using
MPI_Recv, and then performs the iteration to next loop.

There are two different clocks used to measure the per-
formance of MPI programs. They are C++ clock and MPI
clock [16]. Normally the run time measurements across lan-
guages are the time each language runs the parallel computa-
tion (not including overhead time), but in MPI programs, it is
impossible to exclude the overhead using the C++ clock.
Also, the C++ clock shows different values of time from
different processes in a same program, while the MPI clock
does not. Therefore, the MPI clock is used to measure the
performance instead of the C++ clock. Table 3 contains the
execution time of a program with different clocks from dif-
ferent processes.

Analyzing the data in Table 3, we conclude that the per-
formance of Newton iteration program using MPI is much
slower than that of the sequential algorithm. It is because
MPI-Send and MPI–Recv functions used in this program
contain a synchronization mechanism, such that the program
waits for the completion of send and receive data before pro-
ceeding to the next computation.

The delay caused by the synchronization between send
and receive increases significantly when cycle times increase.
From Table 3, we conclude that the Newton iteration pro-
gram does not seem to be beneficial in MPI, especially when
the cycle times are large. So MPI is not recommended for
this type of computation.

Table 2. Comparison Between Sequential and OpenMP

Cycle Times Memory Size, Byte Execution Time, s (Sequential Program) Execution Time, s (OpenMP Program) Speed up Ratio, %

1000 1023432 0.013 0.012 7.69

2000 2106430 0.021 0.016 23.8

5000 6225478 0.047 0.032 31.9

10000 12365232 0.082 0.047 42.7

Table 3. Execution Time Based on MPI

Cycle times Memory Size, Byte
Thread0 Run Time, s

(C++ Clock)
Thread1 Run Time, s

(C++ clock)
Thread0 Run Time, s

(MPI Clock)
Thread1 Run Time, s

(MPI Clock)

1000 3426442 0.038 0.037 0.02 0.02

2000 5105630 0.082 0.088 0.07 0.07

5000 12542678 3.216 3.242 3.14 3.14

10000 27354432 7.023 7.071 7.02 7.02

44 The Open Automation and Control Systems Journal, 2013, Volume 5 Hua and Yang

6. CONCLUSIONS

This paper provides solutions using OpenMP and MPI,
the two different parallel programming methods, on Win-
dows platform. The goal of this study is to provide pro-
grammers patterns of solving special problems in parallel
programming.

This study compares our experiences in parallelizing and
optimizing the special applications. We classify the perform-
ance among (a) sequential program (b) OpenMP paralleliza-
tion and (c) MPI parallelization. All codes were carried out
at the Intel Core i5 processor.

Through the comparison and analysis of parallel program
performance, we show how to choose parallel models when
designing a parallel system. The basic rules as follows:

- OpenMP is in favor of implementation and provides
good performance in shared memory system. For
those programming models with quick and small
processing with no future extension, such as arithme-
tic computations, OpenMP should be considered for
the best match for parallel programming.

- MPI is propitious to programming models for large
systems with long term processing and future expan-
sion. For example, the parallel sort-like algorithms re-
quire a large amount of computations, performed by
nodes, but have little communication across processes.
MPI are the best candidate for these types of systems.

- We also have used disparate tools (VTune, Thread
Checker and Thread Profiler) in this work. Note that,
Intel Composer tools can help to identify and under-
stand application performance issues. Then, different
algorithms and implementations can be used to miti-
gate the performance issue. Also, it is recommended
to utilize thread and process parallel implementations
to improve multi-core processor utilization.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENTS

This work was financially supported by the Research
Fund of the Liaoning Provincial Bureau of Education, P. R.
China (Fund #: L2012490).

REFERENCES
[1] H. Sutter, "The free lunch is over: A fundamental turn toward

concurrency in software", Dr. Dobb's Journal, vol. 30, no.3, 2005.
[2] T. Mattson, J. DeSouza, "How fast is fast? Measuring and Under-

standing Parallel Performance", Intel Webinar, 2008.
[3] OpenMP Architecture Review Board, "OpenMP Application Pro-

gram Interface", http://openmp.org/forum/
[4] B. Chapman, G. Jost, R. van der Pas, "Using OpenMP Portable

Shared Memory Parallel Programming", USA, MIT Press, 2007.
[5] Shameem Akhter, "Multi-Core Programming increasing perform-

ance through software multi-threading", Electrical Industry Press,
vol. 3, 2007.

[6] M. J. Garzar´an, M. Prvulovic, J. M. Llaberıa, V. Vinals,L. Ra-
uchwerger, and J. Torrellas, "Tradeoffs in buffering speculative
memory state for thread-level speculation in multiprocessors".
ACM Transactions on Architecture Code Optimization, vol. 2, no.
3, pp. 247-279, 2005.

[7] Kathleen Knobe, Carl D. Ofner, "Tstreams: A model of parallel
computation ", Technical Report HPL-2004-78, HP Labs, 2004.

[8] Intel Composer XE 2013. http://software.intel.com/en-us/intel-
composer-xe

[9] Intel VTune Performance Analyzers. http://www.intel.com/-
software/products/vtune/

[10] Intel Thread Checker. http://software.intel.com/en-us/intel-thread-
checker/

[11] Intel Thread Profiler, http://software.intel.com/en-us/intel-vtune/
[12] Message Passing Interface Forum, "Document for a standard mes-

sage-passing interface", Tech. Rept. CS-93-214, University of Ten-
nessee, 1994.

[13] The MPI Forum, "The MPI message-passing interface standard",
http://www.mcs.anl.gov/mpi/standard.html, 1995.

[14] Message Passing Interface Forum, "MPI: A message-passing inter-
face standard", 2009.

[15] Chao-Chin Wu, Lien-Fu Lai, Chao-Tung Yang, Po-Hsun Chiu,
"Using hybrid MPI and OpenMP programming to optimize com-
munications in parallel loop self-scheduling schemes for multicore
PC clusters", The Journal of Supercomputing, vol. 60, no.1, pp. 31-
61, 2012.

[16] R. Rabenseifner. "Some Aspects of Message-Passing on Future
Hybrid Systems", EuroPVM/MPI, Springer, Munich, pp. 8-10,
2008.

Received: August 15, 2013 Revised: September 05, 2013 Accepted: September 28, 2013

© Hua and Yang; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

