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Abstract: Considering that the digital system design is a complex task, in order to meet some requirements such as effec-
tive performance, low costs and high reliability, and improve the development quality and efficiency, design activities 
need to be carried out under a precise description for completing the design cycle. This paper presents the XML specifica-
tion method, and defines a subset of XML syntax for the complex digital logic component model. In this method, the logic 
mapping table is used to describe combinational logic components, state-oriented finite state machine to describe the be-
havior models of sequential logic components, and structure-oriented connector to describe structure models of composite 
hardware components.  
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1. INTRODUCTION 

In the development of digital logic systems, before we 
submit our design result for manufacturing, usually we have 
to face two key questions. The first one is how to specify 
what we want and the second one is how to make sure that 
what we specify is what we want. It has been widely esti-
mated that over 70% of the design time for circuits is spent 
in performing various kinds of verification tasks and the ef-
fort devoted to this process eclipses all other aspects of the 
design process. Specification and verification have become 
the most important two tasks in current design flows and can 
have major impact on the timely delivery of a functionally 
correct product. 

To get the final product, designers need to specify its 
functionalities and simulate its behaviors under the help of 
some simulation and verification tools. To save costly engi-
neering effort, much of the effort of designing large logic 
machines needs to be automated. 

Over the past two decades, with the rapid increase of 
complex digital logic systems’ scale, the designers have lev-
eraged technology scaling and rising power budgets to rap-
idly scale performance [1]. This fact showed that low level 
design methodologies would not be effective for designing 
complex digital logic systems in future, and new, efficient 
high abstract level design techniques need to be developed 
and adopted. These techniques should be used to model in 
different levels for designers. Hardware Description Lan-
guages (HDLs) can be used for model and synthesis with 
related tools. HDLs are based on the software programming 
languages and extend these languages with hardware signals, 
modules and interfaces. 
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The function of HDL descriptions is to specify the struc-
ture and behavior of hardware. These specifications are 
mainly used to simulate the behaviors of description, synthe-
size lower level descriptions such as bit files and generate 
the real devices. Some descriptions in HDLs can be used for 
simulation, but cannot be synthesized into circuits. 

1.1. Related Works 

The dominant traditional HDLs are Verilog and VHDL 
(Very high speed integrated circuit HDL) which are both 
developed for simulation originally. Their grammar and style 
are similar to C. However, these HDLs have no enough sys-
tem-level support for complex digital logic circuit design. 
They do not fully support the algorithm-level specification. 
Due to the low level of abstraction, designing Verilog 
/VHDL modules manually needs very skilled engineering 
and a significant time investment. Writing in HDLs can be 
more tedious and time consuming than writing a software 
program to do the same thing. After the design is complete, 
verification takes even more time. Currently, there are some 
expansions in traditional HDLs for enhancing their describ-
ing capability. Moreover, most of their description can only 
be used for simulation and cannot be synthesized [2]. 

In order to solve these problems, many late-model HDLs 
are developed. For example, Chisel can be embedded in 
Scala programming language and raises the level of hard-
ware design abstraction [3]. MyHDL uses Python as a low 
level description language [4]. Genesis2 uses Perl to provide 
more flexible parameterization and elaboration of hardware 
blocks written in System Verilog [1]. The language called 
Verischemelog [5] provides Scheme syntax for specifying 
modules in a similar format to Verilog. JHDL (Java HDL) 
[6] regards Java classes as modules. HML (Hardware Meta 
Language) [7] uses standard ML (Meta Language) functions 
to connect circuits together. These approaches combine the 
poor abstraction facilities of the underlying HDLs with the 
high-level programming model that does not understand 
hardware constructs. 
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Therefore, directly programming in these HDLs is time 
consuming because they are in low abstraction level. Some 
descriptions in HDLs are only suitable for simulation pur-
poses and cannot be synthesized into circuits. This means, 
we can simulate them, but we cannot get the real product. 

XML (Extensible Markup Language) has been intro-
duced as a standard of new generation network data expres-
sion, transmission and exchange by the W3C (World Wide 
Web Consortium), belongs to the definition of electronic 
document structure, describes the content of the international 
Standard language SGML (Standard Generalized Markup 
Language), and is a technology depending on the content of 
cross-platform on the Internet. It is a kind of simple data 
storage language and widely used in the computer system 
and other systems of data description [8]. Recently, XML 
has been implemented in simulator software called Ptolemy 
II. The primary persistent file format for Ptolemy II models 
is MoML (which stands for Modeling Markup Language), an 
XML schema language. In this simulator software, designers 
can use Vergil to graphically construct models. Vergil stores 
models in ASCII files using MoML [9]. 

1.2. Contributions 

Our contribution is to introduce an efficient simple 
method to model embedded system quickly and make the 
specification and verification process practical for real de-
signs. This paper presents the XML specification for these 
reasons:  

(1) It has a simple and flexible text format; 
(2) It is widely used for the representation of arbitrary 

data structures;  
(3) The construct is similar to hardware (structure style).  
This paper defines a subset of XML syntax for the com-

ponent model. In this method, we regard circuits as compo-
nents and every component has input ports for getting input 
signals and output ports for generating output signals. Big 
component contains small ones, basic gates: OR, AND, NOT 
as the atomic components. Logic mapping table is used to 
describe combinational logic components, state-oriented 
finite state machine is used to describe the behavioral models 
of sequential logic components, and structure-oriented con-
nector is used to describe composite components. 

2. COMPLEX DIGITAL LOGIC COMPONENTS 

Complex digital logic circuit can be divided into combi-
national digital systems and sequential digital systems, cor-
responding to combinational logic components and sequen-
tial logic components which belong to atomic components, 
and namely cannot be divided into smaller components. A 
bigger component which is a compound logic component is 
constructed from those smaller components connecting with 
connectors (wires). 

2.1. Combinational Logic Components 

Combinational logic component is a kind of logic circuit 
in which the steady output is only related to the input vari-
ables at any time. The combinational logic component is 
made up of all kinds of logic circuit gate without memory 
components or feedback lines. 

Definition 1: A combinational logic component is de-
fined as  

,  ,  c IP OP T=< >  
Where IP is a set of input ports, OP is a set of output 

ports, and T is a logic mapping table specified in LM (see 
Section 4). 

2.2. Sequential Logic Components 

Sequential logic system includes synchronous and asyn-
chronous systems. The former changes all states when trig-
gered by a clock signal. And the latter propagates changes 
whenever inputs change. Currently, only synchronous se-
quential systems are supported in our specification. 

A Mealy logic component generates an output based on 
its current state and inputs. In contrast, the output of a Moore 
logic component depends only on its current state transitions 
without direct dependence on the inputs. 

Definition 2: A sequential logic component is defined as 
,  ,  c IP OP M=< >  

Where IP is a set of input ports, OP is a set of output 
ports, and M is a Mealy machine or Moore machine speci-
fied in MlM or MrM (see Section 5). 

2.3. Compound Logic Components 

A compound logic component is constructed from com-
binational logic components, sequential logic components 
and some smaller components connecting with connectors 
(wires). 

Definition 3: A compound logic component is defined as  

  
c =< IP,  OP,  C,  L >  
Where IP is a set of input ports, OP is a set of output 

ports, C is a set of sub-components specified in SCs, and L is 
a set of connectors specified in Cns (see Section 6). 

3. XML SPECIFICATION SUMMARIZATION 

The XML description grammar of components is defined 
as Fig. (1). All logic components are specified in XML. It 
has the following characteristics: 

(1) Each document statement includes four parts-a head 
for encoding declaration, included documents (not neces-
sary), component definitions and comments.  

(2) Each comment can start with <!-- and end with -->. 
(3) The included documents are used to define if the cur-

rent document includes other documents like the head files 
in C language.  

(4) A document contains a series of component defini-
tions specified in the marks <components> and 
</components>, and each component definition is a proto-
type component specified in the marks <component> and 
</component>. If the current document needs to use for in-
stance prototype defined in other documents, the related 
document name should be in the mark <include> and 
</include>.  

 (5) Each component has a name, a list of input ports, a 
list of output ports and a body. Input ports are used for re-
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ceiving input signals, output ports are used for generating 
output signals to other connectors. The port type includes 
bool, int, real and clock. The body specifies the component 
type-combinational logic component, sequential logic com-
ponent or compound logic component. 

4. LOGIC MAPPING 
The first task of logic circuit design is to abstract logic 

relationships from the design requirements. For combina-
tional components, the key work is to abstract logic relation-
ships for descriptions. 

In the combinational components, the logic mapping ta-
ble is used to describe the logic relationships of the input 
variables and the output variables. Their XML description 
grammar is defined as Fig. (2). In the grammar, only TRUE 
(1), FALSE (0), UNKNOWN(x, X) and HIGN-
IMPEDANCE (z, Z) are used to specify logic values.  

Example 1: The following XML descriptions specify a 
full adder which is a combinational logic component as 
shown in Fig. (3) and its logic expressions are: 

 
sum = a

in
! b

in
! c

in
,
  
c

out
= (a! b)c

in
+ ab . 

<component name=” FullAdder”> 
<ports> 

<input type=”bool”>ain</input> 
<input type=”bool”>bin</input> 
<input type=”bool”>cin</input> 
<output type=”bool”>sum</output> 
<output type=”bool”>cout</output> 

</ports> 
<body> 

<logicmap> 
<term> 
<in>a=”ain”;b=”bin”; 
c=”cout”</in> 
<out f1=”a^b^c” f2= “(a^b)&c|a&b”> 
sum=”f1”;cout=”f2”</out> 

</term> 
</logicmap> 

</body> 
</component> 

In the above descriptions, ain, bin and cin are three input 
ports which will transmit three signals to generate the values 
of the signal f1 and the signal f2 according to their respective 
expressions, and sum and cout are two output ports which will 
carry the values of the signal f1 and the signal f2. Obviously, 
this is a full adder. 

ain

bin

cin

sum

cout
FullAdder

 
Fig. (3). Full Adder Component. 

5. STATE MACHINE 

Finite State Machines (FSMs) or state tables are used to 
describe sequential logic components. Sequential logic com-

Document D ::= H Incls Cs | H Cs 

Head H ::= <?xml version=”1.0” 

Encoding =Cd standalone=Opt?> 

Code Cd ::= “UTF-8” | “GB2312” 

Option Opt ::= “yes” | “no” 

Include Documents Incls ::= <includes> Incl+ </includes> 

Include Incl ::= <include> F </include> 

Components Cs ::= <components> C+ </components> 

Component C ::= <component name=”ID”>  

Ps B </component> 

Ports Ps ::= <ports>P+</ports> 

Type Tp ::= “bool”|”int”|”real”|”clock” 

<input type=Tp> ID </input> 

| <output type=Tp > ID </output> 

Port P ::= 

| <inout type=Tp > ID </inout> 

<body> LM </body> 

| <body> MlM </body> 

| <body> MrM</body> 

Body B ::= 

| <body> SCs Cns </body> 

File Name F ∈ String 

Identifier ID ∈ String 

Fig. (1). Grammar for components. 

Logic Mapping LM ::= <logicmap {ID=”E”}* > 
T+</logicmap> 

Term T ::= <term {ID=”E”}> 

<in {ID=”E”}*> 

ID=”E”{;ID=”E”}*</in> 

<out {ID=”E”}*>  

ID=”E”{;ID=”E”}*</out> 

</term> 

Value V ::= {0, 1, x, X , z, Z} 

∪Integer∪Real∪{ID} 

Binary Operator BOp ::= {&, |, ^,+,-,*,/,%} 

Unary Operator UOp ::= ~ 

Expression E ::= E BOp E | UOp E | V | (E) 

Fig. (2). Grammar for logic mapping tables. 
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ponents contain Mealy or Moore state machine, and each 
state machine has an initial state. The XML description 
grammar for FSM of sequential logic components is defined 
as Fig. (4). 

Example 2: The following description fragment models 
for controlling the logic of a vending machine as shown in 
Fig. (5) used to charge $1 (y=1) or 50 cents (c=1) so as to 
sell a piece of merchandise (s=1) or give changes (f=1), 
whose Mealy finite state machine is shown in Fig. (6). 
<component name=”VendingMachine”>  

<ports>  
<input type=”bool”>en</input>  
<input type=”bool”>y</input>  
<input type=”bool”>c</input> 
<input type=”clock”>clk</input>  

<output type=”bool”>f</output> 
<output type=”bool”>s</output> 

</ports> 
<body> 

<mealy trigger=”Positive”> 
<!--finite state machine-->  

<initial>s0</initial> 
<transition> 
<current>s0</current> 
<in>en=”0”;y=”0”;c=”1”</in> 
<next>s1</next> 
<out>f=”0”;s=”0”</out> 

</transition> 
<transition> 
<current>s0</current> 
<in>en=”1”;y=”1”;c=”0”</in> 
<next>s2</next> 
<out>f=”0”;s=”0”</out> 

</transition> 
…<!-- part of the code omitted here --> 
<transition> 
<current>s4</current> 
<in>en=”1”;y=”0”;c=”1”</in> 
<next>s0</next> 

Mealy Ma-
chine 

MlM ::= <mealy {ID=”E”}* Trigger=”Trig”>  

Init MlT+ </mealy> 

Moore Ma-
chine 

MrM ::= <moore {ID=”E”}* Trigger=”Trig”>  

Init MrT+ MrO+ </moore> 

Initial State Init ::= <initial> State </initial> 

Mealy Transi-
tion 

MlT ::= <transition {ID=”E”}*> 

<current> State </current> 

<in {ID=”E”}*>  

ID=”E”{;ID=”E”}*</in> 

<next> State <next><out {ID=”E”}*>  

ID=”E”{;ID=”E”}* </out> 

</transition> 

Moore Transi-
tion  

MrT ::= <transition {ID=”E”}*> 

<current> State </current> 

<in {ID=”E”}*>  

ID=”E”{;ID=”E”}*</in> 

<next> State <next></transition> 

Moore Output MrO ::= <mooreoutput> 

<current> State </current> 

<out {ID=”E”}*>  

ID=”E”{;ID=”E”}* </out> 

</mooreoutput> 

State State ∈ String 

Trigger Trig ::= Negative | Positive | High | Low 

Fig. (4). Grammar for Mealy and Moore FSMs. 

en

y

c

clk

f

s

Vending

Machine

 
Fig. (5): Vending machine component. 

Fig. (6). State machine. 
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<out>f=”0”;s=”1”</out> 
</transition> 
<transition> 
<current>s4</current> 
<in>en=”1”;y=”1”;c=”0”</in> 
<next>s0</next> 
<out>f=”1”;s=”1”</out> 

</transition> 
<transition> 
<current>s4</current> 
<in>en=”0”;y=”x”;c=”x”</in> 
<next>s0</next> 
<out>f=”0”;s=”0”</out> 

</transition> 
</mealy> 

</body> 
</component> 

In this sequential logic component, there is a special in-
put port- clk whose type is “clock” used to trigger the com-
ponent to transform the input signal en, y and c into the out-
put signal f and s according to its Mealy state machine. In 
Fig. (6), s0 stands as the initial state. If en=1, y=0 and c=1, s0 
will be transferred to the state of s1, and will generate the 
output signals of f=0 and s=0. When the state machine is in 
the state s4, and captures the input signals of en=1, y=0 and 
c=1, it will migrate to the state s0 and generate the output 
signals of f=0 and s=1 so as to sell a piece of merchandise. In 
any state, if en=0, the state machine will be transferred to the 
state s0 regardless of y or c. 

6. STRUCTURAL MODELLING 

The structure of a compound logic component is hierar-
chical and composed of some smaller components, namely 
sub-components, connected with connectors. Fig. (7) shows 
its grammar. 

Example 3: The following descriptions are used to spec-
ify a compound logic component which counts for the sale of 
goods in a vending machine as shown in Fig. (8). 

<component name=”SaleCounter”> 
 <ports> 
  <input type=”bool”>start</input> 

<input type=”bool”>one</input> 
<input type=”bool”>fifty</input> 
<input type=”clock”>clk</intput> 
<output type=”bool”>s1</output> 
<output type=”bool”>s2</output> 
<output type=”bool”>s3</output> 
<output type=”bool”>s4</output> 
<output type=”bool”>sell</output> 
<output type=”bool”> 

change</output> 
</ports>  
<body> 

<subcomponents> 
 <instance name=”f1”> 

FullAdder</instance> 
<instance name=”f2”> 
FullAdder</instance> 

<instance name=”f3”> 
FullAdder</instance> 

<instance name=”f4”> 
FullAdder</instance> 

Sub Components SCs ::= <subcomponents> 

Inst+ </subcomponents> 

Instance Inst ::= <instance name=” ID”> 

ID </instance> 

Connectors Cns ::= <connectors> Cn+ </connectors> 

Connector Cn ::= <connector> 

{ID.}ID ->{ID.}ID</connector> 

| <connector> 

V ->{ID.}ID</connector> 

Fig. (7). Grammar for compound components. 

s

f
vm

en

y

c

clk

f2

ain

bin

cin

f1
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bin

cin

cout

sum
f4

ain

bin

cin

cout

sum
f3
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bin

cin

0

0

0

0
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s4

change

start
one

fifty

clk

cout

sum
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d4
d q
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d3
d q
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d q
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d1
d q

clk

sell

 
Fig. (8). Sale counter component. 
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<instance name=”d1”> 
DFlipFlop</instance> 

<instance name=”d2”> 
DFlipFlop</instance> 

<instance name=”d3”> 
DFlipFlop</instance> 

<instance name=”d4”> 
DFlipFlop</instance> 

<instance name=”vm”> 
VendingMachine</instance> 

</subcomponents> 
 <connectors> 

<connector> 
f3.cout->f4.cin</connector> 

   <connector> 
0->f4.ain</connector> 

   <connector> 
d4.q->f4.bin</connector> 

<connector> 
f2.cout->f3.cin</connector> 

   <connector> 
0->f3.ain</connector> 

   <connector> 
d3.q->f3.bin</connector> 

<connector> 
f1.cout->f2.cin</connector> 

   <connector> 
0->f2.ain</connector> 

   <connector> 
d2.q->f2.bin</connector> 

<connector> 
vm.s->f1.cin</connector> 

   <connector> 
0->f1.ain</connector> 

   <connector> 
d1.q->f1.bin</connector> 

   <connector> 
start->vm.en</connector> 

   <connector> 
one->vm.y</connector> 

   <connector> 
fifty->vm.c</connector> 

   <connector> 

clk->vm.clk</connector> 
   <connector> 

vm.f->change</connector> 
<connector> 
vm.s->sell</connector> 

<connector> 
clk->d1.clk</connector> 

<connector> 
clk->d2.clk</connector> 

<connector> 
clk->d3.clk</connector> 

<connector> 
clk->d4.clk</connector> 

<connector>d1.q->s1</connector> 
<connector>d2.q->s2</connector> 
<connector>d3.q->s3</connector> 
<connector>d4.q->s4</connector> 

 </connectors> 
</body> 

</component> 
In Fig. (8), the sale counter component is a compound 

logic component composed of 7 sub-components. Four Ful-
lAdder components –f4, f3, f2 and f1 constitute a 4-bit ripple 
adder which is used to add vm.s to d4.q d3.q d2.q d1.q, four D 
flip-flop components –d4, d3, d2 and d1 constitute a 4-bit data 
register, and a vending machine component vm is used to 
receive the input signal one and fifty through the port vm.y 
and vm.c so as to generate the counting signal vm.s. 

7. CONCLUSIONS AND FUTURE WORKS 

To our best knowledge, this paper presents a practical 
way to describe circuit by providing specialized XML 
grammar. Our design will enable the quick development and 
data exchange of new IC (Integrated Circuit) product. Hier-
archical structure helps to divide and conquer verification. 
After those jobs, the next step is to convert XML descrip-
tions to low level description languages such as Verilog or 
VHDL so as to generate ASIC net or FPGA bit stream files 
under the help of the existing EDA synthesis tools. However, 
XML description is more lengthy and tedious. In order to 
build complex digital logic systems efficiently, it is neces-
sary to model in a graphical development environment. An-
other important challenge is to verify the correctness and 
accuracy of the modeling components. Currently, a model 
named XModel GUI tool is being developed for all above 
aims. As noted in [10-15], more work needs to be done in the 
future. 
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