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Abstract: The k-median problem has been widely applied in many research fields such as clustering, logistic center etc. 
Its approximated algorithm has been interested by many computer theory scientists. In 2006, a reverse greedy algorithm 
for the metric k-median problem has been proposed by Chrobak and the approximative ratio is proved between 
Ω(lg(n)/lg(lg(n))) and Ω(lg(n)). In this paper, we present an improved version for the algorithm. In our improved algo-
rithm, there are two central ideas, which include are randomized sample and reverse greedy. We proved the expected ap-

proximation ratio of the improved algorithm is 2 ln !! !) !" !!
α

− 1 + 2 and its running time [!
!
(ln  (!))]2n, where n 

represents the size of the given point set and α denotes the balanced parameter of the given point set. 
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1. INTRODUCTION 

The metric k-median problem is described as follows: 
given a set of n points, for each two points i, j in the given 
points set, define c(i, j) as the cost between i and j. The goal 
is to select at most k points from the given points set so as to 
minimize the sum of the assignment costs. 

This problem has been proved to be a NP-Hard problem, 
and has been applied many fields such as clustering, opera-
tion research, web service replications in a content distribu-
tion network and logistics center selection etc. Since 1982, it 
attracted many computer theory scientists to study its ap-
proximation algorithms. In 1966, Balinski proposed a LP-
relaxation approach to research its approximated algorithm. 
After that, a lot of algorithms were proposed by many com-
puter scientists. These algorithms can be classified as filter-
ing technique [2], original dual method [3], greedy technique 
[4] and local search [5-7] etc. The first constant factor ap-
proximation algorithm for the k-median problem was given 
by Charikar [8]. The main idea of this algorithm is linear 
program and rounded technique, and the approximate ratio is 
proved to be 20/3. In 1999, a 6-approximation algorithm for 
the k-median problem was presented by Jain and Vaziran [3]. 
Charikar and Guha [8] improved the 6 approximation to 4. 
The main strategy of this improved algorithm is cost scaling 
and greedy improvement. In 2001, a local search algorithm 
was proposed by Arya [5] and its approximate ratio is 3+ε. 
In recent years, the approximation ratio was improved by a 
series of papers [5, 9-11] and the current best result is 
1+ 3+ε for any ε>0 via pseudo approximation [12]. 

Define P as the given point set, for the metric k-median 
problem, Amos Fiat presented a reverse greedy algorithm   
 
 

[13]. The algorithm initially set Pn=P, and it repeat n-k 
steps,at each step let Pk-1= Pk-{rk}, where rk in Pk is chosen 
so that the cost(Pk-1)-is minimized. Fiat wondered whether 
this algorithm is O(1)-approximation algorithm. In 2006, 
Marek Chrobak [13] presented a nearly tight analysis of this 
algorithm by showing that its approximation ratio is between 
Ω(lg(n)/lg(lg(n))) and Ω(lg(n)). 

 In this paper, we proposed a randomized reverse greedy 
algorithm for the metric k-median problem with the mini-
mum subset size constraint: given a finite point set P in a 
metric space and parameters k and α, where each subset size 
of the solution has at least !"

!
 points, select k center points 

such that minimize the sum of the assignment costs. We 
proved that the randomized algorithm expected approximate 
ratio is 2 ln !! !) !" !!

α
− 1    + 2 with high probability and 

the running time is [!
!
(ln  (!))]2n . 

 We organized this paper as follows: Section 2 presented 
an randomized (2, O(ln(k)/α)-approximation for the metric k-
median problem, section 3 discussed the improved reverse 
greedy algorithm and section 4 concluded this algorithm 

2. AN (2,O(LN(K)/α)-APPROXIMATION ALGO-
RITHM 

In general, an (α,β)-approximation for k-median problem 
guarantees a cost of at most α OPT and uses at most βk me-
dians. Given point set P, we assume the k optimal subsets to 
be !!∗,!!∗,…,!!∗ and each optimal center of !!∗ is correspond-
ingly to be defined as !!∗(i=1,2,...,k). For each subset !!∗, 
suppose its size to be at least |!|!

!
 , where 0<α≤1 and we call 

it as the balanced parameter. 

Theorem 1: Given point set P, Denote S as the point set 
drawn uniformly at random from P. If the size S is greater 
than (2+ 3)!

!
ln(2k), then, Pr(|S∩ !!∗| ≥ 1) ≥1/2, which is 
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mean that the probability of S include at least one point of 
each !!∗  is at least 1/2. 

Proof: Assume the size of P is n, i.e., n=|P|, without loss 
of generality, suppose !!∗ ≤ !!∗ ≤  , …, ≤ |!!∗| . Let 
!!∗ = |!!∗|, !! = ! ∩ !!∗, !!! = |!!|. The probability of each 
point in !!∗included in S is obviously at least !!

∗

!
 . So, the ex-

pected value of the random variable  !!! must be at least !!
∗

!
|!|. 

Based on Chernoff Bounds, we have ∀!Pr[!!! <

! ! !!
∗

!
] < !

! !!! !
! !

!!
∗

! , where λ(0 < λ < 1) is selected as 
a parameter to trades the size of S against the probability. In 
order to let !!∗ include some points of S with a constant prob-
ability, we attempt to make this probability be smaller than !

!
 . 

Let !! denote the event that  !!! < ! ! !!
∗

!
 . Then, 

 Pr[∃!, !!! ≤ ! ! !!
∗

!
] = Pr  [ !!] ≤ Pr  (!!)!

!!!
!
!!!  

 According to the definition of α, it is obvious that the 
size of !!∗ is at least !"

!
. To ensure each !!∗ is contained in S 

at least one point of !!∗, Set |S|= !
(!!!)!

!
!
log 2! , ! = 2 −

3 , we can determine that S = (2 + 3) !
!
log  (2!) is suf-

ficient to guarantee that Pr[∃!, !!! ≤ ! ! !!
∗

!
] < !

!
. It shows 

that Pr[∀!, !!! > ! ! !!
∗

!
] = 1 − !"  [∃!, !!! ≤ ! ! !!

∗

!
] ≤ !

!
. On 

the other hand, since   !!! ≥ ! ! !!
∗

!
= ln  (2!) and k is obvi-

ously greater than 1, So the probability that S would include 
at least one point for each !!∗ is at least !

!
. 

 On condition that S contains at least one point of each !!∗, 
next, we will prove the theorem that at most k centers in S 
such that the expected total cost is less 2 times than the op-
timal cost of the given instance. 

 Denote by !!∗ the optimal center to serve !!∗. If we draw 
one point x at random from !!∗ independently and uniformly, 
then the expected distance between x and !!∗  is 

E(d(!!∗, !))=
!(!,!!

∗)!∈!!
∗

|!!
∗|

. Let d(x, y) denote the distance be-

tween any two points x, y in P. Given a point set F⊆ !, the 
cost of F is defined by cost(F)= !(!,!)!∈!  , where d(x, F) 
denotes the minimum distance between x and the point in F. 
Our goal is to find a k-element set F⊆ ! that minimizes the 
cost(F). Let OPT denote the optimal cost. 

Theorem 2: If S satisfy that ∀!  |! ∩ !!∗| ≥ 1(1 ≤ ! ≤ !), 
there exists one subset F⊆ !  such that E(cost(F))  ≤ 2OPT. 

Proof: Without lost of generality, Define by F={!!, !!, …, 
!!} as the k points in S such that !! ∈ ! ∩ !!∗(1≤ ! ≤ !) re-
spectively, i.e , !!  belongs to one point of !!∗ . Let 
!∗={!!∗, !!∗,……,!!∗} denote the optimal solution. Now, one 
special assigning point method is considered. For each sub-
set !!∗, instead of !!∗, let !! serve the subset !!∗. Denote by 
cost(!!!) as the cost of this new assigning method. 

cost !!! = (! !, !! )
!∈!!

∗

!

!!!
 

*
* *

1
( ( , ) ( , ))

i

k
i i ii y F

d y f d f f
= ∈

≤ +∑ ∑  

*
* * *

1 1
( , ) | | ( , )

i

k k
i i i ii y F i

d y f F d f f
= ∈ =

= +∑ ∑ ∑  

So, the expected value of cost !!!  is: 

 E(cost(!!!))≤ ! !, !!∗!∈!!
∗!

!!! + |!!∗|!(!(!!∗, !!))!
!!!   

 =2 ! !, !!∗!∈!!
∗!

!!!   

 =2OPT 

 For each optimal subset !!∗, if the point x in !!∗ is as-
signed to !! other than !!, where !! is the closed point in F , 
then we have d(x,  !!)≤d(x, !!). Further, we conclude that 
cost(F)≤ cost(!!!) and E(cost(F))≤E(cost(!!!)) ≤ 2OPT. 

 On condition that i∀ |S∩Pi
*|≥1, to enumerate each pos-

sible k elements from S to serve P and calculate its cost, let 
the minimum value of all possible cost as the algorithm final 
solution, According to Theorem 2, the expected approxima-
tion ratio is at most 2 with probability greater than !

!
. Since 

S = (2 + 3) !
!
log  (2!) and the number of all possible k 

elements in S is !|!|! , owing to
| |
k
SC ≤ ( )| | kS e

k  [14], so, the 

number of !|!|!  can be concluded as O (2 3) ln( )( )e k k
α

+ . It is 
obvious that if k is enough large, the running time must be 
very high and the algorithm has little practical value. 

3. IMPROVED ALGORITHM 

For each input instance for the metric k-median problem, 
the following algorithm produces an O(ln(ln(k)/α) approxi-
mation with high probability. 

1) Construct subset S by drawing from the given point set 
P uniformly, where S = (2 + 3) !

!
log  (2!). 

2) For each point in P, compute the distance to the near-
est point in S, let R=S. 

3) Repeat the following process until |R|=k  
 Set R=R- !! ,  where !! ∈ !  is chosen so that the cost(R) 

is minimized. 

Before giving the approximate ratio, we first analyze the 
running time of this algorithm. In step 2, calculating the 
closest center to each point of S requires running O(|S|×|P|) 
times. Meanwhile, the number of iterations of step 3 is |S|-k, 
and the running time for computing cost(S) is O(|P|× |S|). In 
each iteration, the size of S decreases by 1. So, the running 
time of step 3 is O([|S|+(|S|-1)+,...,+k]). Based on the analysis 
above, we conclude that the overall time complexity of the 
algorithm is O(|S|×|P|)+ O([|S|+(|S|-1)+,...,+k]  ×|P|). Let n 
denote the size of the set P. Then, the time complexity can 
be simplified as O( 2[ ln( )]k k nα ). 
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Without loss of generality, suppose the deleted center or-
der from R to be !!, !!,…… , !! !!!!. Before presenting re-
verse greedy algorithm approximation ratio, we first given 
some related lemmas  

Lemma 3: 1+1/2+1/3+…+1/n=ln(n)+γ (where γ(<1) is a 
Euler constant ) 

Lemma 4: cost(R)≤cost(R\{ !! })≤…≤ 
cost(R\{!!,…,!! !!!!)。 

Proof: For each center r, define N(r) as the clients served 
by r. According to the definition of cost(R), each point in P 
must be assigned to its closest center in R. Based on step 3, 
the selected center !! from R satisfies that the condition that 
the value of cost(R-{!!})-cost(R) is minimal. If !! is deleted, 
each point in !(!!) has to be reassigned to one of the center 
in R-{!!}, and the distance from the point to the center in R-
{!!} is greater than !!. So, cost(R)≤cost(R-{!!}). Similarly, 
we can conclude that cost(R)≤cost(R-{!!})≤,..., ≤cost(R-
{!!,...,! ! !!!!}. 

Let !∗={!!∗, !!∗,......, !!∗} denote the optimal solution. For 
each optimal center !!∗, let !!! denote the closet center in R to 
!!∗ and define !! ={!!!, !!!,…    , !!!  }. 

Lemma 5: !"#$ !\{! − !"#$ ! ≤ !"#$ !! −!∈!\!!

!"#$(!) 

Proof: Let N(r) denote the points of P that is closest to r 
than any other point in S, i.e., N(r)={x|x∈P⋀  r∈  R⋀ 
d(x,r)=d(x, S)}. Now, we consider the left side of the ine-
quality: 

 !"#$ !\{! − !"#$ !!∈!\!!  

 = [!(!,!\{!}) − !(!,!)]!∈! !!∈!\!!  [1] 

For the right side of the inequality: 

cost(!!)-cost(R)  

= [!(!,!!)!∈! -d(x, R)] 

+ [! !,!! − ! !,! ]!∈!(!)!∈!!  

 = [! !,!! − ! !,! ]!∈!(!)!∈!!  

 + [! !,!! − ! !,! ]!∈!(!)!∈!\!!  [2] 

On the expression [! !,!! − ! !,! ]!∈!(!)!∈!! , 
since r∈ !!  !"#  !! ⊆ !, it follows that d(x,!!) = !(!,!), 
further, [! !,!! − ! !,! ]!∈!(!)!∈!! = 0  So, the ex-
pression of (2) can be abbreviated as cost(!! )-cost(R) 
= [! !,!! − ! !,! ]!∈!(!)!∈!\!! . 

 Based on the above analysis, the expression of the lem-
ma 5 can be rewritten as: 

 [!(!,!\{!}) − !(!,!)]!∈! !!∈!\!!   
 ≤ [! !,!! − ! !,! ]!∈!(!)!∈!\!!  

 If   !! ⊆ !, it is obvious that d(x,    !!)≥d(x,R). For each 
center r∈ R\!!, since !! ⊆ ! and r∉ !!, it is easy to see that 
F⊆ !\{!}. Further, for the point x∈ ! ! . we conclude d(x, 
S\{r})≤ !(!,!!), So:  

d(x, S\{r})-d(x, S)≤d(x, !!)-d(x, S). 
Consider all x and sum up the above inequality, we come 

to the conclusion of this lemma. 
Lemma 6: cost(!!)-cost(R)≤2cost(!∗) 

Proof : For each point x∈ !, define f(x) as the closet cen-
ter in R to x, !∗(!) as the closet center in !∗ to x, and !!(x) 
as the closest center in !! to x. By the definition of !!, we 
conclude that d(!!(x),  !∗(!)) ≤d(f(x), !∗(!)). On the other 
hand, we have the following expression: 

 d(x,!!(x))≤d(x,    !∗(!))+ d(!!(x),  !∗(!)) 

  ≤d(x,    !∗(!))+ d(!!(x),  !∗(!)) 

 ≤d(x,    !∗(!))+ d(!, !∗(!))+d(x, f(x)) 

  ≤ 2d(!, !∗(!))+d(x, f(x)) 

It follows that d(x,!!(x))- d(x, f(x))  ≤2d(!, !∗(!)) Sum 
up over all x, we come to the conclusion. 

Theorem 7: Given point set P, with high probability, the 
expected approximation ratio of this reverse algorithm is 
2 ln !! !) !" !!

α
− 1    + 2 , where α denotes the balanced 

parameter. 

Proof: After running the process of R=R-{!!} in step 3 
many times, the size of R decreases to j. Let !! denote the 
subset of R whose size is j. While !!  becomes   !!!! , by 
lemma 2, the cost should be increase simultaneously. We 
first estimate the incremental cost in iteration j of step 3. 

cost(  !!!!)-cost(!!) 

  ≤ !"#!∈!!\!!(cost(!!\{r})-cost(Rj)) 

 ≤ !
|!!\!!|

(!"#$(!!\{!}) − !"#$(!!))!∈!!\!!  

 ≤ !
!!!

(!"#$(!!\{!}) − !"#$(!!))!∈!!\!!  

 ≤ !
!!!

(!"#$ !! − !"#$(!!)) 

 ≤ !
!!!

cost(!∗) 

The first inequality is based on the definition of   !!!!, the 
second one is estimated the fact that the minimum is less 
than the average, and the third one follows from !! ≤ !. 

Summing up over j=|S|,|S|-1,...,k , by lemma 1, we obtain 
the following upper bound: 

cost(!!)-cost(!|!|) 

  ≤( !
|!|!!

+ !
! !!!!

+⋯+ !
!!!

)cost(F*) 

 ≤2ln  ( !
!
− 1)!"#$(!∗) 

By lemma 2 and theorem 3, we conclude that 
E(cost(!|!|))≤2cost(F*). If we apply the expected cost of 
cost(!|!| ) to the expression above, the following upper 
bound of cost(!!) is: 
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E(cost(!!)) ≤ 2 ln !
!
− 1 + 2 !"#$ !∗  

=[2 ln (!! !)!"  (!!)
!

− 1 + 2]  !"#$ !∗   

By theorem 1, for each i, the probability of |S∩ !!∗| ≥ 1 is 
at least !

!
. So, if running the reverse algorithm once, we ob-

tain the expected approximation ratio with probability great-
er than !

!
. Further, if we run the algorithm log! !  times and 

select the best result of them as the final result, we can ob-
tain the result with probability greater than 1-!

!
. 

Based on the result of the Theorem 3, Compared to the 
algorithm presented by M.Chrobak, whose approximate ratio 
is log ! and the running time is O(!!), we get good approx-
imate results. If the balanced parameter !  is big enough, for 
example, close to 1, i.e., the size of the k optimal subsets is 
close to equal, the expected approximation ratio is less than 
2 ln 2 + 3 ln 2k − 1 + 2. And if k is less than 10, the 
expected approximate result may be close to the local search 
algorithm with single swap. Run several times, the minimum 
approximate ratio may be better than the local search. 
Meanwhile, the running time of the reverse greedy algorithm 
is lower than the local search. 

CONCLUSION 

In this paper, we presented a reverse greedy randomized 
approximate algorithm for the metric k-median problem. The 
main idea of the randomized algorithm is to draw one subset 
at random, which includes at least one point of each optimal 
client subset with high probability. Based on this sampling 
subset, we invoke reverse greedy algorithm to find k centers 
to serve the given point set. We presented this improved al-
gorithm approximate ratio and concluded that if each size is 
close to equal it may get better approximate ratio and run-
ning less time than the algorithm put forward by M.Chrobak. 
Of course, there are also some disadvantages for this algo-
rithm. For example, not only the sampling process, but also 
the expected approximate ratio relies on the balanced param-
eter. If the parameter ! is enough big, the algorithm will run 
more time. So, only to the situation where the size of each 
divided subset is all most equal or have little difference does 
this algorithm suit. 
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