
Send Orders for Reprints to reprints@benthamscience.ae

468 The Open Automation and Control Systems Journal, 2014, 6, 468-472

 1874-4443/14 2014 Bentham Open

Open Access
Improvement of the Baseline Method in Structural Testing

Jifeng Chen1,*, Hao Peng1 and Xingxing Xie2

1Hunan International Economics University, Changsha 410205, China
2 Software School, Hunan University, Changsha 410082, China

Abstract: An algorithm based on the generation for baseline path is proposed in this paper. Making use of it, the original
baseline path can be generated randomly and automatically. In respect of traversing the basic path group, the algorithm in-
troduces the method of depth-first search to avoid storing more information of branch node and decrease the time of linear
traversal. Using the column with S-node with no in-degree and the row with E-node with no out-degree, the case of
nodes’ value and the number of value cases are stored for reducing the waste in storage. Furthermore, giving priority to
the behind path-node when generating a path, the time of judgment for loops is effectively reduced. Theoretical analysis
and experimental results show that this new algorithm has an advantage over the original Baseline Method in efficiency
and space complexity of the test path generation. The average space complexity is decreased from O(n) to O(log n) , and
the time complexity is also reduced to a certain extent.

Keywords: Baseline path, Control-flow coverage, Data-flow coverage, Software testing, Test path.

1. INTRODUCTION

The nature of software testing is to determine a set of test
cases for something which needs be tested and execute the
test cases to find bugs in software. There are two basic
methods which can be used to identify test cases, functional
testing (also known as black-box testing) [1-3] and structural
testing (also known as white-box testing) [4-6]. Therefore,
the technology of test data generation is usually divided into
function-oriented [7, 8] and structure-oriented [9, 10] test
data generation technology.

The question of generating the path based on the criterion
(remembered as Qp) is defined as: For a given coverage cri-
terion C, how to generate path P which is set to achieve the
coverage requirements described as C in the structural test-
ing.

As there is an executable path P for each test data d , the
criterion been used to describe the adequacy of test data also
apply to test path, and the same in semantics, i.e.

C(m, D) = true!C(m, P) = true .

There are two coverage criteria in structural testing: Con-
trol-flow coverage [11-13] and Data-flow coverage [14-16].
The control-flow coverage criterion is chiefly discussed in
this paper.

2. RELATED WORK

The control-flow coverage criteria include state-ment
coverage, branch coverage, condition coverage, condition
/decision coverage, complete path coverage, basis path cov-

erage, Z-path coverage, and so on. The complete path cover-
age is one of the strongest coverage criteria. Even for a small
program, the number of paths may be enormous, so the crite-
rion has no practical application most of the time. Therefore,
the coverage criteria which is relatively weak are adopted.
Although the statement coverage is regarded as the most
weak coverage criterion, due to its poor error detection abil-
ity, the branch coverage is actually the most weak coverage
criterion [17].

Among the control-flow coverage criteria mentioned
above, basic path coverage criterion meets the branch cover-
age standard [18]. It is defined as follows:

If and only if path P includes V(G) paths which are linear
independence, D meets the basic path coverage criterion C,
that is

C(m, D) = true !"Q((Q # P)$ LI(Q)$ (Q =V (G)))

 = true , ()LI X means that all of the paths in X are linear in-
dependence. Basic path coverage is also called the coverage
of Cyclomatic Complexity. The test path is generated based
on the basic path coverage in this paper. i.e. by analyzing the
cyclomatic complexity of the control flow graph, a set of
basic paths (which are executable) is derived based on the
program control flow graph (PFG) [19].

2.1. The Principle of the Basic Path Coverage Criterion

The basic path coverage criterion was proposed by
McCabe in 1976. The basis path test is also called the cy-
clomatic complexity test due to the cyclomatic complexity
equal to the number of independent paths. In graph theory,
the cyclomatic complexity is defined as

V (G) =| E |! | N |+ p ,

in which the P is the number of the connected component. If
the direction of PFG isn’t in consideration, then

V (G) =| E |! | N |+1 . However, PFG is not strongly connect-

Improvement of the Baseline Method in Structural Testing The Open Automation and Control Systems Journal, 2014, Volume 6 469

ed, the solution is to add a edge from the Exit to the Entry, so
that the cyclomatic complexity of the PFG is

V (G) =| E |! | N |+2 , just equals to the number of independent
paths. Normally, the edge from the Exit to the Entry in the
PFG isn’t introduced, but the virtual edge is assumed to exist
when calculating cyclomatic complexity [19].

The basic idea of cyclomatic complexity is similar to any
vector in the vector space can be expressed by one of the
baselines in this vector space in Linear Algebra. Any pro-
gram’s PFG can be regarded as a matrix which is called

A

s!|E|
,

in which s is the number of paths, E is the number of
edge. All of the paths in the PFG of Fig. (1) are (Simplicity,
Entry expressed by S, Exit expressed by E):

p1=< S ,1,2,3,4, E >

p2 =< S ,1,3,4, E >

p3=< S ,1,2,3,4,5,4, E >

p4 =< S ,1,3,4,5,4, E >

p5 =< S ,1,2,3,4,5,4,5,4, E >

p6 =< S ,1,3,4,5,4,5,4, E >

Expressed by a matrix

A =

1 1 0 1 1 0 0 1

1 0 1 0 1 0 0 1

1 1 0 1 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 1 1 2 2 1

1 0 1 0 1 2 2 1

...

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

, in where one

row denotes one path, the column denotes the number of the
path travel

 e1,e2,…,e8 , that is

A = (p0, p1,..., ps)T . According

to the knowledge of Linear Algebra [20], any matrix only

has one rank and less than or equal to the number of col-
umns. This means that, no matter how many possible paths
there are, the rank of matrix will not be over the edges of
program control flow graph. In fact, the rank of matrix is the
cyclomatic complexity of program control flow graph. The
greatest of the linearly independent vectors is a vector in the
vector space, which can be expressed by all of the vectors in
the vector space. Corresponding to the matrix, vectors ex-
press paths and cyclomatic complexity is the number of line-
arly independent paths. All the paths can be expressed by
some paths whose number is cyclomatic complexity.

In the case of the existence of loops, we have proved that
the existence of the loop will increase the number of paths,
but cyclomatic complexity will not exceed an upper limit
which is the number of edge above. So the increase of paths
caused by the loop will not lead to the augmentation of cy-
clomatic complexity.

2.2. Baseline Method

Using Gaussian Elimination, we can find out matrices’
radix corresponded by the set of any given paths, i.e. the
number of non-zero row vector after elimination is complet-
ed. If there is no zero-vector when elimination is completed,
all the paths are linearly independent. If the vector of rank
equals to it’s cyclomatic complexity, the set of given paths is
one of the corresponding program flow graph’s radix. How-
ever, it is worth noting that, there is a corresponding vector
for each path, but it is not assured that there is a correspond-
ing path for each vector. This is very obvious, such as an
addition to the first component, the rest are non-zero vector
which does not exist on the path from Entry to Exit in the
corresponding topology. This fact shows that we must com-
bine with the program flow graph when the base paths are
generated.

The baseline Method which is used to generate a group
of the base paths has been proposed in [18]. Fig. (2) is taken
as an example to illustrate its basic idea below.

In (Fig. 2), The edges of branch are marked by T(True)
and F(False) which show that the direction when running the
program by different values. S and E express Entry and Exit
respectively. Because all the sentences represented by nodes

S

1

3

2

4

5

E

e1

e2

e3

e4

e5

e6e7

e8

Fig. (1). A program’s PFG (PFG-1).

S

1

52

6

E

3

4

F

FF

T

T
T

Fig. (2). Example of program flow graph for the baseline method
(PFG-2).

470 The Open Automation and Control Systems Journal, 2014, Volume 6 Chen et al.

aren’t known, we take any one path as the baseline. If 1 = T,
2 = T, 1 = F, 5 = F, then

 < S ,1,2,3,4,1,5, E > is the baseline
path. Note: If a branch node is passed again for the loop, we
don’t think it is a new branch node. So the value of the node
needn’t change to generate a new path. There are three
branch nodes in the baseline path, that is 1, 2 and 5 (the se-
cond one is not branch node, because it is passed again for
the loop).

While reaching the first branch node along the baseline
path, we change the value of branch node 1 to generate the
second path, 1 = F, and then it returns to the baseline path, so
when it reaches E along the baseline path, the second path is
 < S ,1,5, E > . At this time, the first branch node has no other
values.

While reaching the second branch node along the base-
line path, we change the value of branch node 2 to generate
the third path, 1 = T, 2 = F, and then it returns to the baseline
path, the third path is

 < S ,1,2,4,1,5, E > . At this time, the se-
cond branch node has no other values.

Finally, there are no other branch nodes in the baseline
path. The second path is taken as the new baseline path. The
branch node of baseline path is 5. Reaching 5 along the base-
line path at first and changing the value of node 5, the fourth
path is obtained, and node 5 has no other value. After all the
branch nodes are processed, the generation for the base paths
is finished. So the base paths are

 < S ,1,2,3,4,1,5, E > ,

 < S ,1,5, E > ,
 < S ,1,2,4,1,5, E > ,

 < S ,1,5,6, E > . If the Exit along
the baseline path isn’t reached while returning to the baseline
path, the paths may have a linear correlation. For example,
there may be

 < S ,1,2,3,4,1,2,4,1,5, E > and
 < S ,1,2,4,1,2,3,4,1,5, E > .

T and F are added to every branch in the PFG of the ex-
ample above. But in fact it is not important to choose which
branch each time. It is shown here only to illustrate expedi-
ently.

3. IMPROVEMENT OF THE BASELINE METHOD

3.1. The Basic Idea

It needs to select “typical” path that the Baseline Meth-
od’s requires when selecting the baseline path. This is more
suitable for manual methods, but in more complex program,
determining the path of a typical baseline path manually is
not easy to obtain and is prone to error. In addition, because
Baseline Method begins to deal from the first branch node of
baseline path, all the branch nodes in the baseline path have
to store their information in the new paths which are gener-
ated by the other circumstances (such as which are the
branch nodes? how many times they have been visited). Its
space complexity is

O(n) , average space comlexity is close

to ()O n which can be considered to be

O(n) , in which n is

the number of the branch nodes in the PFG.
Considering the first question, any one path can be cho-

sen. It is not as typical as the path in the Baseline Method,
but easy to automate. To the second question, in order to

avoid storing more branch nodes’ information, we can use a
similar depth-first algorithm, beginning to tackle from the
last branch node in the baseline path. Although its space
complexity still is ()O n , its average space complexity is
(log)O n .

What’s more, it can effectively avoid the repeated paths
which are brought by the loop to introduce PFG. In actual
testing, as a large number of nested path exist to increase the
number of loops, the key to the path search algorithm is to
solve the problem of loops [21]. In order to reduce the judg-
ment of loop, the back node in the path is preferentially cho-
sen when generating the paths (the node can be regarded as
the largest number of nodes). The path which is not through
the loop is generated first. Once being back to the node, the
loop should be exited along the path when the path including
the loop is generated.

3.2. Description of the Algorithm

According to the ideas above, at node 1, selecting 5 as a
priority, and then exiting directly, so that the baseline path is
 < S ,1,5, E > . Next, change the value of node 5, the second
path is

 < S ,1,5,6, E > . After that, change the value of node 1,
selecting 5 as a priority at node 2, then return to 1. At this
time returning to baseline path, to the Exit directly along the
baseline path, so the third path is

 < S ,1,2,4,1,5, E > . If the first
path which is randomly generated by the algorithm above is
 < S ,1,2,3,4,1,5, E > , it is necessary to choose a path to exit
when being through the node 1 on the second time. Now, the
improved algorithm is described as follows:

Input: The program flow graph is expressed by the adja-
cency matrix G[NUM][NUM], G[i][0] is used to mark the
last value, G[NUM-1][i] is used to record the number of the
value program where the column node(ie, node j) is located
at, the number of node and the subscript of array corresponds
with table indexNodeMap.

Output: a set of basic paths.
S1:Start from Entry node S, choose a path to Exit node E

randomly, and set the number of current path currPathNum
as 0. When meeting a branch node, select the largest number
of all the follow-up branch nodes in the current path as the
next node. At the same time, push the branch node’s infor-
mation into the stack(that is the node’s information which
G[NUM-1][j] != 0), the format is below:

struct NodeInfo

{

int currNum; // The number of current paths

int branchNodeNum; // The number of branch nodes

NodeInfo(int first, int sec)

{

 currNum = first;

 branchNodeNum = sec;

}

Improvement of the Baseline Method in Structural Testing The Open Automation and Control Systems Journal, 2014, Volume 6 471

}

S2: If the stack is empty, go to S4. Otherwise, take out
the Top-elements, to assign values as below:

� ++currPathNum; // The total number of path add 1

� baselineNum=currNum; // Adjust the baseline path as
the current path

� nextNodeNum = G[branchNodeNum][0]

 //the first non-zero element in the left

� G[branchNodeNum][j]--; // The num of the node’s
value program minus 1

� If G [branchNodeNum][j] is 0, push out the node’s
information of this branch from the stack;

� If nextNodeNum is Exit, the path is generated suc-
cessfully, go to S2. Otherwise, go to S3;

S3: Intercepting the list from S to node branchNodeNum
from the baseline path marked by baselineNum as the begin-
ning of the current path, and then to find a path to E starting
from nextNodeNum at the base path marked by base-
lineNum, If the follow-up node is existing in the baseline
path, intercepting the list from this node to E as the latter
part of the current path. When confronting with the branch
node, treat it with the method in S1. Go to S2.

S4: The generation of baseline paths is finished.

4. EXPERIMENT

Take PFG-3 (Showed in Fig. 3) (The PFG-3 expresses a
program flow graph with 20 branch nodes) as an example, to
verify the feasibility of the algorithm:

1) By analyzing Fig. (3), the input of program flow graph

expressed by the adjacency matrix G[NUM][NUM] is ob-
tained as Fig. (4):

2) By importing the adjacency matrix G[NUM][NUM] as
Fig. (4), the output on a set of basic paths is obtained as fol-
lows:

1: <S ,1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,

31,33,34,36,37,39,40,42,43,45,46,48,49,51,52,54,55,57,58,60,61,E>

2:<S ,1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,

33,34,36,37,39,40,42,43,45,46,48,49,51,52,54,55,57,58,59,61,E>

3:<S ,1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,

33,34,36,37,39,40,42,43,45,46,48,49,51,52,54,55,56,58,60,61,E>

4:<S ,1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,33,

34,36,37,39,40,42,43,45,46,48,49,51,52,53,55,57,58,60,61,E>

.

20:<S ,1,3,4,5,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,

33,34,36,37,39,40,42,43,45,46,48,49,51,52,54,55,57,58,60,61,E>

21:<S ,1,2,4,6,7,9,10,12,13,15,16,18,19,21,22,24,25,27,28,30,31,33,

34,36,37,39,40,42,43,45,46,48,49,51,52,54,55,57,58,60,61,E>

According to the description of the improved algorithm,
the result which are obtained from analyzing Fig. (3) is fully
in keeping with the situation of the output above.

 3) In order to verify the improved algorithm in respect of
time complexity, PFG-3 such as Fig. (3) is taken as an in-
stance to measure the executive time. The result is in (Table
1).

he experimental environment of test is: CPU, Pentium
1.60GHZ; Memory,512M; Operating System, Windows XP
SP3. The test results of the executive time shows that the
algorithm’s average time in this paper is less than that in the
baseline method.

1

2

S

3

4

5 6

61

⋯
⋯

E

Fig. (3). Program flow graph for experiment (PFG-3).

63 1 0 0 0 0 0 0 0 0 0 0 0

63 0 1 1 0 0 0 0 0 0 0 0 0

63 0 0 0 1 0 0 0 0 0 0 0 0

63 0 0 0 0 1 1 0 0 0 0 0 0

63 0 0 0 0 0 0 1 0 0 0 0 0

63 0 0 0 0 0 0 0 1 1 0 0 0

63 0 0 0 0 0 0 0 0 0 1 0 0

.

.

.

.

.

63 0 1 1 0 0 0 0 0 0 0 0 0

63 0 0 0 1 0 0 0 0 0 0 0 0

63 0 0 0 0 1 1 0 0 0 0 0 0

63 0 0 0 0 0 0 1 1 0 0 0 0

63 0 0 0 0 0 0 0 0 1 0 0 0

63 0 0 0 0 0 0 0 0 0 1 1 0

63 0 0 0 0 0 0 0 0 0 0 0 1

63 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 1 0

!

"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

Fig. (4). The adjacency matrix G[NUM][NUM].

472 The Open Automation and Control Systems Journal, 2014, Volume 6 Chen et al.

CONCLUSION

Comparing with the baseline method, the improved algo-
rithm has some advantages as follows:

1) When selecting the first basic path, the improved algo-
rithm is automatic in the selection, and it can make that the
generation of path simpler from the data of the experimental
results. It can be considered as having generated the shortest
path from S to E.

2) Using the depth-search method, the information of
current and follow-up nodes is stored. The time for linearly
traversing the entire basic paths which have been generated
is eliminated. Experiments show that the time complexity is
reduced.

3) If the case of nodes’ value and the number of the value
case are added into adjacency matrix, while using the col-
umn where the S-node with no in-degree is located and the
row where the E-node with no out-degree is located at, not
only has the program flow graph not been affected, but also
the waste on storage space is reduced.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

The research was supported by the Science and Technol-
ogy Project of Hunan Province (No. 2014FJ3040) and Scien-
tific Research Fund of Hunan Provincial Education Depart-
ment (No. 14B104), China.

REFERENCES
[1] W. L. Andrade, and P. D. L. Machado,” Generating test cases for

real-time systems based on symbolic models”, IEEE Transactions
on Software Engineering, vol. 39, no. 9: 1216-1229, 2013.

[2] S. Baharom, and Z. Shukur. “An experimental assessment of mod-
ule documentation-based testing”, Information and Software Tech-
nology, vol. 53, no. 7, pp. 747-760, 2011.

[3] C. Nie, and H. Leung. “The minimal failure-causing schema of
combinatorial testing”, ACM Transactions on Software Engineer-
ing and Methodology, vol. 20, no. 4: 1-38, 2011.

[4] M. Alshraideh, L. Bottaci, and A. B. Mahafzah, “Using program
data-state scarcity to guide automatic test data generation”, Soft-
ware Quality Control., vol. 18, no. 1: 109-144, 2010.

[5] R. Bagnara, M. Carlier, R. Gori, and A. Gotlieb, Symbolic path-
oriented test data generation for foating-point programs”, IEEE
Sixth International Conference on Software Testing, pp. 1-10, 2013.

[6] N. K. Gupta, and M. K. Rohil, “Improving GA based automated
test data generation technique for object oriented software”, 3rd
IEEE International Advance Computing Conference(IACC), 249-
253, 2013.

[7] L. Xu, B. Xu, And J. Jiang, “Testing web applications focusing on
their specialties”, ACM SIGSOFT Software Engineering Notes, vol.
30, no. 1, 2005.

[8] R. M. Hierons, K. Bogdanov, and J. P. Bowen, “Using formal
specifications to support testing”, ACM Computing Surveys, vol.
41, no. 2, pp.1-76, 2009.

[9] P.Y. Zhan, P. John, and A. Clark,” A search-based framework for
automatic testing of MATLAB/Simulink models”, Journal of Sys-
tems and Software, vol. 82, no, 2, pp. 262-285, 2008.

[10] P.A. Gotlieb, P.T. Denmat, and P.B.Botella, “Goal-oriented test
data generation for pointer programs”, Infor-mation and Software
Technology, vol. 49, no. 9, pp. 1030-1044, 2007.

[11] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E.
Wong, “Establishing structural testing criteria for Java bytecode”,
Software-Practice & Experience, vol. 36, no. 4, pp. 1513-1541,
2006.

[12] S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, and S. Z. M.
Hashim, “An automated framework for software test oracle”, Infor-
mation and Software Technology, vol. 53, no. 7, pp. 774-788, 2011.

[13] F. Saglietti, N.Oster, and F. Pinte, “White and grey-box verification
and validation approaches for safety- and security-critical software
systems”, Information Security Technology Report, vol. 13, no. 1,
pp. 10-16, 2008.

[14] Bluemke, and A. Rembiszewski, “Dataflow approach to testing
java programs”, Proceedings of the 4th International Conference on
Dependability of Computer Systems. Brunow, Poland. pp. 69-76,
2009.

[15] A. Cavarra, “A data-flow approach to test multi-agent ASMs for-
mal aspects of computing”, Information and Software Technology,
vol. 13, no.1, pp. 21-41, 2011.

[16] P. H. Liu, Data flow analysis and testing of JSP-based web applica-
tions”, Information and Software Technology, 2006, vol. 48, no. 12:
pp. 1137-1147.

[17] Z. Zhonglin, J. Limin, and M. Lingxia, “Research of searching algo-
rithm for path test data generation”, Proceedings of 4th International
Conference on Computer Science & Education, 25-28 July 2009.

[18] Edvardsson,” A survey on automatic test data generation,” Pro-
ceedings of the 2nd Conference on Computer Science and Engineer-
ing. Linkoping University, Oct. 1999:

[19] T. J. McCabe, “Structured testing: a testing methodology using the
cyclomatic complexity metric”, Baltimore: McCabe and Associ-
ates, 1987.

[20] W. Ganchang, “Linear Algebra“, Baijing: China Renmin Universi-
ty Press, 2009.

[21] D. Zhenguo, and G. Qiang, “Research on the Program Control
Based Path Coverage Testing Technique”, Electronica Science and
Technology, vol. 11, no. 22, pp. 3-56, 2008.

Received: September 22, 2014 Revised: November 04, 2014 Accepted: November 06, 2014

© Chen et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

Table 1. The Execution Time on PFG-3 (ms).

The NUM of Experiment 1 2 3 4 5 6 7 8 9 10 Average Time(ms)

Baseline Method 93 93 78 78 78 93 78 93 78 93 85.5

Algorithm in This Paper 78 78 62 75 63 62 75 62 75 62 69.2

