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Abstract: Finding safe paths for robots in changing environments is a significant issue for motion planning. However, it 
could be fairly difficult when there are narrow passages in the configuration space. Solutions to this problem can be appli-
cable to not only mobile robots but also other domains such as computer animation and computational biology. This paper 
presents a novel method called Narrow Passage Watcher (NPW) to cope with narrow passage issues in changing envi-
ronments. It approximately predicts the variation trend of narrow passages and analyzes their security and thus guides to 
safe path planning. Meanwhile, a supporting hybrid boost strategy is presented to increase the sampling density inside nar-
row passages with different variation trend. Compared with existing work, the predictive mechanism provided by NPW 
gives the planner foresight so that it can find safer paths in changing environments with a higher success rate. Experi-
ments conducted with a dual-manipulator system with 12 DOFs show that NPW can reduce the number of replanning 
times and total planning time remarkably as well as improving the success rate of path planning. 
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1. INTRODUCTION 

Probabilistic Roadmaps (PRMs) [1] and Rapidly Ex-
ploring Random Trees (RRTs) [2] are two typical sam-
pling-based methods of robot motion planning. They have 
shown spectacular planning power for many-DOF robots, 
but narrow passages and small volume regions in the free 
configuration space (C-free) are still bottlenecks because of 
the difficulty to sample inside them [3].  

Some methods aiming at increasing sampling density 
within difficult regions have been proposed. For narrow 
passages, both filtering strategies [4, 5] and retraction 
strategies [6, 7] have been researched. Methods proposed 
in [8-10] try to exploit the information about C-obstacles to 
construct the roadmap. They have notable effects on boost-
ing sampling density within narrow passages in static envi-
ronments but are helpless in changing environments.  

Dynamic Roadmaps (DRMs) [11, 12] are put forward 
to cope with motion planning problems in changing envi-
ronments. However, they are still confronted with difficul-
ties from narrow passages of C-free and only a few re-
searches have paid attention to this work [13, 14]. In 
changing environments, considering the indeterminacy of 
the variation trend of narrow passages, it is hard for the 
planner to consciously seek out a safe path passing through 
narrow passages which keep narrowing down. 
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This paper introduces Narrow Passage Watcher (NPW) 
to anticipate in the variation trend of narrow passages and 
take appropriate measures to guide to the path planning. In 
changing environments, NPW analyzes the motion trend of 
C-obstacles on the basis of the validity toggle of points. 
Narrow passages formed by heading-toward C-obstacles 
will have a shrinking effect, they can be identified by NPW 
and are thought to be more and more dangerous. Incidence 
edges of points within them are given a higher cost as the 
penalty. Contrarily, narrow passages that are formed by 
backing-away C-obstacles have a widening trend and they 
are deemed to be safer to pass through, incidence edges of 
points within them are given a lower cost, thus the planner 
will choose the safer path with a higher priority. For in-
creasing the sampling density within narrow passages, a 
hybrid boost strategy based on the NPW's analysis is pro-
posed to implement different boost intensity for narrow 
passages with different variation trends. Safe narrow pas-
sages will contain more activated boost points so that the 
success rate of finding a collision-free path is increased. 

2. RELATED WORKS 

DRM, It is a direct descendant of PRM method. It pre-
computes a roadmap that only encodes valid motions in the 
preprocessing phase. Beyond that, a uniform rectangular cell 
decomposition of workspace is built and the representation 
that encodes the mapping from cells in the discretized work-
space to nodes and edges in the roadmap is computed. This 
representation is called the W-C Map. In the online planning 
phase, the planner first identifies cells occupied by obstacles  
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in the discretized workspace, and then disables the corre-
sponding nodes and edges in the roadmap according to the 
encoded mapping. However, the connectivity improvement 
of the roadmap stays to be a difficult problem when narrow 
passages exist. 

Bridge Builder Planner. Random Bridge Builder (RBB) 
[5] boosts the sampling density inside narrow passages in 
static environments. Non-uniform sampling is conducted 
around the midpoint of bridge and thus connectivity of the 
roadmap is improved. Dynamic Bridge Builder (DBB) [13] 
is a method to identify narrow passages in changing envi-
ronments. It is a combination of DRM and RBB and per-
forms well on narrow passages identification, but it cannot 
guarantee safety for the path through the narrow passage and 
the path is apt to collide with moving obstacles. 

Safe Motion Planning. Safe motion planning has been 
studied in several works and is important to guarantee the 
robot's security and reduce total planning cost. As a variant 
of DBB, Capacitor Bridge Builder (CBB) is proposed to 
identify difficult but relatively safe regions in changing envi-
ronments [14]. Nevertheless, CBB does not pay attention to 
the variation trend of narrow passage in the C-space, which 
is crucial for the security of planning. 

3. HIERARCHICAL SAMPLING STRATEGY 

In preprocessing phase, a hierarchical sampling strategy 
is employed to generate point set Gn and edge set Ga of the 
roadmap. Meanwhile, W-C Map is computed in the same 
way with DRM. Sampling points are divided into three 
levels. Points in the first level are generated uniformly at 
random and denoted by P, describing the general structure 
of C-space. For each  p ! P  and its B nearest neighbors 
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i
!P, i = 1,… K , create edges between P and Pi, thus the 

initial roadmap is built. Edges in the initial roadmap con-
sist of 
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where P1 and P2 are two endpoints of edge e . For each 
edge in 

 
G
ap , their midpoints are put into the roadmap and 

comprise the second level, denoted by M. Points in Mare 
are used to conduct the bridge test. Within radius R of each 
point  p ! P " M ,  K  points are produced, which is de-
noted by Tp. Here,  R  is chosen by Gaussian distribution 
and we say that each point in Tp belongs to P. All Tp  makes up the third level, which are added into the roadmap 
and denoted by T. For each  t ! T , we identify its  K near-
est neighbors in the roadmap and connect them. Points in T 
are set inactive initially and they cannot take part in path 
query, which is completed by A* algorithm, until they are 
activated.  

Points in P record the fundamental structure of C-space. 
In order to describe the validity toggle of points in P, we 
follow a similar definition of P+ and P- to that introduced 
in [14]: 
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4. NARROW PASSAGE WATCHER 

Narrow Passage Watcher (NPW) is designed to predict 
the variation trend of narrow passages by analyzing the 
motion trend of C-obstacles. Moving obstacles in the 
workspace will validate or invalidate some points in P. P+ 
and P- consist of these points, respectively. Points keeping 
their validity unchanged usually indicate obstacles without 
motion or the interior of obstacles with slight motion and 
they make up P0.  

P+ points are usually on the backside of moving C-
obstacles while P- points always lie ahead of them. There-
fore, P+ points would keep valid for some time while P- 
points couldn't turn valid very soon. During a very short 
time slice, the movement and deformation of C-obstacles 
are tiny, points in P+ are much safer than points in 

 
P

-
. 

The edge e whose midpoint is valid and two endpoints 
are on the C-obstacle or near the C-obstacle's boundary is 
called bridge. Particularly, NPW are concerned with two 
bridge sets whose variation trends are salient: Br and BS, 
which are defined with: P+ 
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Where, Br is the set of risky bridge and BS is the set of 
safe bridge, P1 and P2 are two endpoints of e, m is the 
midpoint of e. Narrow passages identified by safe bridges 
tend to broaden and those identified by risky bridges tend 
to shrink. Any point P on the safe bridge has a good local 
security, i.e. points and edges in the small neighborhood 
of P are less probable to be invalidated by moving C-
obstacles. The safe bridge and risky bridge are shown in 
Fig. (1), in which orange areas represent the previous lo-
cations of C-obstacles, shaded areas represent the current 
locations of C-obstacles. 
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Edges that connect the bridge's midpoint m and boost 

points belonging to m are called midpoint-edges. For the 
safe bridge, valid midpoint-edges could keep valid for a 
short time and they are relatively safe. A weight 

  
!
s
< 1  is 

given to them to make the planner choose them with higher 
priority when querying a path. For the risky bridge, valid 
midpoint-edges tend to turn invalid because C-obstacles  
 

are approaching them. Hence, a weight 
  
!
r
> 1  is given to 

them so that the planner will avoid them as far as possible. 
A Gaussian function is used to estimate the influence that 
the bridge's security will have on edges nearby [15] and 
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Here, k is a smoothing parameter which adjusts the 
spread of the Gaussian function. 

Each incidence edge of boost points around the 
bridge's midpoint (except for the midpoint-edge) is called 
the boost-edge. NPW estimates the security of each valid  
 

 

(a) 

 

(b) 

Fig. (1). (a) Safe bridge and (b) risky bridge. White, red, green and black points are in P0, P-, P+ and M, respectively. 
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boost-edge: if one endpoint is in 
 
P
+

 and another endpoint 
in  T  is valid, the boost-edge will have a relatively high 
security level and a small weight 

 
!
b

 should be given to 
it, which is calculated using a similar weighting function 
with formula (6). See Algorithm 1 for details of Narrow 
Passage Watcher (NPW). 

5. HYBRID BOOST STRATEGY 

For narrow passages having different variation trends, 
different boost strategies ought to be employed. Narrow 
passages which are identified by bridges in BS tend to wid-
en. For each safe bridge in BS, we can increase the  
 

 

sampling density by activating boost points belonging to its 
midpoint and endpoints. Fig. (2a) illustrates boost effect 
inside narrow passage identified by the safe bridge. Narrow 
passages which are identified by bridges in 

 
B
r

 tend to 
shrink, the robot should keep away from them as far as 
possible and no boost points around them are activated. 

When the narrow passage is formed by a couple of ob-
stacles of which one obstacle has little motion and another 
moves away from it, the semi-safe bridge of which one 
endpoint in 

 
P
+

 and another endpoint in 
  
P
0

 but invalid is 

always built. The endpoint in 
 
P
+

 of the semi-safe bridge 
could be deemed safe. Consequently, boost points  
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Fig. (2). Boost the narrow passage identified by (a) safe bridge and (b) semi-safe bridge. Activated boost points are colored in blue. 
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belonging to this safe endpoint should be activated. Fig. 
(2b) shows boost effect inside narrow passage identified by 
the semi-safe bridge. 

For each point  t ! T , once it is activated, they are in-
volved in path query and can be searched normally just like 
points in P and B. Once a replanning cycle is completed, 
all boost points are inactivated while 

 
P
+

, 
 
P
!

, 
  
P
0
, BS  and 

Br  are cleared. 

6. EXPERIMENTS AND DISCUSSIONS 

Several simulation tests are performed in 3D workspace 
to evaluate our method. A dual-manipulator system is 
made up of two manipulators which are modeled by  
 

parameters of a practical 6-DOF Kawasaki FS03N manipu-
lator mounted on the fixed base. Our method treats them as 
a single robot with 12 DOFs. The reachable workspace of 
two manipulators is decomposed into 82960 (40*31*34) 
grids. Each grid is a cube with the size of 4*4*4. All simu-
lations are implemented in C++ and carried out on a 
3.10GHz Intel Core i3-2100 CPU with 2GB of main 
memory. 

Our first environment involves a changeable fence with 
two gaps, which consist of three vertical boards and four 
horizontal boards between two manipulators (See Fig. 3a). 
At run time, two gaps change size on reverse trend: one 
gap widens and another narrows. This is done by keeping 
vertical boards still while horizontal boards move up and 
down in opposite directions within a relatively small range  
 

 

(a) 

 

(b) 

 
 (c) 

Fig.3 Environment I is illustrated by (a), (b) and (c) gives two goal configurations. 
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at a speed of 4 unit lengths per step. Two docking states 
are treated as goal states (See Fig. 3b, c). Two manipula-
tors have to pass through some difficult regions that are 
changing before they get to the goal configuration. 

Our second environment is more complicated than the 
first one. See Fig. (4), for Environment II: vertical bars can 
only move back and forth, while horizontal bars can only 
move up and down. The speed of each bar is 4 unit lengths 
per step. Each bar has a small move range: once it gets to 
the end of range, its direction is reversed. Bars are very 
close to each other to ensure the appearance of narrow pas-
sages. Manipulators intend to reach the docking position, 
which is the goal configuration. 

 

NPW, CBB, DBB and DRM are tested in both Envi-
ronment I and Environment II, respectively. In Table 1, Np, 
Nm  and Nt are the number of points in P, M, and T, respec-
tively. Ns  is the total number of points. Enough points are 
necessary for the planner to learn the environment. How-
ever, a large Np  could be a burden for the planner. Here, Np  is set to be 500.  K  is set to be 4, it decides the number of 
edges in the roadmap, thereby influencing Nm. For NPW, 
the weight of midpoint-edges and boost-edges influence 
the selection of path remarkably. Empirically, the smooth-
ing parameter k of the Gaussian function in formula (6) and 
(7) is set to be 0.8. The time consumption of building the 
roadmap in preprocessing phase is also reported in Table 1. 

 

 

(a) 

 

(b) 

Fig. (4). Environment II is illustrated by (a), and (b) shows the goal configuration. 

Table 1. Number of sampling points and construction time of roadmap. 

Method 
 
N

p
 

 
N

m
 

 
N

t
 

 
N

S
 Construction Time(s) 

NPW 500 1441 7764 9705 6.49 

CBB 500 1441 2000 3941 3.02 

DBB 500 1441 5764 7705 5.18 

DRM 9705 - - 9705 6.53 
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Each method is tested 100 times to compare their  
effectiveness and efficiency. Results are reported in Table 
2. We compared the average numbers 

 
N
avg

 and the max-

imum numbers 
  
N
max

 of replanning for each method. The 

average completion time 
 
T
avg

of planning task and success 

rate 
 
R
suc

of finding a free path are also investigated. 

As shown in Table 2, both the average and the largest 
cycles of replanning of NPW are the lowest. This is due 
to the prediction mechanism of NPW: it forecasts the var-
iation trend of narrow passage and gives the safe narrow 
passage an intense boost. DBB cannot predict the varia-
tion trend of narrow passages, it boosts the sampling den-
sity in both risky narrow passages and safe narrow pas-
sages blindly. CBB can only build bridges whose one 
endpoint is in 

 
P
+

 and another in 
  
P
_
. 

 Meanwhile, success rate of NPW has about 18.37% 
rise compared with DRM due to the hybrid boost strategy 
which activates lots of boost points within safe narrow 
passages. In fact, NPW has the most boost points in the 
above four methods, but its efficiency of path query is 
barely reduced because it only activates some boost 
points that have good security so that only a part of boost 
points are active during online path planning and others 
are inactive. 

The average total replanning time 
 
T
total

 in each com-
plete planning task of each simulation is recorded in  
 

Table 3. Meanwhile, the average time of each single re-
planning 

  
T
sin gle

 and the ratio of total replanning time to 

the task's completion time 
  
T
total
/ T

comp
 are also reported. 

Obviously, NPW always takes the least average replan-
ning time, which only accounts for about 18.93% of 
DRM's. 

CONCLUSION 

In this paper, we present Narrow Passage Watcher 
(NPW) to predict the variation trend of narrow passages 
and analyze their security. On that basis, a hybrid boost 
strategy is employed to carry out different boost intensity 
aiming at different narrow passages. NPW dramatically 
reduces the number of replanning times and lifts the suc-
cess rate of the planner finding a collision-free path in 
changing environments. NPW has shown its considerable 
merit with resolving narrow passage problems and could 
work very well in high-dimensional C-space. 

In the future, we will explore a general method that can 
process a wider range of narrow passage with different 
variation trend in changing environments. We also plan to 
research how to express the security of narrow passage 
more clearly and quantitatively.  
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Table 2. Comparison of success rate and number of replanning times. 

Env. I Env. II 

Method 
 
R

suc
(%) 

 
N

avg
 

 
N

max
 

 
T

avg
(s) Method 

 
R

suc
 (%) 

 
N

avg
 

 
N

max
 

 
T

avg
 (s) 

NPW 92.80 22.80 39 9.23 NPW 92.77 24.41 46 10.27 

CBB 87.45 36.91 60 12.90 CBB 87.41 40.10 70 13.05 

DBB 88.39 47.60 74 28.10 DBB 87.56 50.55 82 30.62 

DRM 76.30 61.25 83 33.57 DRM 75.18 63.76 99 37.40 

 

Table 3. Comparison of total and average replanning time. 

Env. I Env. II 

Method 
 
T

total
 

 
T

single
 

 
T

total
/ T

comp
 Method 

 
T

total
 

 
T

single
 

 
T

total
/ T

comp
 

NPW 3.65 0.16 39.54 NPW 4.15 0.17 40.41 

CBB 5.54 0.15 42.95 CBB 6.02 0.15 46.13 

DBB 7.14 0.15 25.41 DBB 8.09 0.16 26.42 

DRM 18.99 0.31 56.57 DRM 22.32 0.35 59.68 
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