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Abstract: This article uses R software KL quantile estimate numerical simulation under different distributions and differ-
ent sample values, and on this basis, two cases of KL SQ sample quantile quantile estimates and estimated mean square 
numerical errors, the simulation results show that: in most cases, KL quantile estimate of the mean square error is less 
than SQ sample quantile estimation mean square error; the truncated distribution (such as exponential distribution and 
uniform distribution) cut end of the estimated effect of KL quantile estimate is very good, and much better than the medi-
an estimate SQ sample points; heavy tail of the distribution (e.g. distribution) have an impact on the estimated effects of 
KL quantile estimates. 
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1. INTRODUCTION 

Quantile estimation is one of the important research top-
ics in statistics, it has been widely used in many areas of 
financial risk management, it is important quantile amount of 
risk, there are many non-scholars quantile parameter estima-
tion for a more in-depth research, such as the sample quan-
tile estimated weighted order statistics quantile estimates and 
nuclear quantile estimation [1-4]. quantile estimate has good 
theoretical properties through the study found and applica-
tion value. As described in [5] Kaigh and Lachenbruch prob-
ability level under the conditions by numerical comparison 
KL quantile estimates and SQ sample estimate quantile anal-
ysis showed that KL quantile estimate generally superior to 
SQ sample quantile estimate; [6] discuss KL quantile by 
Jackknife variance estimation of probability level numerical 
simulation analysis, we found the KL estimate quantile esti-
mation method is better than Bootstrap fitting effect; [7] in 
the overall distribution of uniform under the distribution and 
the sample value of 10 cases studied by numerical simulation 
the optimal value of KL quantile probability at different lev-
els of the corresponding sub-sample size; [8] method through 
empirical analysis on a variety of VaR model and KL quan-
tile estimate comparative analysis found that KL quantile 
measure is estimated to be well worth the risk of the portfo-
lio. 

Throughout these studies, we found that KL quantile es-
timate numerical simulation at high probability levels 
achieved some results, but for a small probability level  
(  p ! 0.05 ) numerical simulation under KL quantile estima-
tion lacks. In order to further improve the KL quantile esti  
 
 

mation results of numerical analysis to be able to replace KL 
quantile estimate value at risk VaR to measure the risks of 
financial products, we use the R software for KL quantile 
estimate numerical analysis, discuss its fitting effect and on 
this basis will KL SQ sample quantile quantile estimation 
and simulation analysis and comparison of estimates. 

2. NUMERICAL SIMULATION OF KL QUANTI-
LE ESTIMATES  

2.1. KL Quantile Estimate Weights 

KL quantile estimate is a weighted order statistics quan-
tile Kaigh and Lachenbruch first proposed in 1982 estimated 
that it can serve as a broad sample quantile, which is defined 
as: 

   
K (k+1) p!" #$:k:n =

1
Cn

k Y (k+1) p!" #$:k:n( X%1, X% 2 ,!X%k )
%1,% 2!%k
&  (1) 

In order to better numerical analysis, (1) can also be writ-
ten as the following expression: 

  
K (k+1) p!" #$:k:n =

C j%1
r%1Cn% j

k%r

Cn
k

j=r

r+n%k

& X j:n ,r = (k +1) p!" #$   (2) 

From the above equation, right th order statistics corre-
sponding weight, which does not depend on the overall 
weight distribution, only the parameters. To visually see KL 
next quantile estimated weight distribution, we take, made 
the situation weights (Fig. 1), it can be seen from the figure, 
the weight distribution in the vicinity of quantile, weights 
greater range is the first 45 order statistics to the first 60 or-
der statistics, the right to re-order statistics other almost neg-
ligible. Center coordinates of each layer of ancient pagoda in 
Table 1: 
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Fig. (2) overall distribution (top) and distribution. 

2.2. KL Quantile Estimation Fitting Results 

Numerical simulation for intuitive quantile estimates re-
flect KL fitting results, respectively, under the standard nor-
mal distribution and the distribution of conditions, and the 
situation KL quantile estimation, in each case repeated 5000 
times to give KL quintile estimate estimate curve shown in 
Fig. (2), Fig. (3). with triangle dotted line represents the es-
timated value of KL quantile, the solid line represents the 
true quantile overall simulation. 

The overall distribution of Fig. (3) (top) and distribution 
(below) 

As can be seen from the figure, when the probability

   p !(0.2,0.3,!0.8) , KL quantile estimate simulation results 
were quite good, a small amount of deviation in the head and 
tail section, when the probability    p !(0.01,!0.05) , the 
whole KL quantile estimate is smaller than the true value. 

2.3. Numerical Analysis of Neutron Sample Size Selection 

In the numerical analysis, the problem first consideration 
is the selection of the sub-sample size, reference Kaigh and  
 

Lachenbruch suggestions, we use the mean square error of 

  
E(K( k+1) p:k:n!" #$

%Q( p))2  to get the sub-sub-sample of the sam-

ple size was defined as the minimum value of the numerical 
analysis, the numerical simulation of repetitions mean square 
error is calculated as follows:  

  
MSEkl

i p( ) = 1
m

(KLi ( p)!Q( p))
i=1

m

"
2

 (3) 

In which,   KLi ( p)  represents the  i simulations of KL 
quantile estimates,   Q( p)  indicates that the analog overall 
real quantile. 

Selecting a different sub-sample size in the sample size 
of 1000 samples,   k = 100,300,500,700,900 , respectively, in 
normal N(1,0), uniform distribution  R(0,1) ,   (df = 4) the case 
of the exponential distribution   E(1) , simulation was repeat-
ed 2000 times, and the calculated KL quantile estimates are 
square error are listed in Table 1: 

Data in the table shows: 

(1) A uniform distribution   R(0,1)  and exponential distri-
bution   E(1)  mean square error than normal distribution  
 

 

Fig. (1). KL quantile estimation of the weight distribution chart in n=500, k=0.1. 

 

Table 1.  Distribution of four kinds of different values KL quantile estimation mean square error. 

 k 100 300 500 700 900 

N(0,1) 
P=0.01 0.049100157 0.01676314 0.0147543 0.01436412 0.01372016 

P=0.05 0.005912452 0.00459786 0.00457461 0.00462179 0.00476439 

T(n,4) 
P=0.01 1.4467913 0.2164581 0.1657256 0.0146178 0.1416431 

P=0.05 0.02647125 0.01512642 0.01486125 0.01489964 0.01463412 

E(1) 
P=0.01 5.537835e-06 7.801613e-06 8.716285e-06 9.446734e-06 9.924467e-06 

P=0.05 4.001135e-05 4.613694e-06 4.916344e-05 4.984687e-05 5.201364e-05 

R(0,1) 
P=0.01 5.134619e-06 7.201364e-06 8.106348e-06 8.634612e-06 9.213461e-06 

P=0.05 3.700012e-05 4.301568e-05 4.491672e-05 4.713647e-05 4.831679e-05 
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  N (0,1)  of the mean squared error is much smaller. Because 
uniform and left truncated exponential distribution, and the 
distribution was normal and the left tail, so the probability 
level is below 0.01 and 0.05, the above results will be re-
flected in the left end of the distribution. In other words, for 
a truncated distribution, the cut end of the KL-quantile is 
estimated to be better than the non-truncated tail end of KL 
quantile estimates. Mean square error. 

 
 

(2) The mean square error is less than normal distribu-
tion, indicating heavy tails of the distribution of KL quantile 
estimate influential. 

(3) The distribution t and the normal distribution, the ma-
jority of cases are sub-sample size increases, the correspond-
ing mean square error reduction, and   k = 100  obviously 
when   k = 100  the mean square error of the mean square er-
ror is greater than when, while   k >100 reducing the amount  

  

 

 

Fig. (2). Overall distribution N(0,1) and t distribution (df=4). 

 

 
Fig. (3). Overall distribution N(0,1) and t distribution (df=4). RETRACTED ARTICLE



1140    The Open Automation and Control Systems Journal, 2015, Volume 7 Jiang and Su 

 

Table 2.  The Probability level  p ! 0.05  MSE ratio (m=5000). 

p N(0,1) R(0,1) E(1) Logis(0.1) t(n,4) 

n=100,k=99 

p=0.01 1.010806 0.9720669 1.0272021 1.0817680 0.7884654 

p=0.02 1.016363 0.9941542 0.9812193 0.9813198 1.0284933 

p=0.03 1.028179 1.0117961 1.0529235 1.0538652 1.0346324 

p=0.04 1.038810 0.9800104 1.0136737 1.0145623 1.0195426 

p=0.05 1.018850 0.9618123 0.9915477 0.9915977 1.0124652 

n=300,k=150 

p=0.01 0.7568693 1.298419 1.284327 1.284672 0.6545892 

p=0.02 0.7785453 1.204376 1.235618 1.234562 0.6999545 

p=0.03 0.7628794 1.118624 1.162148 1.162453 0.6882634 

p=0.04 1.0831150 1.133459 1.185218 1.185426 1.0254931 

p=0.05 1.0319959 1.114265 1.209344 1.218924 0.9487163 

n=500,k=375 

p=0.01 0.6112065 1.168156 1.134689 1.135261 0.4658554 

p=0.02 0.9054816 1.141956 1.141536 1.146421 0.7954126 

p=0.03 0.9918321 1.123640 1.086314 1.087316 0.9384561 

p=0.04 0.5796267 1.097865 1.045948 1.045964 1.0175642 

p=0.05 0.9438526 1.108178 1.048905 1.043512 0.8658321 

n=1000,k=750 

p=0.01 0.9508651 1.124566 1.096991 1.098721 0.7854225 

p=0.02 1.0889271 1.066131 1.048419 1.049124 1.0789954 

p=0.03 1.0171082 1.071089 1.048987 1.034562 0.9810065 

p=0.04 1.5946518 1.045789 1.048993 1.492546 1.0829875 

p=0.05 1.0246314 1.065248 1.076351 1.074257 1.0356981 

 

Table 3.  The Probability level  p !(0.1,0.9)  mean square error ratio (m=5000). 

p N(0,1) R(0,1) E(1) Logis(0.1) t(n,4) 

n=100,k=99 

p=0.1 1.0128988 0.9807856 0.9698752 1.0128752 0.9833462 

p=0.3 1.0519751 0.9556412 0.9679602 0.9854321 1.0120571 

 
 
 

RETRACTED ARTICLE



The Numerical Analysis of KL Quantile Estimates The Open Automation and Control Systems Journal, 2015, Volume 7   1141 

Table 3. contd… 

p N(0,1) R(0,1) E(1) Logis(0.1) t(n,4) 

p=0.5 1.0452630 1.0120050 0.9789952 1.0335468 1.0208475 

p=0.7 1.0359633 1.0352932 0.9478653 1.0245863 1.0151602 

p=0.9 0.9852341 1.1208957 0.0887650 0.9884678 0.9115747 

n=300,k=150 

p=0.1 1.017789 1.060127 1.082950 0.9913478 0.9263425 

p=0.3 1.023146 0.988712 1.036429 1.0265459 0.9814652 

p=0.5 1.024536 1.004112 1.016425 1.0435657 1.0643150 

p=0.7 1.019123 1.008975 1.044890 1.0274456 1.0682158 

p=0.9 1.062468 1.125321 1.010368 1.0057485 0.9924124 

n=500,k=375 

p=0.1 1.0089521 1.0154682 1.063222 1.0153642 0.9834589 

p=0.3 1.0345261 0.9821456 1.056485 1.0526522 0.9760453 

p=0.5 1.0542136 1.0041057 1.007981 1.0946353 1.0215468 

p=0.7 1.0625432 1.0732187 1.050623 1.0457638 1.0574523 

p=0.9 1.0842164 1.0951249 1.002898 1.0090175 1.0592213 

n=1000,k=750 

p=0.1 1.0487556 1.021031 1.0315264 1.0124501 1.0009012 

p=0.3 1.0452677 1.002984 0.9755863 1.0447552 1.0256887 

p=0.5 1.0123545 1.054726 1.0165217 1.0689157 1.0531254 

p=0.7 1.0448791 1.042459 1.0017861 1.0364528 1.0674522 

p=0.9 1.0623548 1.018120 0.9886742 1.0138762 1.0397856 
 

of the mean square error small. It is believed that when 

  k ! [n 3]  the sub-sample size after selecting a certain value, 
the corresponding changes in the mean square error is not 
much different. Therefore, we generally can select a sub-
sample size. Numerical simulation results obtained with the 
above [9]   p = 0.5  was proposed, to take   k = [n 3] , when

  k = [3n 4]  to take the point of view of other circumstances 
consistent. 

In view of the above analysis, the sub-sample capacity 
behind the choice of numerical analysis   k = [3n 4] , it is 

worth noting that when making the choice of  k ,   [(k +1) p]
becomes zero, you should choose a bigger  k , for example, 
when   n = 100 , when   p = 0.1 ,  k  only take 99. 

 

 

3. KL QUANTILE ESTIMATE ANALOG COM-
PA-RATORS WITH SQL QUANTILE ESTI-
MATES 

Here we are two cases to the median estimate of K and 
SQ sample quantile estimate the mean square error of the 
numerical simulation comparison, steps taken in the simula-
tion are as follows: 

Step 1: Let    X1, X2!Xn  are n samples were drawn at 
random from the whole of X; 

Step 2: For a given level of probability  p , 

  
SQ( p) = X (n+1) p!" #$   

KL( p) = K (k+1) p!" #$:k:n  were calculated;  

Step 3: 1,2 procedure was repeated   m = 5000  to give an 
estimated value 

  
SQi ( p) = X (n+1) p!" #$
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KLi ( p) = K (k+1) p!" #$:k:n , wherein    i = 1,2,!m ; 

Step 4: SQ sample were calculated and KL quantile 
quantile estimate the mean square error: 

MSESQ p( ) = 1m (SQi ( p) !Q( p))
2

i=1

m

"  (4) 

MSEKL p( ) = 1m (KLi ( p) !Q( p)
i=1

m

" )22  (5) 

Where   Q( p)  is the true value of the overall simulation
 X  quantile  p ; 

Step 5: calculation error ratio 
 
! =

MSESQ

MSEKL

 of both parties, 

if ! >1 , that is
 
MSESQ > MSEKL , 

 Indicating that KL quantile estimate is better than SQ 
sample quantile estimates. If  ! <1, that is 

 
MSESQ < MSEKL , 

indicating that KL is estimated that more than SQ sample 
quantile quantile estimated to be poor. 

In the first case, the overall distribution of choice were 
normal  N (0,1) , uniform   R(0,1) ,t distribution   (df = 4) , ex-
ponential distribution   E(1) , probability level p=0.01,0.02, 
0.03,0.04,0.05, the corresponding value calculated according 
to the above steps, the calculation results shown in Table 2. 

The above table gives the small probability level  
(  p ! 0.05 ) under different simulated data distribution ratio 
of the mean square error, these data show that: 

(1) On the whole, in a small probability level KL quantile 
estimates in most cases the mean square error is less than SQ 
sample quantile estimate the mean square error. Therefore, 
we can think in general, KL quantile comparison SQ sample 
quantile estimate is superior. 

(2) From the local point of view, in uniform and expo-
nential distribution, KL SQ quantile estimate was signifi-
cantly better than the median estimate of sample points, and 
the standard normal distribution, Points in the distribution 
and logistic, KL quantile estimates obvious advantages, and 
SQ sample quantile estimate considerably. 

The second case, select the overall distribution were 
normal, uniform distribution, exponential distribution, the 
probability level = 0.1, 0.3, 0.5, 0.7, 0.9, calculate the corre-
sponding values follow the above steps, the results shown in 
Table 3. 

The above table gives the small probability level  
(  p ! 0.05 ) under different simulated data distribution ratio 
of the mean square error, these data show that: 

(1) The vast majority of cases, K quantile estimate of the 
mean square error is significantly less than SQ sample quan-
tile estimate the mean square error. Therefore, KL quantile  
 

 

estimate significantly better than the SQ meter sample quan-
tile estimates. 

(2) In the case of the t distribution, there will be circum-
stances mean square error is less than 1, indicating the 
heavy-tailed distributions have an impact on the estimated 
quantile KL fitting effect [10]. 

CONCLUSION 

By the previous simulation data analysis, we estimate the 
effect of K quantile estimates have a more comprehensive 
understanding of the above, the following conclusions: 

(1) In most cases, KL quantile estimate of the mean 
square error is less than SQ sample quantile estimation mean 
square error; 

(2) In the truncated distribution (such as exponential dis-
tribution and uniform distribution) of the cut end of the esti-
mated effect of KL quantile estimate is very good, and much 
better than the median estimate of SQ sample points; 

(3) Heavy tail of the distribution (eg distribution) have an 
impact on the estimated effects of KL quantile estimates. 
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