
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2015, 7, 1153-1159 1153

 1874-4443/15 2015 Bentham Open

Open Access
Research of Fast Search Algorithm Based on Hadoop Cloud Platform

Fei Guo*

Computer College, Civil Aviation Flight University of China, Guanghan, 618307, China

Abstract: Hadoop is a powerful open cloud computing platform, using MapReduce hardled data seg mentation and merg-
ing. Personal data in the flat without any protection, could be attacked at any time, as a result, cloud platform on the per-
sonal fast search algorithm problem is very important. In this paper, a Hadoop cloud data search platform to have safety
rules was proposed, it increase the safety of the cloud data segmentation and merging. The results show that fast search
program has really improved cloud platform.

Keywords: Hadoop, fast search algorithm, cloud platform.

1. INTRODUCTION

With rapid development of Internet technology, search
system has become the most important filter tool to solve
information overload problem, and help users to find the
useful content to them from massive data quickly and high
effectively. But in practical applications, types of items and
number of users may be very large, the generation and ac-
cumulation speed of log information in system continue to
grow rapidly, and traditional recommendation algorithm
used to run on single machine, and limited by its perfor-
mance, it's not far enough to meet the needs of recommenda-
tion computation on mass data [1].

However, MapReduce has also been shown to have sig-
nificant problems with more complex algorithms, like conju-
gate gradient, fast Fourier transform and block linear system
solver. Moreover, most of these problems use iterative meth-
ods to solve them, indicating that MapReduce may not be
well suited for algorithms that have an iterative nature. How-
ever, there is more than one type of iterative algorithm. To
study if MapReduce model is unsuitable for all iterative al-
gorithms or only a certain subset of them, we devised a set of
classes for scientific algorithms. Algorithms are divided be-
tween these classes by how difficult it is to adapt them to the
MapReduce model and their resulting structure. To be able
to compare the classes to each other, we selected and adapted
algorithms from each class to the MapReduce model and
studied their efficiency and scalability. Such a classification
allows us to precisely judge which algorithms are more easi-
ly adaptable to the MapReduce model and what kind of ef-
fect belonging to a specific class has on the parallel efficien-
cy and scalability of the adapted algorithms.

2. WEB ONOTOLOGIES QUERYING

Semantic Web, which is proposed by Tim Berners-Lee,
is the vision of next generation of Web. Through combining
the concepts of ontology from philosophy into computer
science domain, computers can understand the information
published in the Semantic Web, and it is possible to ex-
change semantic information among computers. In the
World Wide Web Consortium (W3C) [2] proposed semantic
web stack, SPARQL-based Resource Description Frame-
work (RDF) data querying, description logic-based Web
Ontology Language (OWL) reasoning, and Semantic Web
Rule Language (SWRL)-based OWL ontologism rule rea-
soning are the core contents of semantic web research.

However, large-scaled ontologism have existed with the
explosion of the semantic web technologies, and the amounts
of it is rapidly growing ever year. Therefore, these conven-
tional semantic web data querying and reasoning tools do not
scale well for large amounts of ontologism because they are
designed for use on a single-machine context.

Recent years, cloud computing has become one of the
latest research area in both academe and IT industry because
of its high-performance and scalability for storing and com-
puting on large-scaled data. Nowadays, Hadoop technologies
have become the de-facto standard of Big Data processing.
Several researchers have started to combine cloud computing
and semantic web technologies to explore high-performance
ontology querying and reasoning solutions in the distributed
computing context. However, this novel research area is still
in the initial stage, lots of key problems need to be solved.

To overcome the drawbacks, this thesis researches on the
approaches of distributed querying and reasoning for large-
scaled ontology data by utilizing cloud computing technolo-
gies. This thesis can establish the theoretical research basis
for implementing large-scaled semantic web ontology data
management cloud services in the future.

1154 The Open Automation and Control Systems Journal, 2015, Volume 7 Fei Guo

2.1. Study Process

Workflow is shown in Fig. (1) [3]. In order to solve the
scalability problems of recommender system, we have pro-
posed several system solutions based on distribute compu-
ting open source software framework Apache Hadoop. On
the basis of in-depth study of distribute system HDFS and
programming ideas MapReduce, in this thesis we have put
forward several distributed parallel implementation based on
MapReduce programming model to Network-based recom-
mendation algorithm which is proposed these years. On this

basis, we have designed and implemented a recommender
prototype system based on Hadoop.

Study running mechanism of Hadoop and programming
framework MapReduce, combine in-depth analysis of rec-
ommender system and recommendation algorithm, especial-
ly Network-based recommendation algorithm which is repre-
sented by probabilistic spreading algorithm and heat spread-
ing algorithm, and design MapReduce programming imple-
mentation solution of Network-based recommendation
algorithm on Hadoop. The complex computing tasks are

Fig. (1). Workflow.

Research of Fast Search Algorithm Based on Hadoop Cloud Platform The Open Automation and Control Systems Journal, 2015, Volume 7 1155

decomposed into a series of MapReduce job flow for distrib-
uted parallel processing on Hadoop and cloud computing
platforms; the experimental tests have shown that the algo-
rithm has good parallelism and scalability in cluster.

Based on MapReduce solution for Network-based rec-
ommendation algorithm, we have used optimization method
such as combiner function and sequence file I/O type, ana-
lyzed long tail distribution of dataset and implementation
details of algorithm computation process, and proposed im-
provement MapReduce solutions of Network-based recom-
mendation algorithm on Hadoop by optimization ideas, for
instance, Pair and Stripe in the resource allocation matrix
computing process, and cut-down to extremely active users.

Study installation, deployment and usage of related open
source software include Hadoop, Mahout, Sqoop and Gan-
glia etc, combine with MapReduce solution of Network-
based recommendation algorithm designed in the thesis, after
several steps of system requirements, system design for
framework and process, system implementation and system
testing, design, implement and run a set of recommender
prototype system based on Hadoop in cluster environment
consisting of multiple computers.

2.2. Method

Hadoop is an open source implementation of the MapRe-
duce programming model. A MapReduce job usually con-
sists of three phases—map, copy and reduce.

The input data is split into chunks of 64MB size (by de-
fault). In the map phase, a user dined function operates on
every chunk of input data producing intermediate key-value
pairs which are stored on local disk. One map process is in-
voked to process one chunk of input data [4].

In the copy phase, the intermediate key-value pairs are
transferred to the location where a reduce process would
operate on the intermediate data. In reduce phase, a user
dense reduce function operates on the intermediate key value
pairs and generates the output. One reduce process is in-
voked to process a range of keys. Hadoop has over 180 pa-
rameters. Examples include number of replicas of input data,

number of parallel map/reduce tasks to run, number of paral-
lel connections for transferring data etc. Of these several
parameters, this paper focuses on two that nuance the re-
source utilization in a resource set.

Each map/reduce task runs as a separate process and
hence a higher number for these parameters translates into
higher parallelization. But too high a value can potentially
cause resource contention and degrade overall performance.
For example, setting a very high value for this parameter
results in large number of simultaneous disk reads results in
disk contention. Setting a low value, on the other hand,
might under-utilize the resources, and once again reduce
performance. Thus, the number of map and reduce tasks per
resource set must be chosen such that the resources are max-
imally utilized, resulting in optimum performance.

Fig. (2) and Fig. (3) show the time taken by grip to
search for a simple rage string in 80 GB of randomly gener-
ated data as the number of maps and reduces are varied. Fig.
(3) shows that: (1) Time taken for grip varies with number of
maps, but is independent of number of reduces, (2) The
configuration with 8 maps yields the best performance and
runs 4× faster when compared to the configuration with 1
map and roughly 1.5× faster when compared to configuration
with 24 Maps. Performing rage on input stream of data is
inherently computationally intensive and hence grip is CPU
dependent. Since each node in the cluster has 8 cores, 8
maps potentially achieve close to optimum CPU utilization.
(3) Finally, increasing number of maps from 4 to 8 only
marginally improves the performance, whereas changing
maps from 1 to 4 almost quadruples the performance. Here,
we observe that the disk bandwidth begins to saturate before
all the CPUs are fully utilized, giving rise to a small im-
provement from 4 to 8 maps. Increasing the number of maps
further causes disk thrashing as a result of which the perfor-
mance decreases. Similar results were observed in the 4 node
cluster.

 (1)

Fig. (2). Overview of the optimization process to provision Hadoop in the cloud.

1156 The Open Automation and Control Systems Journal, 2015, Volume 7 Fei Guo

According to the model, it took 220 s to solve a system
with only 24 unknowns in a 16 node cluster, [5] which is
definitely very slow for solving a linear system with such a
small number of calculations needed. Unfortunately, the tests
solving larger systems also showed that the CG MapReduce
algorithm does not improve as the size of the data increases.
For example, a linear system with 8000 unknowns took al-
most 2 h to solve using the MapReduce algorithm. These
results indicate that most of the time in the MapReduce CG
[6] is spent on the background tasks and not on the actual
calculations in Table 1.

3. ANALYSIS OF ALGORITHM

3.1. Algorithm Classes

We have devised a set of classes for scientific algorithms
based on how difficult it is to adapt them to the MapReduce
model and what steps are required. The algorithms are divid-
ed into different classes as follows:
•Algorithms that can be adapted as a single execution of

a MapReduce model [7].
•Algorithms that can be adapted as a sequential execu-

tion of a constant number of MapReduce models.
•Algorithms where the content of one iteration is repre-

sented as an execution of a single MapReduce model.

•Algorithms where the content of one iteration is repre-
sented as an execution of multiple MapReduce models.

First class can be considered to represent embarrassingly
parallel algorithms and the second class easily parallelizable
algorithms. Third and fourth represent iterative algorithms,
where some type of synchronization must be performed be-
tween each iteration; for example to check the ending condi-
tion or to aggregate and broadcast the result of the previous
iteration. Algorithms belonging to the fourth class are con-
sidered to be more complex iterative algorithms where only
some operations in each item ration can be parallelized com-
pletely. Algorithms belonging to class 4 are generally diffi-
cult to parallelize efficiently, which is even more difficult to
achieve when adapting them to the MapReduce model. To
study how belonging to a specific class affects the efficiency
and scalability of an algorithm, we adapted algorithms from
each class to MapReduce and analyzed the results. The algo-
rithms we chose are described in the following chapter.

Apart from belonging to the specific class, the parallel ef-
ficiency and scalability is also affected by the individual
characteristics of the algorithm. For example, it depends on
how large part of the computation stays outside of the
MapReduce model [8]. Checking the ending condition in an
iterative algorithm or aggregating and processing the final
result, when it cannot be done in the reducer method in
MapReduce, means that most often some part of the iterative
algorithm must be executed outside parallelism, which de-
creases the parallel efficiency of the whole algorithm. Also,

Fig. (3). Time taken to grep a simple string from 80GB of input data. Each line corresponds to a fixed number of maps.

Table 1. Run times of implementation in mapReduce under varying cluster size.

Unknowns 24 500 1000 2000 4000 6000

1 node 259 261 327 278 1938 3810

2 nodes 255 259 298 507 1268 2495

4 nodes 255 236 261 360 721 1374

8 nodes 251 251 291 297 563 824

16 nodes 236 240 278 397 338 511

Research of Fast Search Algorithm Based on Hadoop Cloud Platform The Open Automation and Control Systems Journal, 2015, Volume 7 1157

algorithms that belong to the second class can become less
efficient if the number of sequential MapReduce model exe-
cutions is large. Switching between different MapReduce
models acts as a synchronization step and the input data for
each different MapReduce execution must be processed
again, meaning there might be no practical difference be-
tween the second and third classes when the number of steps
in the second is comparable to the number of iterations in the
third.

Furthermore, the parallel efficiency does not only depend
on how the algorithm was adapted to the MapReduce model
or on the inherit characteristics of the algorithm itself, but
also on the environment it is executed in. Executing MapRe-
duce applications on different MapReduce frameworks can
have a significant impact on the running time of the applica-
tion, also depending on which class the algorithms used in
this application belong to.

3.2. Partitioning Around Medolds

Partitioning Around Medoids (PAM) is an iterative k-
medoid clustering algorithm, that has significant value in the
data mining domain. The general idea of a k-medoid cluster-
ing is that each cluster is represented by its most central ele-
ment, the medoid, and all comparisons between objects and
clusters are reduced into comparisons between objects and
the medoids of the clusters.

To cluster a set of objects into k different clusters, the
PAM algorithm first chooses k random objects as the initial
medoids. As a second step, for each object in the dataset, the
distances from each of the k medoids is calculated and the
object is assigned to the cluster with the closest medoid. As a
result, the dataset is divided into k different clusters. At the
next step the PAM algorithm recalculates the medoid posi-
tions for each of the clusters, choosing the most central ob-
ject as the new medoid. This process of dividing the objects
into clusters and recalculating the cluster medoid positions is
repeated, until there is no change from the previous iteration,
meaning the clusters have become stable.

Similar to CG, PAM makes an initial guess of the solu-
tion, in this case the clustering, and at each following itera-
tion it improves the accuracy of the solution. Also, as with
CG, it is not possible to reduce the whole algorithm to the
MapReduce model. However, the content of a whole itera-
tion can be reduced to the MapReduce model, showing that
PAM belongs to the third algorithm class. The resulting
MapReduce job can be expressed as:

•Map:
‒Find the closest medoid and assign the object to its clus-

ter.
‒Input: (cluster id, object).
‒Output: (new cluster id, object).
•Reduce:
‒Find which object is the most central and assign it as a

new medoid to the cluster.
‒Input: (cluster id, (list of all objects in the cluster)).
‒Output: (cluster id, new medoid).
The run times for the integer factorization are given on

the Table 2 and speedup is shown on Fig. (4). From the Fig.
(4) it is possible to see that when the factored number is
small, there is only a small advantage in using multiple
workers in parallel. The speedup is slightly above 1 for 2
node cluster and only reaches 2.22 in 16 node cluster. This is
because the number of calculations done was relatively small
compared to the background tasks of the framework. How-
ever, with the increase of the size of the input number, the
speedup started to grow significantly. With the input size of
21 digits, the speedup for two and four node executions was
2.07 and 4.17, showing that there is an ideal gain from using
multiple nodes to find the factors when the size of the input
is large enough. With a larger number of nodes the speedup
does not reach the number of nodes, indicating that calcula-
tions were not long enough to get the full benefit from using
16 nodes. The calculated speedup numbers suggest that this
algorithm has a good scalability and that algorithms belong-
ing to the first class can be very suitable for the Hadoop
MapReduce framework.

4. MASSIVE DATA SEARCH AND PROCESSING
BASED ON HADHOOP

With the integration of the mobile network and the Inter-
net, different kinds of data service used by users have be-
come the main way of information transfer. Those service
data is transferred over the Internet by the way of IP data-
gram. At present, the network quality indicators based on
NMS can not take control of service effectively according to
the characteristics of user behavior or reflect the real user
experience of various service. In this case, we need search IP
packet continuously, and then study the analysis system of
user behavior characteristics, the law of data service, im-

Table 2. Run times of algorithm.

Objects(thousands) 25 50 100 500 1000 5000

1 node 117 118 125 193 261 819

2 nodes 79 84 89 150 215 756

4 nodes 61 66 72 120 157 316

4868 nodes 52 56 81 114 124 218

16 nodes 44 50 58 99 104 156

1158 The Open Automation and Control Systems Journal, 2015, Volume 7 Fei Guo

prove the predictive ability of the network about the user
characteristics and promote the development of future net-
work.

Network packet is the core of this demand and is of great
significance to follow-up analysis of data and the character-
istics of user behavior. With the beginning of the network
data search, massive data rapidly emerges. It is a server test
to the resources of database servers. With the rapid increase
of data resources, all data analysis and processing job to be
completed by a single database system alone can not meet
the actual needs. Therefore, we need to enhance capabilities
of data processing to meet the data processing requirements
of large data environment.

Accuracy of the data analysis can reflect the value of the
data and is good for the study of user behavior characteristics.
Therefore, the study of the characteristics of the Internet data
can help to portray the behavior of the network accurately
and give guidance to the practical network deployment and
traffic control, promoting the study of service-oriented future
Internet architecture and mechanism.

With the rapid development of modern technology, peo-
ple can query travel knowledge and information through
Internet. It impels tourists to prefer to arrange their travel
according to their personal willingness. So, self-help travel
proportion is increasing year by year. And the tourism in-
formation service market becomes booming nowadays. In
addition, the sudden and uncertainty of travel process decide
that Mobile Internet is the main way that tourists query travel
information. Mobile cloud computing introduces the concept
of cloud computing into the Mobile Internet. On the one
hand, it makes full use of the portability of mobile terminals.
On the other hand, it makes up shortages of the mobile ter-
minal in computing and storage capacity. In order to apply
mobile cloud computing in the tourism information retrieval
service, it's necessary to propose the mobile terminal cloud
resources access pattern combining with the characteristics
of mobile terminal and travel behavior.

In order to design the mobile terminal cloud resources
access pattern based on Hadoop, first of all, it's necessary to
deeply understand the basic component of Hadoop, and em-
phatically analyze the working principle of the two core
components: HDFS and MapReduce. The consistency of
Hadoop and cloud computing in views and key technologies
makes Hadoop become a distributed cloud computing plat-
form. Secondly, the cloud resources access pattern is divided
into three sections: data storage strategy, request scheduling
algorithm and data response method, and is analyzed under
Hadoop common pattern. Then, combining with the mobile
terminal characteristics of small computational amount, high
concurrency and real-time requirement, the mobile terminal
cloud resources access pattern is purposed based on Hadoop.
Data storage strategy is composed of tree topology, replica-
tion number dynamic optimization model and farthest node
selection strategy. The farthest node is got by farthest leaf
node algorithm. Localization scheduling algorithm with
waiting length threshold is proposed in the respect of request
scheduling algorithm. And the response is fed back to users
through the HTTP protocol. Finally, it is applied to tourism
information retrieval system, and analyzed from the applica-
tion effect. The results show that the data storage strategy
not only can save storage space, but also can improve file
system reliability, localization scheduling algorithm greatly
increases the data localization probability and reduces the
response time, and the response can easily feed back to user
by HTTP protocol.

CONCLUSION

In order to deal with huge amounts of data scalability, us-
ing a distributed platform to complete social networking ser-
vice recommendation algorithm is a good choice. Given the
inherent mass data storage and processing power of Hadoop,
it can effectively solve the difficulties in safe storage and
efficient processing, at the same time it can guarantee relia-
bility, effectiveness and security of the data. In this paper,

Fig. (4). Parallel speedup for the algorithm with different number of nodes.

Research of Fast Search Algorithm Based on Hadoop Cloud Platform The Open Automation and Control Systems Journal, 2015, Volume 7 1159

we put forward building social networking service recom-
mendation system on Hadoop cloud platform.

The system is divided into four parts, like data acquisi-
tion module, data preprocessing module, data storage mod-
ule and service recommendation module. In the data acquisi-
tion module, we use sina weibo API to access to user data. In
the data preprocessing module, FudanNLP is adopted to pre-
cede the Chinese word segmentation. In data storage module,
we build HBase tables to store data, and use the HBase API
to operate the tables. In service recommendation module, we
implement the distributed TF-IDF algorithm in the MapRe-
duce model, this algorithm is used to calculate the im-
portance of each word, and to extract the keywords. Accord-
ing to the keywords extracted, you can find the user's inter-
est, and recommend relevant content to the user.

In order to verify the accuracy and validity of the distrib-
uted TF-IDF algorithm in this paper, we compare the key-
words extracted by the distributed TF-IDF algorithm with
the keywords extracted by the Text Rank algorithm for many
times. Results show that keywords extracted by these two
algorithms are very close, and with the increasing of key-
words' number, the results become closer. This proves that
the distributed TF-IDF algorithm implemented on MapRe-
duce is accurate and effective. At the same time, due to the
distributed TF-IDF algorithm considers the identification
problem of keywords, it performs better than the Text Rank
algorithm. In addition, compared with Text Rank algorithm
of response time, it can be seen that the distributed TF-IDF
algorithm has good scalability.

In this paper, the proposed recommendation system
based on Hadoop cloud platform has a certain reference val-
ue for data mining application in cloud platform, and has
certain exploring significance for recommendation system
implementation in cloud platform.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES
[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,

“Cloud computing and emerging it platforms: vision, hype, and re-
ality for delivering computing as the 5th utility,” Future Generation
Computer Systems, vol. 25, pp. 599-616, 2009.

[2] S.N. Srirama, O. Batrashev, and E. Vainikko, “Scicloud: scientific
computing on the cloud,” In: 10th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, CCGrid,
pp. 579, 2010.

[3] J. Cohen, “Graph twiddling in a MapReduce world,” Computing in
Science and Engineering, vol. 11, pp. 29-41, 2009.

[4] A. Gediminas, and T. Alexander, “Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 17, no. 6, pp. 734-749, 2005.

[5] S. Schubiger, and B. Hirsbrunner, “A model for software configu-
ration in ubiquitous computing environments”, In: Proceedings of
the 1st International Conference on Pervasive Computing, Zurich,
Switzerland, 2002, pp. 181-194.

[6] N. Wang, P. Wang, and B. Zhang, “An improved TF-IDF weights
function based on information theory,” In: Proceedings of the In-
ternational Conference on Computer and Communication Technol-
ogies in Agriculture Engineering (CCTAE), Chengdu, China, 2010,
pp. 439-441.

[7] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,”
John Wiley & Sons, New York, 2001.

[8] W. Toshihiko, K. Shingo, and F. Ryosuke, “Improvement of
collaborative filtering based on fuzzy reasoning model,” In:
Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, Taipei, 2006, pp. 4790-4795.

Received on: May 26, 2015 Revised on: July 14, 2015 Accepted on: August 10, 2015

© Fei Guo; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-commercial
use, distribution and reproduction in any medium, provided the work is properly cited.

