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Abstract: Based on active control method, this paper successfully realizes generalized projective synchronization for ro-
bust chaotic systems with exponential item that Bao Bocheng etc. proposed. The numerical simulation results verify valid-
ity of generalized projective synchronization controller. Meanwhile, the design of the controller circuit and its simulation 
results also show the circuit realization’s feasibility and that the design of generalized projective synchronization control-
ler is correct. 
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1. INTRODUCTION 

Bao Bocheng et al. proposed a three-dimensional robust 
chaos system with exponential item [1], and realized with 
circuit [2]. This article is a study on the applicability of syn-
chronization control of three-dimensional chaotic system, to 
achieve generalized projective synchronization for two cha-
otic systems using active control method. The generalized 
projective synchronization studied in this paper refers to link 
the generalized synchronization and projective synchroniza-
tion together, and to achieve a chaotic signal having arbitrary 
ratio to the output of original driving chaotic system by a 
scale factor [3-5]. And the correctness of the method is veri-
fied through the theoretical analysis and numerical and cir-
cuit simulation. 

2. ROBUST CHAOS SYSTEM WITH EXPONENTIAL 

Bao Bocheng et al. [1] proposed a three-dimensional 
continuous autonomous dissipative chaotic system, the sys-
tem equations contain 5 items on the right with the absence 
of constant controller, as a least item for three-dimensional 
system that generate chaotic stream, the mathematical model 
is as follows: 
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Where µ is a real constant, c is a constant control parame-
ters, x, y and z are state variables. The new system on the 
right equation contains an index square nonlinear term, a 
square nonlinear term, a constant parameter and two linear 
terms. When µ = 5 and c = 0, the system (1) generates a typi-
cal double scroll chaos, as shown in Fig. (1a and 1b); when 
µ = 5 and c = 2, the system (1) generates a typical single  
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scroll chaotic attractor, as shown in Fig. (1c). Literature il-
lustrated the dynamic behavior of the chaotic system specifi-
cally, and the results illustrate that the positive Lyapunov 
exponent area for system (1) is wide within parameter µ 
change range, which means the chaotic characteristics of the 
system are robust. 

3. DESIGN OF GENERALIZED PROJECTIVE SYN-
CHRONIZATION CONTROLLER 

The drive and response vectors achieve projective syn-
chronization by scaling factor k, which also means the vector 
is adjustable. The system (1) is used as a driving system, 
which modified as is follows: 
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The controlled response system:  
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Where u1, u2, u3 are synchronous controllers. 

Suppose error signals e1 = x1–kx2，e2 = y1–ky2，e3 = z1–
kz2, where the scaling factor is constant k, error equation as 
follows: 
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Theorem 1: If the nonlinear feedback synchronization 
controller is  
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Where β1 > 0 and β2 > 0, then the chaotic systems (2) and 
(3) with different initial value, can achieve generalized pro-
jective synchronization. 

Proof: according to the idea of active control, the control 
functions are designed as follows: 

   

!e1 = e2 ! e1 + v1
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By substituting it into the error system (4) is acquired: 
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v1, v2, v3 are error variables, e1, e2, e3 are input control 
signals of the function. Set up 
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By substituting into equation (7), is acquired: 

   

!e1 = e2 ! e1

!e2 = !"1e2

!e3 = !"2e3
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The corresponding characteristic equation of error system 
(9) is: 

0))()(1( 21 =+++ !"!""            (10) 
According to the linear system stability theory, as long as 

β1 > 0 and β2 > 0, all characteristic roots of the error system 
(10) will be negative, so that the error signals e1, e2, e3 con-
verge into zero, which means that the zero equilibrium point 
for the error system is asymptomatically stable. 

  
lim
t!"

E(t) = lim
t!"

[X (t)# kY (t)] = 0 shows that two three-

dimensional chaotic systems obtain same structural general-
ized projective synchronization with arbitrary proportion. 
Formula (5) gives the designed controllers that are obtained 
by substituting formula (8) into (6). 

The feature values of error system (10) are related to the 
speed that error tends to be zero. According to the system 
stability theory, the smaller the negative eigenvalues, the 
faster the response of the system. Therefore, from the charac-
teristic equation (10), it is shown that the convergence speed 
of the error signals is related to the choice of β1 and β2. β1 
and β2 are error convergence speed regulators. 

4. NUMERICAL SIMULATION OF GENERALIZED 
PROJECTIVE SYNCHRONIZATION  

Using Runge-Kutta method for numerical simulation, a 
group of parameters µ = 5, β1 = 1 were selected, β2 = 1, so 
that the system is in chaotic state, initial values (1, 1, 1) and 
(2, –1, 0.5) were set for drive system and response system, 
respectively. And c = 0, when the scale factors for general-
ized projective synchronization k are 0.4 and -1.2 respec-
tively, the generalized projective synchronization simulation 
results are shown in Figs. (2, 3). When the control parameter 
c is 2 and k is -0.5, generalized projective synchronization 

 
Fig. (1). New chaotic attractors. 

 
Fig. (2). Generalized projective synchronization at K＝0.4. 
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simulation results are shown in Fig. (4). In the picture, the 
projection phase orbit with solid and dashed lines are attrac-
tors of drive system and response system respectively. 

Generalized projective synchronization of in-phase as 
shown in Fig. (2a) indicates the characteristics of the 
drive system and the response system. Fig. (2b) gives er-
ror signal evolution curve at k = 0.4, error initial values 
are e1(0) = 0.2, e2(0) = 1.4, e3(0) = 0.8, we can see the 
error curve quickly decays to 0, indicating that state vari-
ables between two three-dimensional chaotic systems are 
controlled by the circuit. 

5. CIRCUIT DESIGN AND SIMULATION 

We realized generalized projective synchronization of 
robust chaotic systems with exponential item using the cir-

cuit designed in the literature [2]. The control circuit corre-
sponding to the formula (5) is shown in Fig. (5), which 
achieved state variables in-phase or anti-phase generalized 
projective synchronization between the drive system and the 
response system respectively. 

The control circuit method shows that in order to real-
ize two systems generalized projective synchronization, it 
required only to adjust the linear resistor vector [R1c, R2c, 
R3c, R4c, R5c] in proportional action, and the corre-
sponding feedback signal vector [S1c, S2c, S3c, S4c, S5c] 
is coupled into the response system. The feedback signals, 
in-phase and anti-phase signals, in the controller are de-
rived from state variables and intermediate variables of 
drive system and response system respectively. With resis-
tance vector in the controller, the feedback signal is in-

 
Fig. (3). Generalized projective synchronization at K＝–1.2. 

 
Fig. (4). Anti-phase synchronization at c = 2. 
 

 
Fig. (5). Example of a ONE-COLUMN figure caption. 
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corporated into the addition operation module of the re-
sponse system as an added signal. In Fig. (5), at k=0.4, the 
feedback signal vectors [S1c, S2c, S3c, S4c, S5c] and the 
controller resistance vectors [R1c, R2c, R3c, R4c, R5c] are [–
y1, –x1, x1, –z1, –vc] and [2kΩ, 4kΩ, 20kΩ, 10kΩ, 4kΩ], 
respectively. At k=-1.2, the feedback signal vectors  [S1c, 
S2c, S3c, S4c, S5c] and the controller resistance vectors [R1c, 
R2c, R3c, R4c, R5c] are [y1, x1, x1, z1, vc] and [12kΩ, 15kΩ, 
60kΩ, 60kΩ, 50kΩ], respectively. 

Circuit simulation was performed according to system 
parameter values in the fourth part of numerical emulation, 
the synchronization status between drive system and re-
sponse system is shown in figure 6. In the graph, y1–y2 is the 
phase trajectory map, coordinate scale unit is V/div, such as 
1/2 means that transverse coordinate of each grid is 1V, or-
dinate per cell is 2V. In Figs. (6a, b and c), numerical values 
can be obtained by oscilloscope, the ratio of state variables y1 
and y2 is between 0.4, -1.2, -0.5, which illustrates the re-
sponse system and drive system achieved a certain propor-
tion of the generalized projective synchronization. 

As shown in Fig. (7), the nonlinear controller designed in 
same structure generalized projective synchronization can 
connect the drive system and the response system, through 
proportional adjustment of the linear resistor vector, and the 
corresponding feedback signal vector coupled to the re-
sponse system, so that the two chaotic attractors phase can 
be same or opposite. The output amplitude when the scale 

factor is 0.4,–1.2,–0.5(c=2), verifies the possibility to 
achieve generalized projective synchronization between the 
drive system and the response system with the scale factor. 

6. CONCLUSION 

Analysis of the structural characteristics of chaotic attrac-
tor, the generalized projective synchronization controller, 
and the generalized projective synchronization of chaotic 
attractor can be verified by numerical simulation and circuit 
simulation. 
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Fig. (6). Synchronization curves of simulation circuit. 

 

 
Fig. (7). State output signals of the drive system and the response system. 
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