
Send Orders for Reprints to reprints@benthamscience.ae

1376 The Open Automation and Control Systems Journal, 2015, 7, 1376-1380

 1874-4443/15 2015 Bentham Open

Open Access
Fraction and Prefix Encoding Scheme of Supporting Updating Data
Efficiently

Houliang Xie1,* and Liang Lei2

1Information Engineering Department, Zhangjiajie Institute of Aeronautical Engineering, Zhangjiajie 427000, China
2School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China

Abstract: At present, more and more data are expressed in the form of XML format, and how to manage these data effi-
ciently becomes an important issue. In order to update and query XML data efficiently, we proposed a new encoding
scheme called MPES (modify prefix encoding scheme). MPES makes full good use of the advantages of fraction encod-
ing and prefix encoding and it supports updating data efficiently. Furthermore, MPES also supports the representation of
sibling relationship, parent-children relationship and ancestor-descendant relationship between any two nodes. The exper-
imental results show that, compared with fraction encoding scheme, MPES improves the updating efficiency of XML da-
ta. As compared with prefix encoding scheme, MPES improved the querying efficiency of XML data.

Keywords: Fraction encoding scheme, prefix encoding scheme, update data, XML, XML format.

1. INTRODUCTION

With the rapid development of computer network tech-
nology, more and more online resources are represented in
XML format. Compared with the hypertext markup language
HTML, XML language has good scalability, inter-
exchangeable and easy system to follow strict syntax re-
quirements of information and so on. However, when the
mass-like information is stored in XML format, fast update
and fast query become extremely important. At present, do-
mestic and foreign scholars have done a lot of research in
this area, and made a number of coding algorithms at the
same time. But there are still some deficiencies for efficient
data updates and queries.

2. RELATED RESEARCH

In managing XML [1, 2] data, coding techniques [3] is
extremely important. At present, domestic and foreign schol-
ars have done a lot of research in this regard and made a va-
riety of coding schemes. Overall, these coding schemes can
be divided into two categories, the first category is the inter-
val coding [4-7], and the second is a prefix code [8-11]. The-
se codes have good performance, but on the other hand there
are some deficiencies. Based on the in-depth study of other
encoding schemes, we propose a new coding scheme -
MPES (modify prefix encoding scheme). MPES is an im-
proved prefix code; it scores coding and prefix code togeth-
er. To sum up, the work for this paper is as follows:

(1) Proposing a new coding scheme i.e. MPES. MPES
fractional prefix code LDSX coding to the combine ad-
vantages.

*Address correspondence to this author at the Information Engineering
Department, Zhangjiajie Institute of Aeronautical Engineering, Zhangjiajie
427000; E-mail: 306025482@qq.com

(2) MPES supports unlimited updates between nodes.
MPES takes advantage of the theory that the scores between
the two points can be inserted into an infinite number of
points, in order to support unlimited updates between nodes.
Thus, it effectively avoids secondary coding.

(3) The experimental results show that, compared with
fractional coding, MPES improves updating efficiency of
taking points. Compared with prefix code LDSX, MPES
improves query efficiency of taking points.

3. MPES ENCODING

3.1. MPES Encoding Method

MPES codes are consisted of numbers and letters with
XML document with each node with a triple (Numerator /
Denominator, NodeCode, Level) to represent. Numerator
parameter represents preorder of the XML node values ob-
tained after each visit of the next XML node and its value is
plus 1. The root Numerator is 1. Denominator initial value is
set to a parameter. The parameter NodeCode represents cod-
ing node. Level represents the level node. The level of the
root node is set to 1. Fig. (1) is named library.xml document,
and MPES encoding is shown in Fig. (2).

3.2. For Junction Node Called Lib

The first mode encodes for the <1/1, a1, 1>, since it is the
first order of encoding. Numerator is 1; Denominator initial
value is set to 1. Because the node is the root node and its
node coded as a1, the hierarchy is also 1. For 2 title FIG
leftmost node, it is encoded as <3/1, a1a1.a1, 3>. Because it
is a third node at the first coding sequence, Numerator is 3
and Denominator initial value is set to 1, and the node is
encoded as a1a1.a1. Meanwhile the node is in the third layer,
the Level 3.

Fraction and Prefix Encoding Scheme of Supporting The Open Automation and Control Systems Journal, 2015, Volume 7 1377

3.2.1. The Judgment of Nodes Relationship of MPES
In XML document, the relationship between nodes in-

cludes brothers, father and son relationship, ancestor - de-
scendant relationship and hierarchy nodes located. For any
kind of XML, junctions between different coding have great
significance. Four relations of MPES encoding were dis-
cussed above.

3.2.2. The Judgment of Ancestor-Descendant Relationship

Suppose U〈f1, x1.y1, p1〉 and V〈f2, x2.y2, p2〉
are two nodes of XML document, parameter f1 and f2 are
real number, parameter p1 and p2 are integer. If x1+y1 is
x2 substring, and p2 > p1+1, then node U is the ancestor of
node V, node V is the descendant of node U. In Fig. (2), the
encoding of node lib is <1/1, a1, 1>，the author node be-
low the magazine code is <6/1, a1b1.a1,3>. Therefore,
node lib is the ancestor of the author node.

3.2.3. The Judgment of Parent-Children Relationship

Suppose U〈f1, x1.y1, p1〉 and V〈f2, x2.y2, p2〉 are
two nodes of XML document; parameter f1 and f2 are real
number, parameter p1 and p2 are integer. If x1+y1＝x2, then
node U is the parent of node V, node V is the children of
node U. In Fig. (2), the encoding of lib node is <1/1, a1, 1>,
the encoding of magazine is <5/1, a1.b1, 2>. Therefore, node
lib is the parent of node magazine, and node magazine is the
children of node lib.

3.2.4. Sibling Relationship Judgment

Suppose U〈f1, x1.y1, p1〉 and V〈f2, x2.y2, p2〉 are
two nodes of XML document, parameter f1 and f2 are real
number, parameter p1 and p2 are integer. If x1y1= x2y2,
p1=p2，f1<f2, then node U is the brother of node V. In fig.
2，the left node title and the node author, its encoding is
<3/1, a1a1.a1, 3> and <4/1, a1a1.b1, 3> respectively. Ac-
cording to the rule, we can see that x1y1= x2y2＝a1a1,
p1=p2=3，3/1<4/1. Therefore, the left title node is the left
brother of the left author node.

Fig. (1). Library.xml.

Fig. (2). XML document tree and MPES encoding.

1378 The Open Automation and Control Systems Journal, 2015, Volume 7 Xie and Lei

3.2.5. Level Judgment of Node

Suppose U〈f1, x1.y1, p1〉 is a node of XML docu-
ment, parameter f1 is a real number, parameter p1 is an inte-
ger.

We can judge the level of a node according to its XML
encoding. In Fig. (2), as for title node, its encoding is

<3/1, a1a1.a1, 3>，then the level of the title node is
three.

3.3. XML Data Updating

Before we discuss the XML data updating, let us intro-
duce two important Lemmas.

Lemma 1: If (c1, c2, d1 and d2 are greater than

0), then . For example:

.

Lemma 2: If (c1, c2, d1 and d2 are greater than

0),

Then . (c1, c2, d1

and d2 are greater than 0)
For example:

 (n=4)

According to the two lemmas, we can draw a conclusion

that

b
a
< b+ n* d

a + n*c
< b+ (n+1)* d

a + (n+1)*c
< d

c
, so we can insert un-

limited nodes between

b
a

and

d
c

 without changing existing

encoding nodes. For example, we can insert unlimited nodes

between and without re-encoding.

Example:

The following four different cases will be discussed for
inserting new nodes:

(1) The new inserting node has right brother without
left brother.

The new inserting node has right brother without left
brother. If we want to insert a new node B in Fig. (3), sup-
posing the encoding of node A is <2/1,a1.a1,2>, the encod-
ing of node C is <3/1,a1a1.a1,3>, then the encoding of node
B is < , a1a1.a0, 3>, that is to say, the encoding of node

B is <5/2, a1a1.a0, 3>.
2) The new inserting nodes has left brother without right

brother.
Inserting a new node D below node B is shown in Fig.

(4). Node E is the subsequence node of node C according to

the preorder traversal. If the encoding of node C is
<3/1,a1a1.a1, 3>, and the encoding of node E is
<4/1,a1.b1,2>, then the encoding of node D (suppose its
node name is “price”) is < a1a1.b1,3>, that is to say,

the encoding of node D is <7/2, a1a1.b1,3>.

Fig. (3). Has right brother without left brother.

Fig. (4). Has left brother without right brother.

3) The new inserting nodes both have left brother and

right brother as shown below in Fig. (5).
If we want to insert a new node C between node B and

node D, suppose the encoding of node B is <3/1, a1a1.a1,
3>, and the encoding of node D is <4/1, a1a1.b1, 3>, then the
encoding of node C is < a1a1.b0, 3>, that is to say, the

encoding of node C is <7/2, a1a1.b0, 3>.

Fig. (5). Both have left brother and right brother.

4) The new inserting nodes have no brother (neither left
brother nor right brother).

If we want to insert a new node B below node A as
shown in Fig. (6), suppose the encoding of node A is
<3/1,a1a1.a1,3>, then the encoding of node B is <4/1,
a1a1a1.a1,4>.

2
1

2
1

d
d

c
c <

2
1

22
11

2
1

d
d

dc
dc

c
c <

+
+<

1
3

11
32

1
2 <

+
+<

2
1

2
1

d
d

c
c <

2
1

2*)1(2
1*)1(1

2*2
1*1

2
1

d
d

dnc
dnc

dnc
dnc

c
c <

++
++<

+
+<

1
3

1*)14(1
3*)14(2

1*41
3*42

1
2 <

++
++<

+
+<

a
b

c
d

1
3......

1*)14(1
3*)14(2

1*41
3*42

1
2 <<

++
++<

+
+<

11
32

+
+

,
11
43

+
+

,
11
43

+
+

Fraction and Prefix Encoding Scheme of Supporting The Open Automation and Control Systems Journal, 2015, Volume 7 1379

Fig. (6). Have no brother.

Summary: Concerning any of four cases above, if we
know the prior node encoding and next node encoding by
preorder traversal when a new node is inserted, we can get
the node encoding.

4. EXPERIMENT AND ANALYSIS

4.1. Experiment Parameter and Data Set

Experiments are conducted in a single processor PC, Pen-
tium (R) 4 3.0GHZ, 512M of memory, using the Windows
XP operating system. The database uses Microsoft SQL
SERVER 2000 database, and the programming language
Java. Experimental data uses XMark [12] generated XML
test data.

4.2. Time Efficiency of MPES

In the first experiment，we use XMark to generate the
related data. By setting coefficient to 0.000009, 0.018 and
0.045, corresponding XML documents are 1KB, 2MB and

5MB in size respectively. MPES, fraction encoding [7], and
prefix code LSDX [9] were used for experimental compari-
son. The time efficiency of the three algorithms is shown in
Table 1.

The experimental results show that fraction coding takes
the longest time, with MPES, following prefix code. The
reason is that MPES and prefix code are known only for
one’s access to XML node, and fraction coding required
scores twice traverse the nodes. That is once before all the
descendants of node access, the other in all descendants knot
after access point. Due to the combination of advantages of
prefix code and fraction coding, MPES coding needs to
spend more time than prefix code.

4.3. Data Updating Efficiency of MPES

The second experiment used to detect updated efficiency
of MPES coding, using XMark dataset to generate test data.
By setting coefficient to 0.000009 and 0.018, corresponding
XML documents 1KB and 2MB in size respectively, were
generated. MPES, fractional coding [7], and prefix code
LSDX [9] were used for experimental comparison. The rele-
vant update time is shown in Table 2.

Table 2 shows that fraction coding spends the maximum
time. MPES is followed by prefix encoding. The reason is
that when updating the scores, encoded insertion position of
the node should be found, which will consume most of the
time of update. While the prefix code encoding implicit the
location of position-taking point leading to least time con-
sumption. Due to the advantages of retaining the prefix code,
MPES has better coding efficiency than updated scores.

Table 1. The comparison of time and efficiency.

Document Size MPES/ms fraction Encoding /ms LSDX/ms

1kb 326 470 321

2MB 25711 29750 24903

5MB 84665 95546 82723

Table 2. Data updating efficiency of MPES.

Document Size The Number of Updating Nodes
Time/ms

MPES Fraction Encoding LSDX

1kb 1 15 32 15

1kb 10 18 62 16

1kb 100 130 156 110

1kb 1000 908 956 859

2M 1 19 41 19

2M 10 20 78 20

2M 100 137 170 125

2M 1000 980 1012 945

1380 The Open Automation and Control Systems Journal, 2015, Volume 7 Xie and Lei

4.4. Query Efficiency of FPES

In this experiment, the size of 30MB XML document
was generated. The document comprises 1,022,976 nodes,
setting six queries cases for different query conditions, as
shown in Fig. (7). The results are shown in Figure 8.

As can be seen from Fig. (8), fractional coding spends
the least time, and MPES is inferior to prefix code. The rea-
son is the relatively fast speed of comparison between scores
than between prefix. It can also be seen from the table that
MPES has a better encoding efficiency than query prefix
code. The reason is that MPES fractions is part of the phase-
out of the magnitude relationship between nodes, such as
query follows the path expression "// SigmodRecord / / arti-
cles // authors". According to the coding rules, the value of
authors node must be greater than the value of the articles of
nodes. Meanwhile, the nodes of the same value articles must
be greater than the value of the node SigmodRecord. By do-
ing this, parts of the node which do not meet the require-
ments will be eliminated, leading to improved query effi-
ciency.

Fig. (7). Six query case.

Fig. (8). Query efficiency of the three algorithms.

CONCLUSION

This paper analyzed performance MPES time, updating
efficiency and query efficiency from the experimental point
of view. The results show that compared with scores, MPES
has improved time efficiency and update efficiency of the
nodes. Compared with the prefix code, MPES also has im-
proved query efficiency.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES
[1] C. Su, J. He, H. Xi, and W. Mao, “General data interface testing

tool based on xml,” binggong zidonghua/ ordnance industry auto-
mation, vol. 31, no.8, pp. 72-77, 2012.

[2] E. Cohen, H. Kaplan, and T. Milo, “Labeling dynamic XML trees,”
SIAM Journal on Computing, vol. 39, no. 5, pp. 2048-2074, 2010.

[3] J. Zhao, “XML and Database,” Acta Scientiarum Naturalium Uni-
versitatis Neimongol, vol.34, no.3, pp. 345-349, 2003.

[4] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and L. Guy, “On sup-
porting containment queries in relational database management
systems,” In: ACM SIGMOD Conference on Management of Data,
2001, pp. 425-436.

[5] D. Dao, M. Kha, Y. Wa, and U. Shunsuke, “An XML indexing
structure with relative region Coordinate,” In: Proceedings 17th In-
formation Conference on Data Engineering, 2001, pp. 313-320.

[6] J. D. Ren, X. P. Yin, and X. D. Guo, “A Dynamic Labeling Scheme
for XML Document,” Journal of Communication and Computer,
pp. 61-65, 2006.

[7] Y. Sun, J. Gao, T. Wang, and D. Yang, “Update Friendly Fraction
Number Encoding Scheme for XML Document,” Computer Sci-
ence, vol. 35, no.10A, pp. 165-169, 2008.

[8] X. Yang, D. Li, and W. Zhou, “Extended dewey encoding scheme
for reducing update costs for XML data,” Journal of Shenyang
Normal University (Natural Science), vol. 28, no. 2, pp. 214-217,
2010.

[9] M. Duong, and Y. C. Zhang, “LSDX: a new labelling scheme for
dynamically updating XML data,” Australian Computer Society,
pp. 185-193, 2005.

[10] D. C. An, J. Y. Kim, and S. Park, “Access control and labeling
scheme for dynamic XML data,” Computer Society, pp. 329-334,
2008.

[11] G. Xie, “Study on coding schemes of the XML document,” Science
Technology and Engineering, vol. 9, no. 5, pp. 1294-1297, 2009.

[12] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and
R. Busse, “XMark: a benchmark for XML data management,” In:
Proceedings of the 28th VLDB Conference, Hong Kong, China, pp.
974-985, 2002.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Xie and Lei; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-commercial
use, distribution and reproduction in any medium, provided the work is properly cited.

