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Abstract: EEMD Algorithm is usually applied in noise reduction of rolling bearing signal because of its powerful ability 
in de-noising. But misjudgment in selecting sensitive IMF exists, it results in the incomplete processing of noise reduc-
tion. In order to solve this problem, this paper proposes an improved EEMD algorithm. This algorithm adopts Cloud Simi-
larity Measurement in selecting the sensitive intrinsic mode function component which responses the fault feature. And 
the sensitive intrinsic mode function component is used to reconstruct signal. The simulation experiment shows that the 
improved EEMD algorithm has overcome the misjudgment of the original EEMD algorithm during selecting sensitive 
IMF, and it can do better in filtering the noise of signal. To apply the improved EEMD algorithm in de-noising of factual-
ly collected damaged AE signal, the experiment results show that it is more effective in reducing the noise interference in 
Acoustic Emission Signal of rolling bearing. 
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1. INTRODUCTION 

Rolling bearing is the most common part of the rolling 
mechanism, so the monitoring is really important. The tech-
nology of Acoustic emission (AE) is also important in moni-
toring the mode of the rolling bearing, because it can help to 
find the early symptom of pitting corrosion defect and the 
spalling of the worn surface [1-3]. Due to the terrible work-
ing environment, all the data collected from the spot has 
been polluted by the noises. In order to eliminate the noise of 
signals, some scholars bring in the technology of wavelet 
noise reduction, Empirical mode decomposition (EMD), 
Ensemble empirical mode decomposition (EEMD), and ap-
ply them in the fault diagnosis of mechanical equipment in 
early stage, which has achieved better results [4-6]. To use 
the EEMD algorithm in the de-noising of non-stationary sig-
nal is more effective than the other two algorithms, so it is 
usually widely applied in the process of noise reduction of 
rolling bearing. Although EEMD algorithm can separate and 
restrain the high frequency components of the noise in origi-
nal signal, and the low frequency components of noise are 
still mixed in the IMF components, which can not be re-
strained well. Those reasons mentioned above lead to the 
situation where only part of IMFs are related to the fault in-
formation after the decomposition. Properly selecting IMFs 
closely related to faulty information is really significant to 
eliminate noises and improve the accuracy. Literatures [ 7-9] 
use sensitivity evaluation algorithm, correlation coefficient, 
and mutual information algorithm to select the sensitive 
IMFs which react on faulty characteristics from all IMFs. It 
 

*Address correspondence to this author at the School of Electrical Engineer-
ing and Automation, Harbin Institute of Technology, Harbin, China, 
150001; E-mails: 99553556@qq.com, chengweili@hit.edu.cn 

can eliminate the false components caused by the noise inter-
ference, and achieve certain effect in certain aspects. But 
misjudgment still exists, which results in the incomplete pro-
cessing of noise reduction. 

In view of this problem, the essay advocates the im-
proved EEMD algorithm based on the cloud similarity 
measurement (CSM). The CSM of the Cloud Model is iden-
tifying the differences of the amount between clouds, it has 
better accuracy in similarity measurement of two time series 
[10]. Based on above reasons, in this paper, CSM is adopted 
to select the sensitive IMFs which could reflect the fault fea-
tures from IMFs to reconstruct signal. And the EEMD algo-
rithm is improved. The improved EEMD algorithm can im-
prove the accuracy in selecting sensitive IMF and can over-
come the misjudgment in the traditional algorithm. The abil-
ity of noise reduction is also improved. It achieves a good 
effect in de-noising the AE signal of rolling bearing. 

2. IMPROVED EEMD ALGORITHM 

2.1. EEMD Algorithm 

EEMD algorithm is an auxiliary signal processing meth-
od dealing with noises. Using this algorithm, a Gaussian 
white noise is superimposed to the signals, and the mixed 
signals are calculated repeatedly in empirical mode decom-
position. After adding the noises, the signal continuity may 
be achieved in different frequency regions due to the evenly 
distributed statistical properties of Gaussian white noise fre-
quencies, then the IMF component model mixing degree is 
lowered. EEMD algorithm is shown as follows [11]. 

(1) The overall average number is M and standard devia-
tion of white noise is k. 

(2) EMD experiments are executed m times after adding 
white noise. 
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I) A random Gaussian white noise nm (t) is added in the 
input signal x(t), and the signal xm (t) is obtained, 

xm (t) = x(t)+ knm (t)   (1) 

II) xm(t) is decomposed by EMD, obtaining cj,m. cj,m 
which stands for the jth IMF obtained in the mth decomposi-
tion ( j=1,2,…, Nm); Nm stands for the number of IMFs in the 
mth decomposition. 

III) If m<M，let m =m+1，return 2). 
IV) To take the minimum of model components in each 

group of IMF obtained in the M times of decomposition as 
the final overall average number of IMF. 

(3) Each IMF in m times of decomposition are averaged, 

cj =
cj ,m

m=1

M

!
M

 ( j= 1,2, …, Nm , m=1,2, …, M )  (2) 

(4) To output c j as the j th IMF obtained by EEMD de-
composition. The added white noise nm (t) is generated ran-
domly in each experiment. When M is larger, the overall 
average of the added Gaussian white noise is closer to zero. 

2.2. Cloud Similarity Measurement 

Cloud similarity measurement (CSM) is made up of 
backward cloud generator algorithms and includes angle 
cosine of cloud eigenvector. The input sample point xi=(x1, 
x2, …, xN), sample point yj = (y1, y2,…, yM),where, N and M 
are the numbers of xi and yj , respectively. The steps are as 
follows [12].  

(1) Sample mean X = 1
n

xi
i=1

n

!  is obtained based on the 
sample point xi.  

The first order of sample absolute center distance is
1
n

xi ! X
i=1

n

"
; sample variance is S2 =

1
n !1

(xi ! X)
2

i=1

n

" . 

(2) To calculate expected value 

 E x= X   (3) 

(3) To calculate entropy 

 En =
!
2
" 1
n

xi # Ex
i=1

n

$   (4) 

(4) To calculate hyper entropy 

He = S2 ! En
2   (5)  

(5) To calculate cloud vector  
!vi = (Exi ,Eni ,Hei ) of sam-

ple point xi and cloud vector  
!vj = (Exj ,Enj ,Hej )  of sample 

point yj. 
(6) The similarity of any two samples xi and yj may be 

expressed by the included angle cosine between  
!vi  and  

!vj , 
as follows.  

 
 
sim(i, j) = cos(!vi ,

!vj ) =
!vi !
!vj

!vi
!vj

  (6) 

To set similarity threshold δ = 0.95, retaining IMFj when 

 cos(
!v, !vj )≥0.95, others are removed. 

2.3. Improved EEMD Algorithm 

The improved EEMD algorithm can be summarized in 
the following steps. 

(1) To calculate vectors 
!v = (Ex,En,He )  of signal v by 

backward cloud generator algorithm. 

(2) To decompose the signal v by EEMD, obtaining IMFj 

(j = 1, 2, …, n). 

(3) To calculate vectors 
!vj = (Exj ,Enj ,Hej )  of signal 

IMFj by backward cloud generator algorithm. 

(4) To calculate
 
cos(!v, !vj ) =

!v ! !vj
!v !vj

, making sure of cloud 

vector of signal v and the similarity degree of cloud vector of 
IMFj.  

(5) To set the similarity threshold δ=0.95, then to select 
the IMF j of  cos(

!v, !vj )≥0.95 as sensitive IMF to reconstruct 
the signal. 

3. THE COMPARISON OF ALGORITHM 

D. Mitrakovic and other people use damped exponential 
signals of three different frequencies and different attenua-
tion coefficients to simulate AE signal. The signal model is 
given as follows[13]. 

f (x) = Aie
[!ai (t!ti )

2

]
i=1

3

" sin[2# fi (t ! ti )]   (7) 

In this equation, Ai, ai, ti , fi are the ith harmonic signal 
amplitude, attenuation coefficient, peak instant and the char-
acteristic frequency, respectively. The parameters of typical 
AE signal are valued as follows, Ai=2(i=1,2,3), a1=6.24×108, 
a2=1.56×108, a3=2.79×108,t1=0.4ms, t2=0.6ms, t3=0.8ms, 
f1=70KHz, f2=60KHz, f3=80KHz. In fact, most of the noise 
signals are white noises. So according to the formula of 
sampling frequency f=500 kHz, the white Gaussian noise 
whose standard deviation is 0.246 is added into the stimulat-
ed AE signal, and the waveform is shown in Fig. (1). The 
EEMD algorithm and the improved EEMD algorithm is pro-
posed to test the noise reduction of simulated AE signal.  

In EEMD decomposition, the IMF1~ IMF4 were ob-
tained, as shown in Fig. (2). The added noise amplitude is 
0.01 times of the standard deviation of signal, and the overall 
average time is 200. 

As can be seen in Fig. (2), the IMF1 and IMF2 decom-
posed by EEMD are actual original signal component in 
which the noise interference is eliminated. IMF3 and IMF4 
are meaningless false components, which will be excluded in 
subsequent analysis. The comparison between the mutual 
information and cloud similarity of each IMF and original 
signal is shown in Table 1. According to the literature [14], 
the calculated mutual information threshold is 0.0357. As 
shown in Table 1, IMF1, IMF2 and IMF3 are considered to 
be actual components for their thresholds bigger than 0.0357. 
Only the IMF4 component is removed as false components. 
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Therefore, it is easy to cause misjudgment when the mutual 
information eliminates false component. From the threshold 
δ = 0.95 of CSM, the threshold value of IMF1 and IMF2 in 
CSM is bigger than δ, so it is maintained as the actual com-
ponents, and the false components IMF3 and IMF4 are re-
moved. It is coincided with the situation in Fig. (2). There-
fore, it is effective to select sensitive IMF by the CSM, 
which has better accuracy than the mutual information meth-
od, overcoming the misjudgment. 
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(a) Original AE signal 
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(b) Adding noise AE signal 

 
Fig. (1). Simulated AE signal waveform. 
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Fig. (2). IMF1~ IMF4 Obtained in EEMD Decomposition. 

Table 1.  Comparison between the mutual information and 
cloud similarity of each IMF and original signal. 

 IMF1 IMF2 IMF3 IMF4 

Mutual Information  0.1175 0.0998 0.0363 0.028 

Cloud Similarity 0.9653 0.9551 0 0 
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(a) Reconstructed signal by EEMD 
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(b) Reconstructed signal by Improved EEMD 

Fig. (3). Reconstructed AE signal waveform. 
 

As shown in Fig. (3), the reconstructed signal calculated 
by improved EEMD algorithm is more smooth than that of 
the traditional EEMD algorithm. It is more closer to original 
signal, and the effect of de-noising is better. In order to fur-
ther compare the effect in de-noising between improved 
EEMD algorithm and traditional EEMD algorithm, white 
Gaussian noise is added into the original signal respectively 
with different standard deviations of 0.497、0.748 and 
0.996, to get the evaluation of SNR and the MSE of the two 
methods in de-noising, as shown in Table 2. 

To see from Table 2, the SNR of the improved EEMD 
algorithm is higher when it is added with white Gaussian 
noise with different standard deviation. The MSE is smaller, 
so the effect of noise reduction calculated by improved 
EEMD algorithm is better than the traditional EEMD algo-
rithm.  
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Table 2.  Evaluation of De-noising results with two ways. 

EEMD Improved EEMD  
SNR of Adding 

Noise Signal SNR MSE SNR MSE  

13.61 23.32 0.0064 41.58 0.0032 

 7.42 23.25 0.0068 41.56 0.0034 

3.83 23.23 0.0068 41.55 0.0034 

1.54 23.23 0.0068 41.55 0.0034 

 
4. PROJECT APPLICATION 

The simulated bearing’s inner ring damage experiment 
was finished on the rolling bearing’s experiment rig. The 
K001 rolling bearing is used, then we can get the damaged 
sample of bearing by using electron discharge machining
（EDM）. The facility is the four-channel signal acquisition 
system PCI-2-PAC which is produced by an American Phys-
ical acoustics company, the type of transducer is R15, 2/4/6 
pre-amplifiers were selected, and the selected gain is 40 dB. 
During the experiment, the motor speed is 14000r/min, and 
the signal sampling rate is 500KSPS. 

Fig. (4) (a) and (b) show the time domain waveform and 
the spectrogram, which are measured by the transducer dur-
ing the rolling bearing’s inner ring damage. Fig. (4)(c) ~ (f) 
show the time domain waveform and spectrogram, which de-
noise AE signal calculated by improved EEMD and tradi-
tional EEMD algorithm. 

To see from Fig. (4), the prominent frequency of AE sig-
nal before de-noising is widely distributed in the Spectrum 
map, the frequency band which contains noise is wide. The 
Spectrum of signal which is de-noised with the improved 
EEMD algorithm is more concentrated than that of the tradi-
tional EEMD algorithm. A certain kind of noise signals in 
some frequency band are restrained. 

 In order to further compare the effect of the two ways in 
de-noising of actual testing signal, SNR, MSE and smooth-
ness are applied in evaluating. The comparison of evaluating 
index is shown in Table 3. 

 
Table 3.  Comparison of Evaluating Index. 

Method SNR MSE Smoothness 

EEMD 12.56 0.00196 0.0178 

Improved EEMD 27.82 0.00083 0.0086 

 
Seen from Table 3, the effect of de-noising calculated by 

improved EEMD algorithm is obviously better than that of 
traditional EEMD algorithm. The SNR is the biggest; the 
MSE is the smallest and the smoothness is the best. The 
above experimental results show the effectiveness of im-
proved EEMD algorithm in noise reduction. 
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(a) Time-domain waveform of original damaged signal. 
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(b) Spectrogram of original damaged signal. 
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(c) Time domain waveform of signal which is filtered by EEMD 

algorithm 
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(d) Spectrogram of signal which is filtered by EEMD algorithm 

0 2 4 6 8
x 10-3

-2000

0

2000

4000

Time（ s）

Am
pl

itu
de

(m
V)

 
(e) Time domain waveform of signal which is filtered by improved 

EEMD algorithm 
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(f) Spectrogram of signal which is filtered by improved EEMD 

algorithm 

Fig. (4). Time-domain waveform and the spectrum of AE signal 
before and after filtering. 
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CONCLUSION 

This paper advocates that the EEMD algorithm is im-
proved by using Cloud Similarity Measurement in selecting 
sensitive IMF components to reconstruct signal. The im-
proved EEMD algorithm has overcome the misjudgment 
made by the original EEMD algorithm during its selecting 
sensitive IMF, and it has improved the accuracy of recon-
structing signal. In simulation experiment, the improved 
EEMD algorithm is better than original EEMD algorithm by 
comparing the SNR with MSE. Two methods of noise reduc-
tion analyze the actual collected damaged AE signal, which 
proves that the improved EEMD algorithm is stronger in 
noise reduction, and it can improve the identification ability 
of the AE signal in rolling bearing. 
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