
Send Orders for Reprints to reprints@benthamscience.ae

1592 The Open Automation and Control Systems Journal, 2015, 7, 1592-1596

 1874-4443/15 2015 Bentham Open

Open Access
Image Based Virtual Dimension Compute Unified Device Architecture of
Parallel Processing Technology
Baozhong Liu* and Xin Xu

Chongqing College of Electronic Engineering, Chongqing, China

Abstract: There are a number of virtual dimension typical targets in hyperspectral image. Determining the virtual
dimension is the first step in many applications of hyperspectral image. In view of the virtual dimension calculation
method of having high time complexity problem, according to the calculation of highly parallel features, in this paper
graphics processing unit (GPU) using the Compute Unified Device Architecture (CUDA) and its extended linear algebraic
toolbox of CULA and Thrust are studied, to realize virtual dimension calculation. The parallel realization of the algorithm
in each step was further optimized to obtain greater acceleration performance. Through the function of CUDA on GPU
parallel computing and CPU non parallel calculation, and experimental verification of the virtual dimension, it was fund
that the CUDA parallel computing can significantly speed up the implementation of the algorithm.

Keywords: Compute unified device architecture, graphics processing unit, harsanyifarrand-chang, virtual dimension,
hyperspectral images.

1. INTRODUCTION

 Because of the complexity and variety of remote sensor
spatial resolution limit and the nature of objects, mixed
pixels exist in the remote sensing image. In order to improve
the precision of remote sensing application, we must solve
the problem of the decomposition of mixed pixels. To
determine the number of endmembers is a prerequisite for
the decomposition of mixed pixels [1, 2]. A virtual
dimension method was proposed by Chang et al. (Virtual
Dimensionality, VD method) (2) which is used to determine
the number of endmembers at present. Given the huge
amounts of data of hyperspectral image, using traditional
methods can’t meet the real-time application need of
hyperspectral image. Analysis of VD algorithm found that its
parallelism is very strong, and thus, very suitable for parallel
processing. From the development of high performance
computing in remote sensing (High Performance Computing,
HPC) to the research implementation has been used to
accelerate the processing of hyperspectral data parallel
computing [3, 4]. The literature [5] proposes meter high
spectral unmixing based on the GPU system. The
endmember extraction algorithm HFC is based on the mixed
programming of CPU and GPU to achieve non-parallel and
parallel computing respectively. Only in finding solution
from the correlation matrix to covariance matrix change, the
parallel library CUDA provides parallel but no real
implementation of HFC. In this paper, the pure GPU version
of the HFC algorithm, compiled with the CUDA Based on
NVIDIA C code, and the optimized operation further
speedup 46.07 times in the NVIDIA GeForce GTX 660Ti
device.

*Address correspondence to this author at the Chongqing College of
Electronic Engineering, Chongqing, China; E-mail: jianqiu27@163.com

2. THE CUDA C PROGRAM

 The computing industry is moving from the “central
processing using only CPU to CPU and GPU and the
development of cooperative processing”. For the creation of
the new computing paradigm (Ying Weida, NVIDIA
&reg; it is the invention of the CUDA (Compute)
Unified Device Architecture, the Compute Unified Device
Architecture), this programming model in the application is
to make full use of the advantages of CPU and GPU
respectively. Now, the framework has been applied to the
GeForce&reg (sperm IT), ION (Yiyang IT), Quadro and
Tesla GPU (graphics processing unit), for application
developers; this is a huge market.
 In the consumer market, almost every important
consumer video applications have to accelerate the use of
CUDA or soon will use CUDA to speed up, including
Elemental Technologies Company, MotionDSP Company
and LoiLo company's products.
 In the research community, CUDA has always been
Repeng. For example, CUDA is now able to use AMBER for
accelerated drug research. AMBER is a molecular dynamics
simulation program; the world has more than 60000
researchers using this program to accelerate drug research in
academia and the pharmaceutical companies.
 In the financial markets, Numerix and CompatibL are
two new counterparty risk applications released to support
CUDA and achieve 18 times faster computing. Numerix is
widely used in nearly 400 financial institutions.
 The wide application of CUDA gives rise to GPU
computing i.e. Tesla GPU. The global fortune five hundred
companies now have installed more than 700 GPU clusters.
These enterprises are involved in various fields, such as the
energy field of the J Len Bbe Semyon and Chevron and
Bank of Paris.

Image Based Virtual Dimension Compute Unified Device Architecture The Open Automation and Control Systems Journal, 2015, Volume 7 1593

 With the Microsoft Windows 7 and Apple's Snow
Leopard operating system, GPU computing will become a
mainstream. In the new operating system, GPU will not only
be the graphics processor, it will also become a common to
parallel processor that can use all applications.
 CUDA is a maker of graphics chips for NVIDIA
development, on the GPU development platform for general
computing purpose [6]. NVIDIA provides a simple and rapid
method used in the preparation of CUDA based on GPU
code, which is a kind of advanced language based on C: C
for CUDA, referred to as CUDA C; It is NVIDIA extensions
and restrictions of C language, that support the majority of C
language instruction and grammar [7].
 A CUDA C program usually consists of two parts: one
part in the host (CPU) for the order of execution, another
part of the equipment (GPU) starts thousands of threads
executed in parallel. NVIDIA Company developed the C
compiler (NVCC) during compilation to distinguish these
threads. The device is mainly based on some kernel function,
part of which is used to complete the whole process; each
kernel function will usually generate a large number of
threads to use parallel data [8]. Usually a large project will
start with a number of kernel functions in different stages of
the completion of the corresponding calculation. If a kernel
does not have the data dependency for starting its work, the
program can only start sequencing after the completion of
the execution of all kernels so that all the results will be
returned to the host. A grid sequence generates each of
which starting a kernel function (grid). The grid will be
organized into the thread block (block), the same grid block
contains the same number of threads. The grid and the
dimensions of the block are set through the configuration
parameters.

3. VIRTUAL DIMENSION CALCULATION METHOD

 The characteristics of hyperspectral image covariance
matrix KL!L and RL!L autocorrelation matrix set of values

!1 " !2 " ...!L and {!1 " !2 " ...!L} respectively, where L
denotes the number of bands of hyperspectral image. To
determine the number of problem endmembers, a dualistic
problem testing hypothesis can be formulated as:

H 0 : z1 = !1 " !1 = 0,H1 : z1 = !1 " !1 > 0 (1)

 If H1 is true, in addition to the noise and the signal
source (endmembers in hyperspectral images), it suggests
feature related matrix. The difference between the !1 and
!1 as H 0 and H1 is based on the conditional probability,
conditional probability density function corresponding to:

p0 (zl) = p(zl H 0) ! N(0," zl
2), p1(zl) = p(zl H1) ! N(µl ," zl

2)
l = 1,...,L

 (2)

 In the formula, µl is unknown. When the image of
sample N is large enough, the variance is
! zl
2 = 2"1

2 / N + 2"1
2 / N . The definition of false alarm rate

formula for PF = P0 (z)dz
!1

"

and the detection rate of

PD = P1(z)dz
!1

"

.

 The VD algorithm is described as follows:

1) Calculate the covariance matrix of the image data of
 and correlation matrix;

2) calculate the covariance matrix and correlation matrix
of the value sets, denoted as

and , where is the number
of spectral bands;

3) Approximation in obtaining spectral image noise

variance in 1 Band ,
where N denotes the number of elements in the
image;

4) calculate the probability density function

5) The false alarm probability is given according to the
, the false alarm rate and the detection rate is

defined to obtain the value type;

6) Based on the Neyman-Pearson theory, as the
 indicates a signal source; the L band

is used to judge such a detection, which finally
obtains the total signal source as the value of VD.

4. PARALLEL IMPLEMENTATION OF CUDA
BASED ON HFC

 The realization process is shown in Fig. (1) in parallel
CUDA based on HFC.
 The host is responsible for the original hyperspectral data
input to the device and removing the calculation results from
the device, whereas calculation of the whole process
occurred in the terminal equipment. This algorithm defines 4
kernel equipments in the end. Because each kernel function
is data dependent so the serial mode in order to start the
realization process, is as follows:
1) For first kernel to complete the correlation matrix and

the covariance matrix of the basic linear algebra,
using the CUDA development kit that provides a set
of procedures (CUDA Basic Linear Algebra
Subprograms, CUBLAS) cublas Sgemm function in
[9];

2) Results obtained from the first kernel will be used as
input for the second kernel to find the characteristics
of the two matrix, which were used in the other
function based on CUDA to realize the extension of

LLK × LLR ×

}...{ 21 Lλλλ ≥≥
}...{ 21 Lλλλ ≥≥ L

NNzl /2/2 2
1

2
1

2 λλσ +=

2

2

2

0
2

1
)(zl

lz

zl

l ezp σ

σπ

−

=

FP

1τ

111 τλλ >−

1594 The Open Automation and Control Systems Journal, 2015, Volume 7 Liu and Xu

linear algebra tool box (CUDA Linear, Algebra,
CULA) CUDA Device Sgeev [10] for calculating the
characteristic value;

3) Next to the correlation matrix value and covariance
matrix eigenvalue sorting, is the use of the sort
function (CUDA development tool in the Thrust
package) [11], and this function can be transmitted
into the CPU operation according to the attribute
parameters (parameters of the allocation of memory
on the host side) or GPU (end of operation equipment
in the parameters of the distribution);

4) It’s because of the above 3 kernels are correct and
effective, and function of packaging is highly
optimized; so, it can guarantee the results. Finally, a
kernel VD is calculated; e.g. if the number of
eigenvalues is less than 512 then just open a block,
parallel with each thread.

 Finally, compare, and then use the API atomic Add
function to meet the conditions to accumulate the results.

5. EXPERIMENTAL RESULTS AND ANALYSIS

 The HFC algorithms based on CUDA and C standard
were used in a 350 * 400 * 50 cuprite hyperspectral image
and a 120 x 250 x 124 crops of hyperspectral image, Figs. (2,
& 3) respectively, show cuprite and crop hyperspectral
image false color synthesis.
 The test platform is Windows-7 32 Intel core i5-3580p
and NVIDIA GTX 660Ti and CUDA 5.5 development kits,
finally achieved the expected value of VD on two pieces of
hyperspectral images. The experimental results are shown in
Table 1, we can see that the HFC algorithm based on GPU
compared with the standard C HFC algorithm to deal with
two different hyperspectral images, have different degrees of
speedup. Because both the HFC algorithm based on the

Fig. (2). Cuprite hyperspectral false color composite image.

Fig. (3). Crop hyperspectral false color composite image.

Fig. (1). HFC algorithm flow chart based on CUDA architecture.

Image Based Virtual Dimension Compute Unified Device Architecture The Open Automation and Control Systems Journal, 2015, Volume 7 1595

standard C, and HFC version of the GPU algorithm based on
the first need to read data, pre reading data, and the
consumed time is the same, the following algorithm gives
the total speedup time respectively 27.42 and 46.07; time of
each part of the HFC algorithm, CUDA and the C are shown
in Table 2. We can find that the Cuprite calculates the
correlation matrix and the covariance matrix of the longest,
and crop map calculates the characteristic value of the most
time-consuming operation, which is related to the size
dimension of hyperspectral image transmission. Also the two
image data processing also occupied a considerable amount
of time, to help further analyze and optimize the procedures
and eliminate performance bottlenecks of these data
analyses. Two kinds of parallel HFC algorithms with a high
spectral image of each part’s time, are shown in Table 3.
Table 3 lists the comparison of each part of the algorithm for
solving the consumption of virtual dimension parallel
algorithm proposed in this paper and given in ref. [5] with a
350*350 *188 hyperspectral image data.
 Because in this algorithm each step is done in parallel at
the device end [5], only the first step solves the HFC parallel
implementation, subsequent executions are host serial
implementations. So in the Table 3, there is no specific time
given for each step of operation.

CONCLUSION

 By using the method of parallel technology, the
traditional hyperspectral data processing is modified to
accelerate data processing to satisfy a real-time hyperspectral
application trend. This paper discusses the technology based

on the CUDA framework to complete the parallel
implementation of a virtual dimension algorithm, and CPU
algorithm based on the comparison of serial. The
experimental data show that, for large data computing
intensive operation, the parallel processing of GPU is
compared with CPU serial processing in the speed that will
accelerate orders of magnitude. The program design of GPU
involves the communication of CPU and GPU, initialization
of fixed time overhead, and calculation precision of
intermediate results, and when designing the algorithm,
should be fully considered.

CONFLICT OF INTEREST

 The authors confirm that this article content has no
conflict of interest.

ACKNOWLEDGEMENTS

 This work is supported by the Chongqing Education
Commission scientific research topic “Research on landslide
monitoring and early warning system based on Wireless
Sensor Network” the project number: kj132204.

REFERENCES
[1] B. Luo, J. Chanussot, S. Douté, and L. Zhang, “Empirical auto-

matic estimation of the number of endmembers in hyperspectral
images,” Geoscience and Remote Sensing Letters, IEEE, vol. 10,
pp. 24-28, 2013.

[2] C.-I. Chang, and Q. Du, “Estimation of number of spectrally
distinct signal sources in hyperspectral imagery,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 42, pp. 608-
619, 2004.

Table 1. The experimental results of two hyperspectral images.

Graphics Category The CPU Run Time Running Time/s The CPU Run Time Running Time/s Acceleration Ratio

Cuprite 5.43 0.198 27.42

Crop figure 6.45 0.14 46.07

Table 2. Parts of the CUDA C implementation algorithm of HFC time-consuming.

Graphics Category
Algorithm Phase

The Covariance Matrix and
Correlation Matrix

To Solve the
Eigenvalue

Sorting Characteristic
Value

Binary Hypothesis
Test

The Data
Transfer

Cuprite 74.22 ms 5.85 ms 1.187 ms 0.010 ms 16.72 ms

Crop figure 42.10 ms 85.24 ms 2.038 ms 0.011 ms 10.61 ms

Table 3. Two parallel HFC algorithm calculating the same in all parts of hyperspectral image time-consuming.

The Algorithm Contrast
Algorithm Phase

The Covariance Matrix and
Correlation Matrix

To Solve the
Eigenvalue

Sorting Characteristic
Value

Binary Hypothesis
Test

The Data
Transfer

Algorithm in this paper 167.76 ms 121.47ms 1.272 ms 0.011 ms 44.487 ms

Algorithm in the literature [5] 246.00 ms ̶ ̶ ̶ ̶

1596 The Open Automation and Control Systems Journal, 2015, Volume 7 Liu and Xu

[3] Z. HaiJun, C. ShengBo, Z. XuQing, and W. YaNan, “GPU-Based
denoising to remotely sensing images,” Urban Geotechnical
Investigation & Surveying, vol. 2, p. 034, 2010.

[4] Y. Luo, K. Guo, and S. Zhao, “Minimum noise fraction of
hyperspectral remote sensing in parallel computing based on
GPU,” Journal of Sichuan Normal University (Natural Science),
vol. 3, p. 036, 2013.

[5] S. Bernabe, S. Sanchez, A. Plaza, S. Lopez, J. A. Benediktsson, and
R. Sarmiento, “Hyperspectral unmixing on GPUs and multi-core
processors: a comparison,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 6, pp. 1386-
1398, 2013.

[6] C. Nvidia, NVIDIA Compute Unified Device Architecture
Programming Guide Version 2.0, NVIDIA Corporation, Santa
Clara, CA, USA, 2010, pp. 10-12.

[7] D. Qiu, GPGPU: The Art of Acceleration, Mechanical Industry
Press: Beijing, 2012, p.111.

[8] D. B. Kirk, and W. H. Wen-mei, Programming Massively Parallel
Processors, Tsinghua University Press, Beijing, 2010, pp. 32-78.

[9] C. Nvidia, Cublas Library User Guide, NVIDIA: Santa Clara,
2013, pp. 67-69.

[10] C. Nvidia, CULA Reference Manual, NVIDIA: Santa Clara, 2012,
pp. 17-20.

[11] C. Nvidia, Thrust Quick Start Guide, NVIDIA: Santa Clara, 2013,
p. 11.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Liu and Xu; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-commercial
use, distribution and reproduction in any medium, provided the work is properly cited.

