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Abstract: In allusion to hyperspectral remote sensing image denoising problem, the article proposes an image denoising 
algorithm based on nonlocal low rand dictionary learning. The basic thought of the algorithm is to make use of the strong 
correlation among various wavebands of the hyperspectral remote sensing image and meanwhile combine the nonlocal 
self-similarity and the local sparseness of an image to improve denoising performance. Firstly, combine the strong correla-
tion of waveband images, the nonlocal self-similarity and the local sparseness to establish nonlocal low rank dictionary 
learning model. Then, adopt iterative method to solve the model to obtain redundant dictionary and sparse representation 
coefficient. Finally, adopt redundant dictionary and sparse representation coefficient to recover the image. Compared with 
existing advanced algorithms, due to the adoption of such strong correlation among various wavebands of the hyperspec-
tral image, the algorithm mentioned in the article can well reserve the detailed information of the hyerspectral remote 
sensing image and improve visual effect. Meanwhile, the test result has verified the effectiveness of the algorithm men-
tioned in the article. 
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1. INTRODUCTION 

 Able to accurately and comprehensively describe ground 
object characteristics, hyperspectral remote sensing image is 
widely applied in agricultural field, geological prospecting, 
environmental monitoring, military investigation, etc. How-
ever, the severe pollution on hyperspectral remote sensing 
image during the acquisition and transmission processes can 
significantly influence the subsequent matching, integration, 
classification, etc [1]. Therefore, it is importantly significant 
to research hyperspectral remote sensing image denoising 
problem [2, 3]. 
 Under the assumption that the width of the hyperspectral 
remote sensing image space is W, the height is H and the 
wavebands dimension is S and the image noise is considered 
as additive noise [4], so the observation model is: 

= +Y X Ε              (1) 

 Therein, W H SR × ×∈Y  is the image polluted by noise, 
W H SR × ×∈X  is original image, and W H SR × ×∈Ε  is additive 

noise [5]. 
 The existing hyperspectral remote sensing image de-
noising algorithms are basically divided into two types: in-
dependent waveband image denoising algorithm and simul-
taneous waveband image denositing algorithm. Therein, the 
independent waveband image denoising algorithm includes 
NLM algorithm, BM3D algorithm, K-SVD algorithm, 
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NCSR algorithm, etc. [6-9], and the basic thought thereof is 
to regard the hyperspectral images for different wavebands 
as independent images and then adopt existing denoising 
algorithm. Specifically, NLM algorithm and BM3D algo-
rithm adopt the nonlocal self-similarity characteristic of the 
non-adjacent part in the image for denoising, K-SVD algo-
rithm adopts the local sparseness characteristic of the image 
for denoising, and NCSR adopts both the nonlocal self-
similarity and the local sparseness for denoising [10-12]. But 
it is usually difficult for these algorithms to have good per-
formance in practical application, because the internal char-
acteristics of the hyperspectral remote sensing image are 
neglected in these algorithms. Additionally, the simultaneous 
waveband image denositing algorithm includes NLM3D 
algorithm and BM4D algorithm [13, 14], and the basic 
thought thereof is to adopt the internal characteristics of the 
multi-band images of the hyperspectral remote sensing im-
age for denoising all waveband images simultaneously. 
NLM3D algorithm and BM4D algorithm are expanded re-
spectively from NLM algorithm and BM3D algorithm, and 
aim at adopting the three-dimensional nonlocal self-
similarity of the hyperspectral remote sensing image for de-
noising. Compared with independent waveband image de-
noising algorithms, these algorithms have better effect; but 
the strong correlation among the waveband images of the the 
hyperspectral remote sensing image is not considered, so 
these algorithms still can be further improved. 
 In consideration of adopting the strong correlation among 
various waveband images of the hyperspectral remote sens-
ing image and meanwhile combining the nonlocal self-
similarity and the local sparseness of the image itself, the 
article proposes an image denoising algorithm based on non-
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local low rank dictionary learning: firstly, establish nonlocal 
low rank dictionary learning model; then, construct corre-
sponding algorithms to solve the model to realize image de-
noising. Due to the adoption of such strong correlation 
among various waveband images, the algorithm mentioned 
in the article can effectively reserve the texture and the de-
tailed information of various waveband images [15-17]. 

2. DICTIONARY LEARNING 

 Firstly, simply review the dictionary learning technology. 
For a given group of samples   !=(!1,!,!K )"Rn#K , the pur-
pose of dictionary learning is to find out the redundant dic-
tionary n mR ×∈D  in order to sparsely express each sample as 
spares representation matrix 1 2=( , , , ) m K

K R ×∈Γ Γ Γ ΓL , and 
this dictionary learning problem is expressed as: 
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 The solving methods for dictionary learning problem (2) 
usually include MOD algorithm, K-SVD algorithm or online 
dictionary learning algorithm, etc. 
 The denoising algorithm in the article is as follows: first-
ly, establish the nonlocal low rank dictionary learning model 
for this algorithm; then, construct corresponding algorithms 
to solve the model to obtain redundant dictionary and 
sparseness representation coefficient; finally, adopt the re-
sults to recover the image [18, 19]. 

2.1. Nonlocal Low Rank Dictionary Learning Model 

 The data structure of the hyperspectral remote sensing 
image is a cube. It is assumed that the image includes  N
full-waveband cube data (hereinafter referred to as cube) of 

which the size is  n ! n ! S  and which are divided by S
waveband images from the hyperspectral image, namely 

    pn (n = 1,!, N ) , then the dictionary learning can be ex-
pressed as: 
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 Therein, 
   pn,s !RnS  is the image block vector expression 

form corresponding to the  s -th waveband in the  n -th cube, 
D is the redundant dictionary and 

  
! n,s  is the sparseness rep-

resentation coefficient [20]. 

 In consideration of adopting nonlocal self-similarity, K 
mean value clustering algorithm is used to divide  N cube 
data into  K types, then the cube data in each type is used to 
learn to obtain sub-dictionaries, and then the sub-dictionaries 
are used to express the data in this type. If the cube data in-

cluded in each type is  Mk
, then the nonlocal dictionary 

learning mode of the k -th type can be expressed as: 
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 Therein, 
   pm,s

(k )  is the image block vector corresponding to 

the  s -th waveband of the  m -th cube in the  k -th type,   Dk  

is the sub-dictionary of the k -th type, and 
  
!m,s

(k )  is corre-

sponding sparseness representation coefficient. Since 
   pm,s

(k )

can be expressed by   Dk , it is indicated that 
  
!m,s

(k )

0
" T can 

be met. Therefore, the nonlocal dictionary learning model (4) 
of the  k -th type is equivalent to: 
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 Since the waveband images of the hyperspectral image 
have strong correlation, the coefficient matrix 

   
!m

(k ) = !m,1
(k ) ,!,!m,s

(k )"# $% corresponding to the full-waveband 

data of the n -th cube is a low rank matrix. Add the low rank 

constraint of matrix   !m
(k ) to the nonlocal dictionary learning 

model () to obtain the nonlocal low rank dictionary learning 
model as follows [21]: 
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 Therein, !  is weighted parameter and 
 rank •( ) is matrix 

rank. The matrix rank is usually approximated by nuclear 

norm 
 
•

*
(sum of matrix eigenvalues), so the nonlocal low 

rank dictionary learning model is equivalent to: 
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 The model is simplified as: 
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 In the matrixes 
    
pm

(k ) = pm,1
(k ) ,!, pm,S

(k )!" #$  and

   
!m

(k ) = !m,1
(k ) ,!,!m,S

(k )"# $% ,    pn
(k ) is the full-waveband data of 

the  m -th cube in the  k -th type, and   ! n
(k ) is the correspond-

ing coefficient matrix. 
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2.2. Solving of Nonlocal Low Rank Dictionary Learning 
Model 

 The nonlocal low rank dictionary learning model is 
solved basically through two iteration steps: the first step is 
to fix the sub-dictionary   Dk and update coefficient matrix 

  !m
(k ) ; the second step is to fix coefficient matrix   !m

(k ) and 

update sub-dictionary   Dk . 

 Fix the sub-dictionary   Dk  to convert the full-waveband 

data of each cube    pm
(k ) (   m = 1,2,!, Mk ) into minimization 

problem 

( )

2( ) ( ) ( )

*
min

2k
m

k k k
m k m mF

λ − +
α

p D α α
          (9) 

 Then, the optimization problem is actually converted into 
minimization problem. After auxiliary matrix !  is intro-
duced, formula (9) is equivalent to  
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 The corresponding augmented Lagrange function is  
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 Therein,  Z  is Lagrange multiplicator and  µ > 0  is fixed 
constant. Then, the minimization problem of formula (11) is 
converted into the minimization problem of Lagrange func-
tion. 
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 The rapidly converged alternating direction method 
(ADM) is used to solve the above corresponding optimiza-
tion problem, with the specific steps as follows. The follow-

ing iteration format of   !m
(k ) is solved through singular value 

thresholding (SVT): 
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 The coefficient matrix   !m
(k )  can be obtained through the 

iteration of formulae (13), (14) and (15). 

 Through coefficient matrix   !m
(k ) , formula (15) is into: 
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The analytical solution expression of above problem is: 
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 Through the above two steps of iterations, obtain the sub-
dictionary  Dk

of the  k -th type and the coefficient matrix

  !m
(k ) of the full-waveband data    pm

(k )  of the  m -th cube. Simi-
larly, obtain the sub-dictionaries of all types and the coeffi-
cient matrix corresponding to the full-waveband data belong-
ing to the corresponding type of the cube in order to obtain 
the sub-dictionary   Dn

 corresponding to full-waveband data 

  pn  of each cube and the corresponding coefficient matrix 

 ! n . 

2.3. Hyperspectral Remote Sensing Image Denoising 

 According to section 2.2, obtain the sub-dictionary   Dn

corresponding to the full-waveband data   pn  of each cube 

and the corresponding coefficient matrix  ! n  to estimate the 

full-waveband data    p̂n = Dn! n
 of each recovered cube. Joint 

the estimated full-waveband data    p̂n  of the cubes according 
to the positions thereof and average the overlap parts of the 

cubes to obtain denoised image  X̂ . 

3. DETAILED STEPS AND ANALYSIS OF ALGO-
RITHM 

3.1. Detailed Steps of Algorithm 

 The section will describe the detailed steps of the algo-
rithm in the article, as shown in algorithm 1. 
Algorithm 1: denoising algorithm based on nonlocal low 
rank dictionary learning 
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Algorithm input: noisy hyperspectral image W H SR × ×∈Y ; 

Initialization: initial dictionary (0)D ;  

Step 1 Divide hyperspectral image into  N  mutually over-
lapped cube full-waveband data   pn{ } ; 

Step 2 Divide all   pn  into  K  types through K-average value 
clustering algorithm; 

Step 3 Solve the nonlocal low rank dictionary learning mod-
els (9) of  K types to obtain the coefficient matrix ! n  of   pn  

and the corresponding sub-dictionary  Dn ;  

Step 4 Estimate the full-waveband data    p̂n = Dn! n  of each 
cube, joint them according to the positions thereof and aver-
age the overlapped parts of the cubes to recover the image

  X̂ . 

Output result: denoised image  X̂ . 

Note of algorithm 1: 

(a) Selection of initial dictionary  D(0) : such rapidly realized 
data dictionary as DCT dictionary and wavelet dictionary 
shall be selected as initial dictionary (0)D .  

(b) Selection of parameter! : regard the nonlocal low rank 
dictionary learning problem as multiobjective optimization 
problem in order to obtain the parameter through ! - method. 

3.2. Calculation Complexity Analysis 

 The calculation quantity of the algorithm in the article is 
mainly from solving the nonlocal low rank dictionary learn-
ing model. The calculation quantity of using AMD algorithm 

to solve formula (9) is
   

O nSM K( )3( )  and the calculation 

quantity of the inversion of formula (16) is also

  
O nSM K( )3( ).   N times of solving processes are needed, so 

the total calculation quantity is
  
O N nSM K( )3( ) . 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 The section will verify the algorithm performance 
through experiments and compare K-SVD algorithm and 
BM4D algorithm. Experiment 1: compare the visual effects 
of the actual hyperspectral noise images after denoising; Ex-
periment 2: compare the visual effects of the images artifi-
cially added with Gaussian noise after denoising; Experiment 
3: present the influence of different noise mean square errors 
on algorithm performance; Experiment 4: present the influ-
ence of number of types on algorithm performance; Experi-
ment 5: present the influence of number of overlapped pixels 
on algorithm performance. 
 Hyperspectral remote sensing image Indian Pines and 
Washington DC Mall are selected for the following experi-
ments, wherein the image of Indian Pines includes 220 wave-
bands and the image of Washington DC Mall includes 191 
wavebands, the cube size is 8!8! 7 , the overlapped pixels of 
adjacent cubes are 7, the number of types is   K = 50 , and the 
number of atoms is 512. All experiments are carried out in the 
computer with CPU of dual-core 3.0GHz and memory of 4Gb, 
and the algorithm reestablishment performance is measured by 
peak signal-to-noise ratio (PSNR). 

Experiment 1: Compare with the Visual Effect of Actual 
Image 
 This experiment aims at comparing the denoising visual 
effects of three algorithms through actual image denoising. 
Indian Pines data are adopted and the effect of the denoised 
images of two representative wavebands ---- waveband 1 and 
waveband 109 is compared in (Fig. 1). According to (Fig. 1), 
compared with K-SVD algorithm and BM4D algorithm, the 
image denoised through the algorithm in the article is more 
detailed and clearer. 

 
(a) Original Image (b) K-SVD Algorithm (c) BM4D Algorithm (d) Algorithm 

Fig. (1). Real hyperspectral remote sensing image to compare the visual effect of noise. 
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Experiment 2: Compare with the Visual Effect of the 
Gaussian Noise Image after Denoising 

 This experiment aims at denoising the image with Gauss-
ian noise and accordingly comparing the denoising visual 
effects of the three algorithms. Washington DC Mall data 
without noise are added with Gaussian noise, the noise mean 
square error is taken as ! = 30 . The denoising effects of the 
images of two wavebands (waveband 1 and waveband 100) 
are compared in (Fig. 1). According to (Fig. 2), compared 
with other two algorithms, the image denoised through the 
algorithm in the article is more detailed and clearer, and the 
visual effect is approximate to the original image. 

Experiment 3: Influence of Different Noise Mean Square 
Errors on Algorithm Performance 
 The experiment aims at giving PNSR value of the algo-
rithm under different noise mean square errors. The hyper-
spectral remote sensing image in Experiment 2 is added 
with Gaussian noise, and the comparison of PSNR values 
(for waveband 1 and waveband 100) of K-SVD algorithm, 
BM4D algorithm and the algorithm in the article under dif-
ferent noise mean square errors are as shown in (Table 1). 
According to (Table 1), due to the comprehensive consid-
eration of the strong correlation among the images of dif-
ferent wavebands, compared with K-SVD algorithm and 
BM4D algorithm, the algorithm in the article has signifi-
cantly improved PSNR value and also has strong noise 
adaptability. 

Experiment 4: Influence of Number of Overlapped Pixels 
of Cube on Algorithm Performance 

 The experiment aims at showing the influence of the 
number of overlapped pixels of cube full-waveband data 
(abbreviated as cube) on algorithm performance. The hyper-
spectral remote sensing image in Experiment 2 is added with 
Gaussian noise, the mean square errors are respectively as 
! = 20 and! = 30 , the number of overlapped pixels of cube 
is changed from 0 to 7, and other simulation conditions are 
not changed. PSNR value (mean value of all waveband im-
ages) of the algorithm in the article when the number of the 
overlapped pixels is changed is as shown in (Fig. 3). Accord-
ing to (Fig. 3), along with the increased number of over-
lapped pixels, the algorithm performance is gradually im-
proved, and when the number of overlapped pixels is more 
than or equal to 6, the algorithm performance is stable. 

Experiment 5: Influence of Number of TypesK on 
Algorithm Performance 

 The experiment aims at showing the influence of the 
number of types on algorithm influence. The hyperspectral 
remote sensing image in Experiment 2 is added with Gaussi-
an noise, the mean square errors are respectively as! = 20
and ! = 30 , the number of types are from 10 to 100, and 
other simulation conditions are not changed. PSNR value 
(mean value of hyperspectral remote sensing image of all 
wavebands) of the algorithm in the article when the number 
of types is changed is as shown in (Fig. 4). According to 

 
Fig. (2). Comparison of visual effects of gaussian noise eliminated images. 

 
Table 1. Comparison of PSNR values of three algorithms. 

σ  
Waveband 1 Waveband 100 

K-SVD Algorithm BM4D Algorithm Algorithm in the Article K-SVD Algorithm BM4D Algorithm Algorithm in the Article 

20 29.19 29.81 31.13 30.34 31.03 33.26 

30 27.28 27.31 29.50 29.03 29.21 31.49 

50 24.33 24.82 26.78 26.59 26.29 29.76 

100 22.17 22.79 24.86 22.82 22.75 25.58 
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(Fig. 4), when the number of types is between 40 and 80, the 
algorithm in the article can obtain relatively good perfor-
mance, and the small number of types will cause the insuffi-
cient similarity of the cubes of the same type while the large 
number of types will cause insufficient training samples. 
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Fig. (3). Influence of overlapped pixels of cube. 
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Fig. (4). Influence of number of cube types. 

CONCLUSION 

 In allusion to hyperspectral remote sensing image de-
noising problem, the article proposes an image denoising 
algorithm based on nonlocal low rand dictionary learning. 
The core thought of the algorithm is to make use of the 
strong correlation among various waveband images of hy-
perspectral remote sensing image and meanwhile combine 
the nonlocal self-similarity and the local sparseness of an 
image. Due to the adoption of such strong correlation of hy-
perspectral image, the algorithm mentioned in the article has 
relatively good effect. The experiment results show that 
PSNR value of the image recovered by the algorithm in the 
article is more than that of existing advanced algorithms and 

can well reserve the detailed information of the image and 
improve visual effect. 
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