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Abstract: Oil-spills detection is an important problem in many applications such as communication and navigation. Many 
methods have been presented for this problem. The Maximum Likelihood (ML) is one of the good solutions. But, in tradi-
tional algorithms for ML nonetheless, the computational load is very heavy and multivariate nonlinear maximization 
problem is serious. To deal with these problems, this paper describes an application of neural network (NN) for obtaining 
the global optimal solution of ML DOA estimation. It overcomes the local optima problem existing in some ML DOA es-
timation algorithms and improves the estimation accuracy. The computation complexity is modest. 
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1. INTRODUCTION 

In many applications such as communication and naviga-
tion, the estimation of target direction-of-arrival (DOA) is 
one of the important problems. Lots of techniques for this 
problem have been proposed over the past decades. The 
Maximum Likelihood technique is one of the first to be in-
vestigated and best in theory [1]. Nonetheless, because of the 
high computational load of the multivariate nonlinear maxi-
mization problem involved, it could not become popular. 
Instead, suboptimal method with reduced computational load 
has governed the field. The better known ones are the MU-
SIC method of Schmidt [2], and the minimum norm method 
of Reddi [3] and Kumaresan and Tufts [4]. 

However, the ML method over-performs other methods 
in many aspects [5], especially, when the target echo is very 
small, or when the noise or clutter is very strong. In fact, 
many techniques cannot deal with the circumstances of co-
herent signals. 

Many researchers have proposed various algorithms to 
maximize the likelihood function, wanting to guarantee 
global convergence within less computing time. Alternating 
projection method [6], simulated annealing algorithm [7], 
grid search approach, data-supported grid search [8], can 
approximately obtain the ML estimation. But most of them 
cannot guarantee global convergence in general case [9]. 

In this paper, a global optimization of neural network [10] 
is developed to search for the nonlinear global optimization 
solution of the maximum likelihood. And then, we study the 
performance of NN algorithm.  
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This paper is organized as follows. Section 2 presents the 
problem of target direction-of-arrival estimation. In section 
3, we propose the general neural network algorithm. And 
then, in section 4 the NN algorithm is applied to DOA esti-
mation problem. Section 5 gives some simulation to verify 
the efficiency of our algorithm. Section 6 gives a conclusion 
to the whole paper. 

2. PROBLEM FORMULATION 

Consider an antenna array which is constituted of M sen-
sors with arbitrary locations and arbitrary directional charac-
teristics. 

It is assumed that L narrow-band plane waves arrive on 
the antenna array from L locations θ1 , θ2 , …, θ L. 

In array signal processing techniques, narrow-band in the 
sensor array context means that the propagation delays of the 
signals across the array are much smaller than the reciprocal 
of the bandwidth of the signals. So, it follows that the com-
plex envelopes of the signals received by the array can be 
expressed as: 

  
X (t) = a(!k )

K=1

L

" sk (t)+ n(t)  (1) 

where 
Where X(t) is the M ×1 vector 

   X (t) = [x1(t),x2(t),!,x M (t)]T
 (2) 

In formula (2), T denotes the transpose. And a(θk) is the 
steering vector of the array toward direction θk. 

   a(!k ) = [a1(!k )e" j#0$1!k ,!,aM (!k )e" j#0$ M!k ]T
 (3) 
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   n(t) = [n1(t),n2(t),!,nM (t)]T
 (4) 

Here: 
xi(t) =the signal received by the ith sensor . 
sk(t) =the signal emitted by the kth source. 
ai(θk) =the amplitude response of the ith sensor to a 

wave-front impinging from location θk 
ni(t) =the noise at the ith sensor. 
Then, consider the clutter signal, it is similar to target 

echo. But it is a random signal which can be described by a 
coefficient ζJk. 

  
C(t) = ! Jk a("k )

K=1

L

# s
 

(5) 

So, the signal received can be expressed as: 

  
X (t) = a(!k )

K=1

L

" sk (t)+C(t)+ n(t)
 

(6) 

The vector of the received signals x(t) can be expressed 
more compactly as: 

  X (t) = A(!)s(t)+ n(t)  (7) 

Where A(Θ) is the M×L matrix of the steering vectors 
A(Θ)=[a(θ1), …, a(θL)] . And s(t) is L×1 vector of the signals 
which can be expressed as s(t)=[s1(t),… , sL(t)]. 

The localization of target problem is to estimate the loca-
tions θ1, θ2 ,…, θL of the sources from N target signal samples 
("snapshots") of the received signals. The maximum likeli-
hood estimation of the source localization problem is derived 
as[6]. 

  

!̂ = arg{max
!

L(!)}

= arg{max
!

tr(PA(!)R)} 
(8) 

Where tr[ ] is the trace of the bracketed matrix, 
PA(Θ)=A(Θ)(AH(Θ)A(Θ))-1AH(Θ) is the projection operator 
onto the space spanned by the columns of the matrix A(Θ). 

Where, 
  
R = 1

N
X(t i )

i=1

N

! X H (t i )  is the sample covariance 

matrix, and H denotes the Hermitian conjugate. In this paper, 
we use the proposed neural network algorithm as the optimi-
zation tool, searching for the global optimal solution. 

3. NEURAL NETWORK ALGORITHMS 

The neural network is a kind of Artificial Intelligence 
which is a good tool to solve non-linear problem in many 
applications. The neural network filter consists of a feed-
forward neural network with two or more layers. Neurons, 
which are computation element in neural network, in any 
layer, are connected only to neurons in the next layer. The 
input to the neural network consists of raw signal target val-
ues. We use the neural network like a moving window trans 
 

form which is ordinary in space time signal processing tech-
nique. Operation of the neural network filter over a return 
signal is similar to the operation of a spatial domain filter. 
The neural network as a filter has recently been applied to 
scene segmentation and wafer inspection, but has not been 
applied in the DOA estimation domain. The neural network 
filter is convolved with the signal returning to produce out-
put at each detector. The neuron output is scaled across the 
threshold level range. The neural network filtering thus pro-
duces a decision level response map filter. The filter re-
sponse is supposed to be high for target pixels and low for 
background pixels. The filtered image can be threshold to 
obtain the intermediate object location map. False alarm 
rates can be controlled by threshold selection strategies, low 
thresholds being favored at the detector stage so as not to 
preclude any targets from subsequent stages. The require-
ments for the detection stage are a high detection rate with a 
low false alarm rate. 

The Hopfield model neural network is a single layer of 
fully inter-connected neurons that update their outputs upon 
sampling the outputs of other neurons in the network, via the 
synaptic link. 

The synaptic link between the ith and the jth neurons, in 
a network of P neurons, form a symmetric matrix T which 
elements obey the following formula: 

  
tij = !t ji; tii = 1  (9) 

The network changes are stated using the following dy-
namic equation: 

 
Ci

dui

dt
= kij

j

k

! wj + Ni

 
(10) 

 Where Matrix C is the input capacitance of the ith neuron, 
it is the external input, and is the internal state of the neuron. 
The output state Vi of the neuron is given by the following 
nonlinear transformation: 

  

vi = gi =
1

1+ e
!

vi
"

for vi #{!1,+1}  

(11) 

where gi is the sigmoid transfer function of the ith neuron, 
and 1/η is the gain of the neuron. The network dynamic 
equation defines a complex system, but it is possible to find 
an energy function satisfying the Lyapunov's stability Crite-
rion 

  
E = ! 1

2
wij"" viv j ! vi" Ii  

(12) 

Under above conditions, the Hopfield model implements 
a gradient descent algorithm, and given the complex multi-
modal cost function of the feature extra problem, the net-
work is liable to find a local rather than the global minimum. 
To overcome this problem and increase the probability of 
finding the global minimum, some modifications have been 
proposed. 
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The decision space of a P -neuron network is represented 
by a P -dimensional hypercube D([0,1]p). Each corner of this 
hypercube represents a possible digit output state of the net-
work; one of these corners represents the solution state, and 
one or more of the other corners represents the local-minima 
of the energy function. The network starts from some initial 
state within D([0,1]p) and develops toward one of the corners 
that corresponds to minimum. 

For a digit neuronal trader function, the global minimum 
must be one of the comers of the hypercube. However for an 
analog network with a sigmoid transfer function, due to the 
reason of an analog transfer function represent a perturbation 
to the energy function, the global minimum must not be one 
corner of the hypercube. 

Yet provided that the neuronal gain is high enough to 
eliminate the perturbation of the digit energy function, the 
analog network can be replaced by digital network. 

Therefore the global minimum may be thought to be one 
of the corners of hypercube. We can calculate the energy of 
all m e m on the hypercube directly so long as the P is not 
very large. Then after the computation of the energy of all 
formula, the P is the global minimum which we need. Here 
we call it Energy Comparing method (ECM).The advantage 
of ECM that any other modification doesn't pose that is it 
ultimates the local minimum completely. And the computa-
tional complexity does not increase obviously so long as the 
number of neurons is not very large. 

For the pulse radar, first suppose that the target moves so 
slowly that the return sequences of the target in the H times 
Pulse repetition interval PRI are at the same position. The 
changing pattern of the return sequences of the target will 
manifest some specific distributions in the amplitude and 
frequency feature spaces. Furthermore, the distribution will 
possess considerable stability in a distant range. 

Suppose is the column vector composed of the tth sam-
pling point in the each return sequence. 

4. THE NN-BASED ML ESTIMATION 
The effectiveness of DOA estimation is guaranteed when 

the network is solved with the target echo. Since the output 
of the network is zero and one, the features may be coded by 
the natural order of the output of the Hopfield networks. Of 
course, the best way of estimation is that the distinct feature 
will be shown clearly after coding. When we do  not have 
any prior knowledge about the feature distributions, we may 
use the above coding method. 

The course of synthesizing two kinds of distinct features 
is, in fact, a course of features integration which transforms 
distinct input feature spaces into the same output space so as 
to make detection and decision.  

Consider the simple case of a continuous function map-
ping from a 2-dimensional z, y input space to a 1-
dimensional z output space. It is theoretically possible to 
model this mapping with a number of 2-dimensional radial 
functions. A radial function is one whose evaluation depends 
upon a radial distance from the function center. 

Our networks use Gaussian radial functions which, in 2-
dimensions, look like bumps or hills. The Gaussian bumps 
are placed in a flat z = 0 function space at input locations 
where the desired mapping output is known, i.e. training 
points. The bumps mold the space to the correct answer for 
the training samples and distort the space around the training 
point in a continuous fashion. Multiple bumps overlap to 
model complex areas. The bumps may change their location, 
width, and height during training to encompass additional 
samples. Theoretically, this method can approximate any 
continuous function to any degree of accuracy. The chal-
lenge lies in selecting an appropriate set of training samples 
to place sufficient bumps in the function space to model the 
function to the desired accuracy. A neural network for an 
element antenna uses an input space with 14 dimensions (the 
sine and cosine of 7 phase differences). The inputs are 
mapped to an output space of “energy bins” representing 
azimuth angles off antenna broadside. Energy in the bins 
represents areas with targets. 

A DOA estimation network consists of three layers of 
nodes, input, Gaussian, and output, which are fully-
connected by two layers of arcs, center and weight. “Fully-
connected” means all nodes in layer i are connected to all 
nodes in layer i+1. There are no connections between nodes 
in the same layer. The function space is primarily shaped by 
the Gaussian nodes. 

The input nodes, I, in the DOA estimation network ac-
cept preprocessed input data and fan it out to the center arcs. 
The center arcs connect each input to each Gaussian node 
and calculate the distance for that dimension from the current 
input value to a given Gaussian, k, i.e. 

ij j jkC I m= −  

where I , is the jth input dimension and mjk is the center of the 
kth Gaussian node in the kth input dimension. If the distance 
from center to input in each dimension is small or zero, that 
Gaussian is “relevant” to the answer, i.e. it’s center in the 
function space is near the current input. 

In ML estimation problem, we want to maximize the 
function L(Θ) in (6). According to NN algorithm, we first 
initialize some parameters, then a set of data is employed to 
train the neural network to get the neuron parameters. At last, 
when new signal data is arriving, they are processed by the 
trained neural network to estimate the direction-of-arriving 
of the target. 

5. SIMULATIONS 

In order to verify the performance of the ML estimator 
computed by our proposed neural network algorithm, we 
compared it with the alternating projection method proposed 
by Ziskind and Wax [6]. 

In the simulations, the array is linear and uniform with 
three isotropic sensors spaced half a wavelength apart. The 
sources are two equal power narrow-band emitters, and the 
noise is additive and uncorrelated from sensor to sensor and 
with the signals. 
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In every experiment we perform 100 Monte-Carlo runs 
and compute the root-mean-square (rms) error for each di-
rection-of-arrival. 

In the first simulation we simulated two uncorrelated 
emitters impinging between 0° and 20°. The number of snap-
shots taken is 20. Fig. (1) shows the resulted rms error (in 
degrees) of the first source as a function of the SNR, defined 
as SNR=10log(s2/σ2) (where s2 and σ2 are the average power 
of the signals and the noise, respectively). The improved 
performance of the NN based ML estimator at low and mod-
erate SNR is evident. 

In the second experiment, the scenario is the same as in 
the first one, except that this time we fix the SNR to 20 dB. 
Fig. (2) shows the resulted rms error of the first source as a 
function of the number of snapshots. 

From the experiment, we can see NN algorithm outper-
forms AP algorithm. Moreover, in our experiment, AP algo-
rithm sometimes does converge to a local optimum. And we 
solved it successfully by NN algorithms. 

CONCLUSION 

In this paper, we have proposed a new algorithm for 
computing the ML estimator of the direction of multiple  
 

sources in the far field by using NN technique. The algo-
rithm is iterative. This is conspicuous advantage over tradi-
tional algorithm. 
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