Experimental Research on the Flexural Capacity of Reinforced Concrete Beams Reinforced with BFRP

Cheng Haigen¹,* , Tian Qin², Shang Jingmiao¹ and Lu Dinkun¹

¹School of Civil Engineering, East China Jiaotong University, Nanchang Jiangxi, 330013, P.R. China; ²School of Civil Engineering, Nanchang University, Nanchang Jiangxi, 330013, P.R. China

Abstract: In order to study the ultimate flexural capacity of reinforced concrete beams with BFRP (Basalt fiber reinforced polymer), the test is designed and poured 4 T-section reinforced concrete beams. At first, monotonous static loading is carried on 2 of the beams until the chinks appeared. Afterwards, all beams strengthened by BFRP sheets. The contrast experiment studied and analyzed the different cracking load, ultimate load, deflection, reinforcement strain, concrete strain, fiber cloth strain and crack development of pre-reinforced beams and damaged beams strengthened by BFRP sheets. At the same time, the theoretical analysis and finite element simulation are taken to verify the result of experiment. The results show that the ultimate flexural capacity of reinforced concrete beams with BFRP has significantly increased. The circular bead treatment raises woke effect and reduces stress concentration of BFRP sheets.

Keywords: Basalt fiber reinforced polymer, pre-reinforcement, T-section reinforced concrete beam, ultimate flexural capacity.

Basalt fiber reinforced polymer (BFRP) is made from natural basalt ore, while the price of BFRP is 1/3 price of domestic carbon fiber material and 1/10 price of imported products respectively [1]. The advantage of BFRP is that its melting process does not produce alkali oxides and toxic and harmful gas. In addition, because the residual waste of underground landfill treatment for BFRP does not have effect on the soil pollution and water pollution, BFRP has a very good prospect. Although the research on BFRP is relatively late in China, recently, people focus on the BFRP research which has been considered as a key national plan [2]. Many researchers study on the shear behavior and flexure behavior, but the contrast experiment is lack [3-7]. Based on the previous study, this paper focuses on the ultimate flexural capacity of reinforced concrete beam with BFRP. The research methods are experiments combined with the theoretical analysis and finite element simulation.

1. EXPERIMENTAL DESIGN

1.1. Manufacture and Material Properties of Test Beam

According to the actual T-section reinforced concrete beam with the length of 16 m, the test reinforced concrete beams are manufactured by reduction size. The section of prototype beam is composed of seven T-section reinforced concrete beams. Based on the stress similitude, the dimension of test beam is shown in Fig. (1) and Fig. (2). Similarity ratios of the test beam are 1:13.3 and 1:2.5 for longitudinal and transverse directions respectively.

There are four test beams in this study, which are divided into two groups. The test beams in one group are pre-reinforced beam, while the test beams in the other group can be used to simulate actual reinforcement beam. The number of beam, reinforcement ratio and flange height are shown in Table 1.

In this paper, concrete design strength grade is C40, while hot rolled ribbed bar (HRB335Φ12 and HRB335Φ10) are used as main steel bars. Ten hot rolled plain round bars (HPB235Φ6) equipped as stirrups and hot rolled plain round bars (HPB235Φ10) are adopted as supports. The measured mechanical property parameters of steel bars are presented in Table 2.

Basalt fiber reinforced polymer applied in this test is BUF9-300 produced in GBF Company. The material property parameters are illustrated in Table 3.

1.2. Cracking Test Before Reinforcement

In order to compare with the mechanical property parameters of pre-reinforcement concrete beam, loading tests for two test beams are carried out after 28 days maintenance. Fiber reinforced polymer sheets do not reinforce these two test beams. The compression force of the hoisting jack is 300 kg/cm², while the maximum output load is 30 t. The oil pump used in this test is manual pump made in De zhou hydraulic equipment Company and each manual operation can generate 8 KN of output load. Test results: For the beam of DB-1, two cracks appear in the region supported on two bearing supports when loading value is 168 KN. The angle of the crack is 45 degree, while the crack extends slowly. Near the region of bearing supports, the maximum crack width is 1.994 mm which is larger than the limit of crack width. Since the phenomena of concrete-flake-off appear in the region of bearing supports, the region is repaired by the
Fig. (1). Dimensions and reinforcements of test beams (unit:mm).

Table 1. Parameters of test beams.

<table>
<thead>
<tr>
<th>Numbering</th>
<th>Reinforced case</th>
<th>Depth of the designed flange (mm)</th>
<th>Depth of the actual flange (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-1</td>
<td>Tensile reinforcement is divided into two layers. First layer includes two (\Phi 12) bars of HRB335. Second layer includes two (\Phi 10) bars of HRB335. Stirrup spacing is 125mm. Stirrup is (\Phi 6) bar of HPB235,</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>DB-2</td>
<td></td>
<td>100</td>
<td>108</td>
</tr>
<tr>
<td>YJG-1</td>
<td></td>
<td>100</td>
<td>106</td>
</tr>
<tr>
<td>YJG-2</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. (2). Cross-section shape of test beams (unit:mm).

Table 2. Steel mechanical property.

<table>
<thead>
<tr>
<th>Model</th>
<th>Diameter /mm</th>
<th>Yield strength /MPa</th>
<th>Tensile strength /MPa</th>
<th>Elongation /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPB235</td>
<td>6</td>
<td>326.4</td>
<td>468.4</td>
<td>24</td>
</tr>
<tr>
<td>HRB335</td>
<td>12</td>
<td>383.7</td>
<td>551.5</td>
<td>19</td>
</tr>
</tbody>
</table>
Table 3. Parameters of basalt fiber cloth material.

<table>
<thead>
<tr>
<th>Product model</th>
<th>Unit Weight (g/m²)</th>
<th>Design thickness /mm</th>
<th>Tensile Strength /Mpa</th>
<th>Young’s modulus /Gpa</th>
<th>Extension rate /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUF9-300</td>
<td>300</td>
<td>0.109</td>
<td>≥2100</td>
<td>≥93</td>
<td>≥3.1</td>
</tr>
</tbody>
</table>

Fig. (3). Loading mode.

Table 4. Non-reinforcement beam characteristics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Whether existing cracks</th>
<th>Whether Corners are rounded surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-1</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>DB-2</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>YJG-1</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>YJG-2</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

concrete mixed reinforcement adhesives. For the beam of DB-2, 3 cracks appear between bearing support and beam centroid, when loading value is 220 KN. The maximum crack width is 0.604 mm which is also larger than the limit of crack width. Loading mode is shown in Fig. (3).

1.3. Reinforcement Scheme

When carbon fiber sheet pastes on the concrete member, the curvature radius should be larger than 20 mm at the surface of the concrete member corner. However, because it is very difficult to deal with the complicated corner, the angle is 90 degree at the corner in actual engineering. The effect of circular bead treatment on the experiment results is considered in this test. In the 4 T-section beams DB-1 and DB-2 are loaded until cracks before the test, while YJG-1 and YJG-2 keep intact. For DB-1 and YJG-1, the angle at the web bottom corner is 90 degree. For DB-2 and YJG-2, the radius is 20 mm at the web bottom corner. The properties of the 4 T-section beams are shown in Table 4.

When basalt fiber reinforced polymer is used to reinforce the positive bending moment area of T-section beam, the basalt fiber reinforced polymer length should extend to the bearing supports edge. The truncation place of the carbon fiber sheet is determined by the full use of section [8, 9]. The extent length of carbon fiber sheet is 580 mm (430+150), while the width of carbon fiber sheet is 72 mm. The measured deviation is ±2 mm. Two layers of carbon fiber sheets are applied at the beam bottom, while the actual thickness is 0.218 mm (2×0.109).

Two sides of the web for T-section beam are anchored by carbon fiber sheet U shaped hoop, while the paste height is 348mm. Two sides of the web are equipped with three U hoops, the width and clear spacing is 200 mm and 75 mm respectively.

Diagonal section of test beam is reinforced by U-shaped hoop which fixed by attached fiber cloth above it.the fiber cloth is one layer of 900mmx90mm fabric which is close to the flange at the bottom [10].

The paste order of carbon fiber sheet is shown as following: carbon fiber sheet at the beam bottom→U shaped hoop carbon fiber sheet at two sides of web→cover U shaped hoop with carbon fiber sheet. Paste position and size are shown in Fig. (4).
1.4. Strain Gauge Arrangement

The strain gauges are pasted on the main steel bars of T-section beam at mid-span before pouring concrete. After carbon fiber sheet are pasted on the beam bottom, the strain gauges are pasted on the web U shaped hoop and oblique section at mid span. Strain gauge specification is shown in Table 5.

In order to make sure the objectivity of the test results, more strain gauges are pasted on the beam. Four strain gauges are symmetrically pasted on the main steel bar. Two piece of strain gauges are symmetrically pasted on flange of mid-span along the longitudinal direction. The distance from one of the strain gauges to cross-sectional symmetry axis is 160mm. Two piece of strain gauges are symmetrically pasted on the tensile fabric cloth of bottom surface of the mid-span tension zone. Four piece of strain gauges are pasted on U-hoop of web, its margin increases from bottom to top. Four piece of strain gauges are symmetrically pasted on oblique section. Strain gauge glued location and spacing are shown in Fig. (5).

<table>
<thead>
<tr>
<th>Sticking position</th>
<th>model</th>
<th>Resistance /Ω</th>
<th>Gate length×gate width /mm</th>
<th>Sensitivity coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel bar</td>
<td>BX120-2AA</td>
<td>120.5</td>
<td>2×1</td>
<td>±2.00</td>
</tr>
<tr>
<td>Concrete</td>
<td>BX120-80AA</td>
<td>120.9</td>
<td>80×3</td>
<td>±2.00</td>
</tr>
<tr>
<td>Fiber cloth</td>
<td>BX120-50AA</td>
<td>120.6</td>
<td>50×3</td>
<td>±2.00</td>
</tr>
</tbody>
</table>
The test beam is second class T-section beam, according to the following formula:

\[M \leq \alpha_{f,c}bx \left(h_0 - \frac{x}{2} \right) + \alpha_{f,c} \left(b' - b \right) h'_f \left(h_0 - \frac{h'_f}{2} \right) \]

(2)

The maximum design bending moment \(M = 66.91 \text{KN} \cdot \text{m} \), the increase value is 27.28%. The ultimate bearing capacity is 223.04 KN in the test, while the maximum load capacity is 225.10 KN.

The carbon fiber sheet size can be substituted into the formula [12]:

\[k_m = 1.16 - \frac{n_f E_f t_f}{30800} \]

(3)

Solution: \(k_m = 1.011 > 0.90 \)

So \(k_m \) is 0.90, the effective cross section area of the carbon fiber sheet is calculated as following formula.

\[A_{fc} = A_k k_m = 72 \times 0.109 \times 2 \times 0.90 = 14.126 \text{mm}^2 \]

(4)

\[\psi_f = \frac{0.8 \varepsilon_{cf} h / x - \varepsilon_{cf} - \varepsilon_{f0}}{\varepsilon_f} = \frac{0.8 \times 0.0033 \times 520 / 104.753 - 0.0033 - 0}{0.01} = 0.98 < 1.0 \]

(5)

According to the formula

\[\alpha_{f,c} b_x = f_{x0} A_{x0} + \psi_f \frac{f_f}{A_{fc}} \]

(6)

Solution results: The maximum design bending moment after reinforcement, \(M = 66.91 \text{KN} \cdot \text{m} \), the increase value is 27.28%. The ultimate bearing capacity is 223.04 KN in the case of the design loading at mid-span.

2.1.2. Load Capacity of Oblique Section

\[\lambda = \frac{a}{h_0} = 1.02 \]

(8)

\[\lambda_c = 1.5 \]

(9)

\[\sigma_x = \frac{1.75}{\lambda + 1} = 0.7 \]

(10)

\[V_{cs} = \alpha_{v,c} f_{bh_0} + f_y A_{w} h_0 = 0.7 \times 1.71 \times 72 \times 490 + 235 \times 5 \times 28 \times 27 \times 940 \]

\[= 177.867 \text{KN} \]

(11)

The design value of the shear capacity \(V_{cs} = 177.87 \text{KN} \).

\[h_y / b = 6.388 > 6 \]

Based on the formula \(V \leq 0.2 \beta_f f_b h_y \), the design maximum value of the shear capacity of oblique section is 134.77KN < \(V_{cs} \).

The design width and clear spacing of U shaped hoop can be substituted into the formula:

\[V_{by} = \psi_{by} f_f A_{h_f} / s_f = 0.58 \times 0.56 \times 2100 \times 95.484 \times 438 \]

\[= 103.73 \text{KN} \]

(12)

Solution results: The design value of the shear capacity after reinforcement, \(V = 238.5 \text{KN} \).

2.2. Finite Element Model

Finite element analysis is carried out by the software of ANSYS. The elements of Solid 65 and Link 8 can be used to simulate concrete and steel bar respectively. The mesh generation and the loading are shown in Fig. 6.

The ultimate bearing capacity of reinforcement beam model is 296.42 KN, while the displacement at mid-span is 14.70 mm. The steel strain and stress are 1671 \(\mu \varepsilon \) and 334.2 MPa respectively. The Carbon fiber sheet strain in the tension area is 1694 \(\mu \varepsilon \).

3. THE TEST RESULTS AND ANALYSIS

3.1. Loading Test and Damage Condition

3.1.1. Loading Test Damage for DB-1 Beam

When loading value is 60 KN, origin crack decreases from 1.444 mm to 1.320 mm because of bearing restraining. When loading value is 140 KN, the crack width gradually increases and the deflection at mid-span is 0.49 mm. When loading value is 220 KN, the crack width is 2.592 mm and the deflection at mid-span is 0.78 mm. The steel stress and strain are 89.676 MPa and 448.38 \(\mu \varepsilon \) respectively. The sound of U shaped hoop and cover strip generates, while the crack width near the U shaped hoop is 0.84 mm. When loading continuous, the concrete near the bearing are damaged, steel strain and the deflection at mid-span increase. When loading is 265 KN, the size of two cracks sharply increases. The concrete near the bearing begins to fall off, while the shear break of carbon fiber sheet occurs near the bearing. The displacement at mid-span transiently decreases. Both sides of the cover strip and U shaped hoop appear peeling phenomenon at crack area. Because the beam of DB-1 is damaged, the reading of loading sensor decreases. The deflection at mid-span is 10.06 mm, while steel bar strain and stress are 507.8 \(\mu \varepsilon \) and 101.56 MPa respectively. When the loading are applied on the beam of DB-1, both the width of the crack and the damage degree of the beam are large. The ultimate load can be greatly promoted after reinforcement, but the damaged concrete has effect on the ultimate load to a certain degree. The beam of DB-1 quickly presents brittle failure pattern when carbon fiber sheet and concrete are separated, as shown in Fig. 7.
3.1.2. Loading Test Damage for DB-2 Beam

When loading value is 120 KN, the width of crack is 0.098 mm. After that the width of crack obviously increases. As the loading value is 320 KN, the extension of crack is obvious and the cracks extend to the flange bottom of the mid-span. Many new fine cracks appear in the area of near the origin cracks, while the width of new cracks is less than 0.05 mm. The deflection at mid-span is 2.56 mm, and steel tension strain is 1279.7 μe. The steel compression strain at mid-span is 565.09 μe. When loading reaches 380 KN, the sound of U shaped hoop comes out. The width of new cracks becomes large. When loading value is 420 KN, some part of U shaped hoop appears fracture. Cover strip separates from concrete face, while the deflection at mid-span increases. The steel strain and steel stress are 1631.18 μe and 326.236 MPa respectively. The steel strain in compression area is 757.33 μe. The record maximum loading is 446 KN. The peeling phenomenon between U shaped hoop and cover strip obviously appear. The deflection at mid-span sharply increases, and the carbon fiber sheet is cut at bearing support. The width of crack extends to 18.76 mm. The width of the crack at flange bottom is 3.42 mm. At the same time, the concrete fall off at bearing support. Based on the above statements, the beam of DB-2 is completely destroyed, as shown in Fig. (8).

3.1.3 Loading Test Damage for YJG-1 Beam

When loading value reaches 160 KN, the extension sound of carbon fiber sheet is obvious. The deflection at mid-span is 0.95 mm, while steel strain and carbon fiber sheet strain are 696.16 μe and 31.07 μe respectively. The concrete strain at compression area is 144.67 μe. When loading is 240 KN, the sound of U shaped hoop is obvious. The extension force of carbon fiber sheet increases. When loading is 280 KN, many cracks of oblique section symmetrically appear. The width of crack extends to 0.42 mm. The angel between the crack and the horizontal line is 36.2°–43.7°. At the same time, the deflection at mid-span is 4.27 mm, while the strain of carbon fiber sheet in extension area is 1444.76
με. Steel strain and steel stress are 1304.94 με and 260.988 MPa respectively. The concrete strain in compression area is 325.27 με. When loading is 328 KN, the width of crack extends to 16.82 mm at the bending shear region. The concrete at bearing support falls off and the peeling between U shaped hoop and cover strip appears. The deflection at mid-span reaches the maximum value, while the beam of YJG-1 is damaged, as shown in Fig. (9).

3.1.4. Loading Test Damage for YJG-2 Beam

When loading value reaches 240 KN, the extension sound of carbon fiber sheet is obvious. The deflection at mid-span is 2.34 mm, while steel strain and carbon fiber sheet strain are 1340.87 με and 1169.98 με respectively. The concrete strain at compression area is 293.22 με. When loading value is 340 KN, the width of crack on the bearing support is less than 0.2 mm. The deflection at mid-span is 2.93 mm, while steel strain and carbon fiber sheet strain are 1634.09 με and 1470 με respectively. The concrete strain at compression area is 354.37 με. The width of crack gradually increases with the increase of loading. New vertical cracks appear, while cover concrete begins to fall off. When loading value is 400 KN, the width of crack is 1.56 mm. Carbon fiber sheet generates sound during loading process. Cover strip and concrete separates, while U shaped hoop and concrete also separates. The separating area gradually increases and cracks of some carbon fiber sheets extend to the bottom of U shaped hoop. The variation rate of deflection at mid-span obviously increases, while increasing rate of carbon fiber sheet strain decreases and the steel strain continues increasing. When loading value is 426 KN, flexural and tensile carbon fiber sheets at bearing support are neatly cut. Both
3.2. Analysis of Test Results

The ultimate bearing capacity of the pre-reinforcement concrete beam and reinforcement concrete damaged beam are shown in Table 6.

The main tension steel bars in reinforced concrete beam are Φ12HRB335 and Φ10HRB335. Concrete cover thickness is 30 mm. Load-strains curves are shown in Fig. (11) and Fig. (12).

According to Fig. (11) and Fig. (12) because there is no slip between steel and concrete before the loading value is 300 KN, the stress of the steel bar in pre-reinforcement beam obviously changes. The deformation of beam can be effectively reduced. However, when loading value is over 300 KN, the cracks appear in the concrete and the capacity of the steel bar decreases to a certain degree. It is that carbon fiber sheet affords bending moment.

Strain gauges on carbon fiber sheet are glued on both sides of U shaped hoop at mid-span. Strain curves are shown in Fig. (13).

According to Fig. (13), carbon fiber sheet of pre-reinforcement beam can work together with steel bar earlier. Carbon fiber sheet strain of pre-reinforcement beam is larger than that of comparison beam. Because concrete cover is damaged, carbon fiber sheet affords most of the tensile stress. When loading is 400 KN, the strain of carbon fiber sheet sharply increases.

<table>
<thead>
<tr>
<th>Number</th>
<th>Ultimate bearing capacity of test values KN</th>
<th>Improved ratio %</th>
<th>Failure modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-1</td>
<td>265</td>
<td>11.3</td>
<td>Extended tensile fabric parts are broken off, u-shaped clamps and cover are stripped off, supports concrete are broken off.</td>
</tr>
<tr>
<td>DB-2</td>
<td>446</td>
<td>87.4</td>
<td>Tensile fabric parts are torn disconnect, u-shaped clamps and cover are stripped off, partial concrete are broken off, cracks of flange bottom are noticeable.</td>
</tr>
<tr>
<td>YJG-1</td>
<td>328</td>
<td>37.8</td>
<td>Tensile fabric of supports are cutted off, u-shaped clamps and cover are stripped off, partial concrete of supports are broken off.</td>
</tr>
<tr>
<td>YJG-2</td>
<td>426</td>
<td>79.0</td>
<td>Tensile fabric of supports are cutted off, u-shaped clamps and cover are stripped off, cracks about flexure-shear zone of concrete are noticeable.</td>
</tr>
</tbody>
</table>

the U shaped hoop and the cover strip are separated from concrete. The maximum deflection at mid-span is 18.81 mm, while steel strain and steel stress are 1791.39 με and 358.278 MPa respectively. The maximum strain of carbon fiber sheet is 1632.15 με. The concrete strain in compression area is 419.45 με. The reading of loading suddenly changes, while the beam of YJG-2 is completely damaged, as shown in Fig. (10).
Fig. (11). Load-strains curves of Φ12 steel.

Fig. (12). Load-strains curves of Φ10 steel.

Fig. (13). Load-strains curves of tension fiber cloth.
CONCLUSION

According to the results of test on four reinforcement beams, the following conclusions can be obtained.

(1) Both cracking load and yield load of the reinforcement beam can be obviously improved. Cracking rate of concrete is reduced because of carbon fiber sheets extension force effects. When the loading reaches the ultimate load, carbon fiber sheet affords tensile stress of the beam. The strain of carbon fiber sheet approach or exceed the strain of steel bar.

(2) Comparing with reinforcement damaged beam, carbon fiber sheet of pre-reinforcement beam can afford external force together with steel bar. The strain of carbon fiber sheet has similar value with the strain of steel bar. In addition, the stiffness of pre-reinforcement beam is larger than the one of reinforcement damaged beam. The deflection of pre-reinforcement beam at mid-span is less than the one of reinforcement damaged beam at late phase of loading. The stiffness can be significantly improved for the pre-reinforcement beam.

(3) The protective effect is better for flexure and shear zone of the concrete in the case of pre-reinforcement beam. The failure pattern of pre-reinforcement beam includes peeling or shear break of carbon fiber sheet. In addition there are many cracks in the concrete of pre-reinforcement beam. However, the phenomena of concrete-flake-off occur before the peeling of carbon fiber sheet for reinforcement damaged beam.

(4) Flexural behavior is better than shear behavior for the test beam due to the effects of carbon fiber sheet layers and U shaped hoop anchoring type. Therefore, the failure patterns are concrete crush damage and carbon fiber sheet bond failure, but the tension failure of carbon fiber sheet does not occur. In order to overcome the above damage types, wooden formwork can be used to compact the carbon fiber sheet. Therefore, the high strength of carbon fiber sheet can be made full use of.

(5) The circular bead treatment of the test beam could improve the function of carbon fiber sheet and U shaped hoop. The stress concentration at corner of beam can be obviously reduced, while the ultimate load can also be significantly improved.

(6) According to Code for design of concrete structures and Code for design of strengthening concrete structure, theoretical derivation of the design ultimate bearing capacity of normal section and the design ultimate bearing capacity of oblique section can be obtained respectively. Comparing with the test results, the numerical solution of ANSYS is more safety.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support and motivation provided by the National Natural Science Foundation of China (Grant No. 51368018).

REFERENCES