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Abstract: The endothelium forms an important part of the vasculature and is involved in promoting an atheroprotective 

environment via the complementary actions of endothelial cell-derived vasoactive factors. Disruption of vascular homeo-

stasis can lead to the development of endothelial dysfunction which in turn contributes to the early and late stages of athe-

rosclerosis. In recent years an increasing number of non-invasive vascular tests have been developed to assess vascular 

structure and function in different clinical populations. The present review aims to provide an insight into the anatomy of 

the vasculature as well as the underlying endothelial cell physiology. In addition, an in-depth overview of the current 

methods used to assess vascular function and structure is provided as well as their link to certain clinical populations. 
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THE ENDOTHELIUM 

 Once considered as a simple barrier between the blood 
and vessel wall, the endothelium is now regarded as a dy-
namic organ which lines the entire vascular system [1]. En-
dothelial cells are located on the intima – which is the inner 
lining of the vasculature and they control vascular function 
by responding to various hormones, neurotransmitters and 
vasoactive factors which affect vasomotion, thrombosis, 
platelet aggregation and inflammation [1]. The balanced 
production of these vasoactive factors is atheroprotective, 
whereas a damaged endothelium causes disrupted production 
of these factors. The ensuing imbalance leads to endothelial 
dysfunction (ED), which is an early indicator of atheroscle-
rosis [2]. Endothelial cells are located on the intima of all 
vessels (described in detail below), but display different 
structures and phenotypes depending on vessel type [3]. En-
dothelial cells in arteries and veins appear more continuous 
and thicker than those in capillaries which are fenestrated 
and thinner to allow for exchange of metabolites and gases 
[4]. In addition, endothelial cells can display heterogeneous 
responses to stimulation in different vascular beds, and even 
in different sections of the same vascular bed [5-7]. This 
suggests that ED may occur in selective vascular beds too 
[7]. 

ANATOMY AND PHYSIOLOGY OF THE BLOOD 

VESSELS 

 The blood vessels provide the main link between the 
heart and the tissues. The vascular wall is made up of three  
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layers; the intima (inner layer), the tunica media (middle 
layer) and the tunica externa (outer layer) [8]. The blood 
vessels are divided depending on function, location and size 
into arteries, capillaries and veins.  

VASCULAR ANATOMY 

 The main function of the arteries is to supply the organs 
with blood. Given the high pulse pressure in the arteries their 
walls are thicker than in other vessels. Arteries can be di-
vided into conducting arteries, conduit arteries and resistance 
arteries based on their position in the arterial tree. Conduct-
ing arteries are the largest arteries in the body and have a 
large amount of elastic tissue which allows the vessel to ex-
pand and recoil to dampen out the oscillatory changes in 
blood pressure as a result of intermittent ventricular contrac-
tions. Examples of conducting arteries include the aorta, 
pulmonary artery and carotid artery [9]. Conducting arteries 
branch into conduit arteries such as the brachial, radial and 
femoral arteries, and the function of these arteries is to direct 
blood to specific regions of the body [10]. The conduit arter-
ies further divide into the resistance arteries which are re-
sponsible for adequately perfusing the organ tissue with 
blood and form part of the microcirculation. They consist 
mainly of smooth muscle cells which are highly innervated 
by sympathetic nerves, allowing the arterioles to regulate 
bloodflow to the tissue by dilating or constricting in response 
to sympathetic (de)activation [4]. Another stimulus that can 
cause dilation of arterioles is shear stress (the dragging fric-
tional force exerted on the vessel wall by laminar blood 
flow) [11]. The site of tissue perfusion occurs in the capillar-
ies, which like arterioles are part of the microcirculation [4]. 
The main function of the capillaries is to enhance the diffu-
sion of gases, metabolites and nutrients between the blood 
and the tissue. This is achieved by capillary walls which 
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consist of a single layer of endothelial cells, thus, shortening 
the diffusion pathway between the blood and tissue fluid. 
Efficiency of diffusion is further enhanced by the slow 
bloodflow which helps to increase the time available for dif-
fusion [12]. Once gaseous exchange occurs, the blood con-
taining metabolites flows into venules – where further gase-
ous exchange may also take place. The venules feed into the 
peripheral veins and then into the superior and inferior vena 
cavae, which are connected to the heart. In general, the di-
ameter of veins increases with increased proximity to the 
heart. Given the lower blood pressure in the venous system 
compared to the arterial system, the vessel walls of veins are 
thinner and more compliant than arterial walls. This means 
that veins can accommodate large volumes of blood with 
only small increases in pressure. Mechanisms such as the 
skeletal muscle pump and respiratory pump as well as sym-
pathetic nervous activation enable veins to return blood back 
to the heart. In addition, veins contain valves to prevent 
backflow of blood while smooth muscle cells in the vascular 
wall allow veins to constrict and increase the blood pressure, 
both of which increase venous return [13].  

REGULATION OF VASCULAR TONE 

 The endothelium releases various vasoactive factors. 
These can be vasodilatory factors such as nitric oxide (NO), 
prostacyclin (PGI2) and endothelium derived hyperpolarizing 
factor (EDHF) or vasoconstrictive factors such as throm-
boxane (TXA2) and endothelin-1

 
(ET-1). These factors are 

discussed in greater detail below. 

a) Nitric Oxide 

 Nitric oxide (NO) is an endothelium-dependent vasodila-
tor of the underlying smooth muscle and was first identified 
by Furchgott and Zawadzki [14]. NO has been shown to play 
an important role in the maintenance of basal vasodilator 
tone of the blood vessels [15]. NO is formed under the influ-
ence of the enzyme nitric oxide synthase (NOS), which con-
verts the amino acid L-arginine to NO [16]. Three isoforms of 
NOS exist: neuronal isoform (nNOS) which produces NO to 
act as a neuronal messenger that regulates synaptic neuro-
transmitter release [17], macrophage or inducible isoform 
(iNOS) which is only expressed in cells that have been ex-
posed to inflammatory mediators or other injurious stimuli 
that activate the macrophages [18], and endothelial NOS 
(eNOS) which produces nitric oxide in the vasculature [19]. 
The isoforms are classified by the cells they were originally 
found in, although, it is now known that expression of these 
isoforms also occurs in other cells, such as cardiac myocytes 
[20], skeletal muscle, blood platelets and the hippocampus 
[21]. Considering that the ability of a blood vessel to dilate is 
largely dependent upon the activity of eNOS, the present 
discussion will focus on this isoform.  

  Inactive eNOS is bound to the protein caveolin and is 
located in small invaginations in the cell membrane called 
caveolae [22]. When intracellular levels of Ca

2+
 increase, 

eNOS detaches from caveolin and is activated [22]. NO ago-
nists can influence the detachment of eNOS from caveolin 
by releasing Ca

2+
 from the endoplasmic reticulum (Fig. 1) 

[23]. Examples of such NO agonists include bradykinin 
(BK), acetylcholine (ACh), adenosine tri-phosphate (ATP), 
adenosine di-phosphate (ADP), substance P and thrombin 

[24]. Once intracellular Ca
2+

 stores are depleted a signal 
(thus far unidentified) is sent to the membrane receptors to 
open Ca

2+ 
channels allowing extracellular Ca

2+ 
into the cell 

[25, 26]. This process of Ca
2+ 

regulation is known as store-
operated Ca

2+ 
entry or capacitative Ca

2+ 
entry [27]. Ca

2+ 
at-

taches to the protein calmodulin in the cytoplasm of the cell, 
after which it undergoes structural changes which allows it 
to bind to eNOS [28]. eNOS then converts L-arginine into 
NO [16]. This pathway of NO production is represented in 
Fig. (1) below. It is important to highlight that this mecha-
nism of NO production is dependent on the levels of intracel-
lular Ca

2+ 
in the endoplasmic reticulum as well as Ca

2+ 
which 

diffuses into the cell from extracellular stores. A reduction in 
Ca

2+ 
causes the calcium-calmodulin complex to dissociate 

from eNOS, which in turn binds with caveolin and becomes 
inactivated [28].  

  The short term increase in NO is dependent on the intra-
cellular Ca

2+ 
but once this decreases additional mechanisms 

are activated to regulate NO production. One such mecha-
nism is the phosphorylation of eNOS [29]. Phosphorylation 
of eNOS occurs via protein kinases [18], such as protein 
kinase A [23] and cyclic guanosine-3’, 5-monophosphate 
(cGMP) protein kinase dependent II [29]. Shear stress initi-
ates eNOS phosphorylation by the actions of protein kinase 
B (Akt) [30].  

 Shear stress results from increased bloodflow in the ves-
sel and can increase NO production by eNOS phosphoryla-
tion but also through stimulating endothelial cell receptors 
by allowing the transfer of blood-borne agonists to attach to 
endothelial cell receptors and increase intracellular Ca

2+ 
[31]. 

In particular, shear stress activates specialised Ca
2+

-activated 
K

+
 channels on the endothelial cell surface, causing K

+ 
efflux 

and Ca
2+

 influx into the cell [32] (Fig. 1). The contribution of 
Ca

2+ 
and eNOS phosphorylation to NO production is de-

pendent on the duration of the shear stress. For example, 
intracellular Ca

2+ 
release is dependent on shear stress of short 

durations [33], whereas shear stress of longer durations (>30 
minutes) can deplete intracellular Ca

2+ 
stores, and so NO 

production is dependent on eNOS phosphorylation [34].  

 Once synthesized, NO diffuses across the endothelial cell 
into the adjacent smooth muscle (Fig. 1), where it binds to 
the enzyme soluble guanylyl cyclase (sGC) [35]. The now 
activated enzyme increases the conversion rate of guanosine 
triphosphate (GTP) to cGMP, which decreases smooth mus-
cle tension [36]. Further, cGMP reduces Ca

2+ 
release from 

the sarcoplasmic reticulum in the smooth muscle cell [37], 
and also helps to restore Ca

2+ 
to the sarcoplasmic reticulum 

[38]. Both actions reduce the contraction of smooth muscle 
cells. 

 The mechanisms described above are continuously active 
and produce NO to maintain basal vasodilator tone. By in-
hibiting NO activity using N

G
 monomethyl-L-arginine (L-

NMMA), a dose dependent increase in blood pressure was 
found due to the vessels constricting, which was reversed 
when NO was administered [39]. These findings highlight 
the importance of NO in maintaining resting vasodilator 
tone. However, the vessel is also capable of dilating in the 
absence of NO. After removal of or damage to the endothe-
lium, administration of glyceryl trinitrate (GTN) can still 
result in vasodilatation [15].  
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 The mechanism by which GTN causes vasodilatation is 

not clear. Several researchers have suggested that GTN un-

dergoes bioconversion to NO [40-42], but not all agree, as 

GTN has been found to cause vasodilatation without increas-

ing NO [43]. Further, the breakdown products of GTN have 

been shown to activate sGC [44]. It is worth noting that other 

vasoactive agents such as calcium ionophore A23187 and 

isosorbide-dinitrate induce vasorelaxation without an in-

crease in NO concentration [24]. Therefore, NO does not 

seem to be the only agent that can activate the sGC-cGMP 

pathway. Further research is needed to identify the precise 

mechanism of the agents, in particular, more research is 

needed in vivo due to the differences in response between 

intact or a denuded endothelium [1].  

 Aside from vasodilatation, NO is also involved in pre-

venting platelet and leukocyte activation and adhesion to the 

vessel wall [45, 46]. When the endothelium is damaged, the 

subsequent inflammation causes an increase in leucocytes at 

the damaged site [47]. Inflammatory mediators such as TNF-

, interleukin-1 (IL-1) and chemokines stimulate the release 

of iNOS [48], which prevents leucocytes from adhering to 

the endothelium and reduces inflammatory mediators [49], 

as well as down-regulating and reducing the expression of 

adhesion molecules [50]. 

b) Prostacyclin and Thromboxane A2 

 The synergistic actions of two prostanoids, prostacyclin 

(PGI2) and thromboxane (TXA2) also regulate vascular func-
tion [51]. Their production is catalysed by cyclooxygenase 

(COX) enzymes, of which there are two isoforms COX-1 

and COX-2 [52]. COX-1 is expressed continuously in endo-

thelial cells, whereas COX-2 is only expressed when the 
endothelium is damaged and exposed to inflammatory cyto-

kines [53, 54].  

 COX-2 converts arachidonic acid to prostaglandin H2 

(PGH2), which is then synthesised into PGI2 by prostacyclin 

synthase [55]. PGI2 binds to the prostacyclin receptors (IP) 

[56], which are located on both platelets and vascular smooth 

muscle cells [57]. Activation of platelet IP receptors leads to 

inhibition of platelet aggregation [58]. PGI2 binding to the 

smooth muscle cell IP receptor activates adenylate cyclase 

which induces the synthesis of cyclic adenosine monophos-

phate (cAMP) [59]. cAMP then activates protein kinase A, 

which allows relaxation of the smooth muscle in the same 

way as it does for NO [60, 61]. It is worth noting that in the 

presence of NO, blocking PGI2 production has no effect on 

vasodilatation [62]. However, when NO is blocked, the re-

sidual dilation is due to increased PGI2 synthesis [63], sug-

gesting that PGI2 plays a compensatory role in dilation of the 

vessel when NO is reduced. 

   In contrast to PGI2, TxA2 causes platelet aggregation and 

vasoconstriction [64]. COX-1 converts arachidonic acid to 

PGH2, after which TxA2 is synthesised by thromboxane syn-

thase [51]. TxA2 mediates its effects by its actions on throm-

boxane-prostanoid (TP) receptors which are located on plate-

lets and their activation causes platelet aggregation [53]. The 

TP receptor is also found on smooth muscle cells and is in-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Endothelial nitric oxide production and it actions in the vascular smooth muscle cell. ACh= acetylcholine; BK= bradykinin; ATP= 

adenosine triphosphate; ADP= adenosine diphosphate; SP= substance P; SOCa2+
= store-operated Ca

2+ 
channel; ER= endoplasmic reticulum; 

NO= nitric oxide; sGC= soluble guanylyl cyclase; cGMP= cyclic guanosine-3’, 5-monophosphate; MLCK= myosin light chain kinase. 
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volved in increasing intracellular Ca
2+ 

levels in the smooth 

muscle, leading to vasoconstriction [65]. 

  The balance in the activity of PGI2 and TxA2 helps to 
maintain homeostasis in the healthy vessel. The importance 
of this balance becomes evident when using selective COX-2 
inhibitors to reduce inflammation, which decreases the  
production of PGI2 without affecting the production of  
TXA2 [66]. Thus, by administrating COX-2 inhibitors, TXA2 
will cause vasoconstriction and platelet aggregation which is 
unopposed by PGI2, increasing the risk for cardiac events 
[67].  

c) Endothelin-1 

 Endothelin (ET) is a vasoconstrictor which is expressed 
in the body in three isoforms, ET-1, ET-2, and ET-3 [68]. 
Endothelial cells only release ET-1, thus the present discus-
sion will focus only on this isoform. ET-1 is produced by 
converting Big ET-1 to ET-1 by endothelin converting en-
zyme [69]. Regulation of ET-1 production as well as its re-
lease is stimulated by inflammatory cells such as interleukins 
and TNF-  and decreased by NO and PGI2 [68]. Shear stress 
causes a decrease in ET-1 expression, after initially promot-
ing it. ET-1 receptors have been identified both on smooth 
muscle cells (ETA and ET-B2) and endothelial cells (ET-B1) 
[70, 71]. The distribution of the different ET-1 receptors is 
dependent on the type of vascular bed, as veins show a re-
duced ETA:ETB receptor ratio compared with arteries [72]. 
When ET-1 binds to ETA or ET-B2 receptors, smooth muscle 
Ca

2+
 channels open allowing extracellular Ca

2+
 into the cell. 

This causes vasoconstriction in a similar way as TxA2. Acti-
vation of ET-B1 receptors on the endothelium causes vaso-
dilatation by inducing the release of NO and PGI2 [73, 74]. 
In ED, ET-B1 receptors on the endothelial cells are downregu-
lated, while ET-B2 receptors on smooth muscle cells are 
upregulated, thus enhancing vasoconstriction [75, 76].  

  The effect of each receptor on the vasculature has been 
explored in patients with heart disease and in healthy partici-
pants. Selectively blocking ETA receptors in participants 
with ED reliably leads to vasodilatation [76]. However, 
blocking both ETA and ETB receptors in participants with ED 
results in greater vasodilatation than blocking ETA receptors 
only [76]. This finding suggests that the upregulation of 
smooth muscle ETB receptors has an additive effect on  
vasoconstriction in individuals with ED [75, 76]. In healthy 
participants blocking ETB receptors leads to vasoconstriction 
[77], therefore, ETB receptors located on the endothelium 
predominantly regulate endothelial function in this group.  

 Apart from its vasoactive effects, ET-1 also causes in-
flammation and smooth muscle cell proliferation in the ves-
sel. Binding of ET-1 to ETA receptors activates macro-
phages, increases neutrophil-vessel wall interactions, and 
elevates free radical concentrations, all of which lead to ED 
[78]. ET-1 causes smooth muscle cell proliferation by bind-
ing to ET receptors [79] or activating other growth factors 
such as platelet-derived growth factor [80]. This results in an 
increase in the intima-media thickness of the vessel wall 
[81], which can be reduced by blocking ET-1 receptors [82]. 
In addition, inhibition of ETA receptors in diseased vessels 
can reduce atherosclerosis, which again suggests that ETA 
receptors are active during ED [83]. 

d) Endothelium-Derived Hyperpolarising Factor 

 Endothelium-derived hyperpolarising factor (EDHF) is a 
yet unidentified vasodilator substance which hyperpolarises 

the underlying smooth muscle by making the membrane po-
tential of the cell more negative [84]. EDHF is released 
when endothelial cells are activated by agonists such as BK 
and ACh [85]. NO and PGI2 can also dilate the vessel by 

hyperpolarising the smooth muscle cells, albeit for a short 
period before the mechanisms discussed above take over 
[86]. However, when NO and PGI2 are inhibited hyperpo-
larisation still occurs, suggesting the involvement of a third 

hyperpolarising factor [87]. A number of pathways have 
been implicated in causing the hyperpolarisation. Although 
the exact pathway is still unknown, attention so far has been 
paid to three factors in particular. 

 Activation of endothelial receptors and the subsequent 
increase in Ca

2+ 
levels causes K

+ 
efflux from the cell [88]. 

The smooth muscle cell responds to changes in the extracel-
lular K

+
 levels and also releases K

+
 out of the smooth muscle 

cell causing hyperpolarisation [89]. The change in the mem-
brane potential of the smooth muscle cell reduces intracellu-
lar Ca

2+ 
levels, resulting in relaxation [88]. 

  Epoxyeicosatrienoic acids (EET) are products of arachi-

donic acid metabolism [90]. Although synthesised in the 
endothelial cell, they act by increasing K

+
 efflux from the 

smooth muscle cells resulting in hyperpolarisation and re-
laxation [91, 92]. However, in vessels where EET activity is 

inhibited, hyperpolarisation still occurs [93], suggesting that 
other mechanisms must be involved in hyperpolarising the 
smooth muscle cells. 

 Gap junctions are intercellular channels which can trans-

fer signals from the endothelial cells to the smooth muscle 
cells [94]. In particular, gap junctions may transfer K

+
 ions 

from the smooth muscle cells into the endothelial cell [95]. 
However, since most studies have only transferred artificial 

dye between the two cells it is difficult to establish exactly 
what is transferred under normal conditions. 

TECHNIQUES TO ASSESS ENDOTHELIAL FUNCTION 

 Endothelial function is most commonly assessed in the 

peripheral circulation as direct assessment of endothelial 
function in the coronary arteries is highly invasive and asso-
ciated with considerable risk for the participant. Several 
studies have reported close correlations between peripheral 

and coronary endothelial function [96-98]. In addition, as-
sessments of endothelial function are good predictors of fu-
ture cardiac events in individuals at risk of CVD and those 
with established CVD [99, 100], and ED is common in indi-

viduals with CVD risk factors [101]. Most assessments of 
endothelial function involve the measurement of dilation in 
response to a stimulus, with impaired vasodilatation indica-
tive of poor endothelial function. However, impaired vaso-

dilatation can be the result of either the endothelium not 
sending the signals to the smooth muscle or of the smooth 
muscle cells not being able to respond to the signal and di-
late. Therefore, in order to distinguish between ED and 

smooth muscle dysfunction, endothelium-dependent and 
endothelium-independent vasodilatation are typically as-
sessed. Techniques that assess endothelial function in differ-
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ent vascular beds is shown in Fig. (2) and described in more 

detail below.  

ASSESSMENT OF MICROVASCULAR ENDOTHE-

LIAL FUNCTION 

a) Iontophoresis 

 The assessment of NO bioavailability in the microvascu-
lature is conducted using iontophoresis [102]. Iontophoresis 
uses a small electrical current to pass negatively and posi-
tively charged vasoactive agents through the skin into the 
resistance vessels on the basis that like charges repel each 
other [103]. The amount of the agent that is delivered to the 
vessel depends on the density and duration of the current. 
The two most common agents used to test endothelial func-
tion are ACh and SNP [104]. The assessment is usually car-
ried out in the forearm. Laser Doppler techniques are used to 
assess the perfusion in response to iontophoresis. Laser 
Doppler flowmetry (LDF) assesses perfusion of the vessel 
over a single point on the forearm [105]. Perfusion can also 
be assessed by Laser Doppler imaging (LDI) which uses the 
same principles as LDF, but rather than scanning one point, a 
whole area of the forearm can be assessed [106].  

 The ACh and SNP are administered in small chambers 
which are attached to the volar aspect of the forearm by wa-
tertight adhesive pads. The anodal chamber contains ACh, 
while SNP is present in the cathodal chamber. Both cham-
bers are connected to an iontophoresis controller which de-
livers the current [105]. The vasoactive agents can be dis-
solved in fluid known as vehicles, e.g. deionised water or 
saline. However, these vehicles can also increase skin perfu-
sion [107]. It has been suggested that use of a lower current 
density reduces the vasodilatory effects of the vehicles, but 
drug administration is also reduced [108]. However, a higher 

current density can be used with 0.5% sodium chloride 
(NaCl), as it does not elicit a vasodilatory response at this 
concentration [107]. External factors such as time of day, 
and menstrual cycle can affect microvascular bloodflow 
[109, 110]. Therefore, it is advisable to follow established 
guidelines when administering this test [111].  

b) Forearm Blood Flow and Venous Occlusion  

Plethysmography 

 Endothelial function of the forearm resistance vessels can 
be assessed using venous occlusion plethysmography (VOP) 
[112]. This assessment stops venous return from the forearm, 
while allowing arterial inflow; blood can enter the forearm 
but cannot escape resulting in a linear increase in forearm 
volume with time which is proportional to the incoming arte-
rial blood flow [112]. The halt in venous return is achieved 
by inflating a blood pressure cuff placed around the forearm 
to below the diastolic blood pressure (typically 40mmHg) for 
10 seconds, followed by 5 seconds of cuff deflation. The 
hand is excluded from the measurement by inflating a blood 
pressure cuff which is placed around the wrist to suprasys-
tolic pressures. This reduces the variation in blood volume 
due to a high proportion of skin blood vessels susceptible to 
temperature variations. VOP can be assessed using auto-
mated equipment which can precisely control the time for 
cuff inflation and deflation. The increase in forearm volume 
is assessed by mercury in rubber strain-gauge plethys-
mograph placed around the widest part of forearm. An in-
crease in the length of the strain-gauge is detected by a 
change in electrical resistance and represents an increase in 
forearm blood flow (FBF). It is also important to assess FBF 
in the contra-lateral arm so that time-dependent changes in 
basal blood flow due to arterial pressure fluctuations can be 
accounted for [112]. The FBF response can also be assessed 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). An overview of the assessments for endothelial function and vascular structure performed in different vascular beds. ACh = Acetyl-

choline, SNP = Sodium nitroprusside. 
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in response to Intra-brachial infusion of various vasoactive 
agonists (ACh, substance P, bradykinin) or antagonists (L-
NMMA, indomethacin) [113].  

c) Nailfold Capillaroscopy 

 Nailfold capillaroscopy is a technique to assess capillary 
structure [114]. The technique involves the application of 
immersion oil to the nailfold epidermis of all ten fingers. The 
nailfold is then placed under a microscope and abnormalities 
in the capillaries are characterised according to their size, 
number and structural characteristics. Capillaroscopic ab-
normalities can be classified into three stages (early, active 
and late). The earliest change to capillary structure is an en-
largement in their size. A reduction in capillary number and 
structural impairments are seen in the active and later stages 
of microangiopathy [114]. 

ASSESSMENT OF MACROVASCULAR ENDOTHELIAL 

FUNCTION 

a) Flow-Mediated Dilatation 

 Flow-mediated dilatation (FMD) is a technique that in-
creases blood flow through an artery to cause vasodilatation 
on the principal that the increased bloodflow produces shear 
forces on the endothelium and subsequently stimulates endo-
thelial cells to release NO [30]. As indicated previously, re-
duced vasodilatation following an increase in shear forces is 
representative of impaired NO bioavailability [115]. There-
fore, FMD is a good surrogate marker of NO bioavailability. 
The FMD protocol involves a 2 minute baseline ultrasound 
scan of the brachial artery, after which a cuff placed around 
the wrist is inflated to 300 mmHg for 5 minutes. This causes 
tissue ischemia and dilation of downstream resistance ves-
sels via auto-regulatory mechanisms. When the cuff is re-
leased a sudden increase in bloodflow (reactive hyperaemia) 
through the brachial artery fills the dilated resistance vessels 
and in doing so exerts shear stress on the endothelial cells 
[116]. The resulting dilation, which peaks at 60-90 seconds 
after cuff release is dependent on NO activity [117]. FMD is 
expressed as the maximum percentage change in vessel di-
ameter after cuff release relative to baseline vessel diameter 
[118], with a low percentage indicating poor endothelial 
function [113]. FMD is typically carried out in the brachial 
artery using high resolution ultrasound to assess the vessel 
diameter, but other arteries such as the radial and femoral 
artery have also been used to measure FMD [117]. Another 
method to quantify the dilation is strain-gauge plethys-
mography, with the strain-gauge detecting the change in arm 
circumference following an increase in blood flow [119].  

 The protocol used for FMD is important as both occlu-
sion duration and cuff placement have been shown to influ-
ence FMD. Five minutes of limb occlusion is adequate to 
evoke endothelium-dependent dilatation, with longer cuff 
durations showing a non-NO response [120]. Similarly, the 
placement of the cuff around the wrist is dependent on NO, 
whereas cuff placement on the upper arm is only partially 
mediated by NO [121]. Further, FMD responses can be af-
fected by external factors such as sleep deprivation [122], 
hyperhomocysteinemia [123], caffeine [124], smoking [125], 
antioxidant therapy [126], menstrual cycle [127] and time of 
day [128]. Accordingly, it is important to control these fac-
tors [116].  

b) Glyceryl Trinitrate  

 As described earlier, GTN produces dilation of the vessel 
by acting directly on the smooth muscle cells [15]. As such, 
the vasodilatory response to activated smooth muscle cells 
can be assessed by GTN administration. GTN is commonly 
administered as a vasodilator to cardiac patients presenting 
with angina as a tablet or oral spray, both of which are 
placed or sprayed directly under the tongue. Typically, the 
assessment is carried out for 3-4 minutes, which is the time 
necessary for the vessels to reach peak dilatation [129].  

c) Arterial Stiffness 

 Each time the heart contracts pressure waves are sent 
throughout the vasculature and the compliant arterial wall 
serves to dampen pressure oscillations that stem from the 
aortic root to aid smooth delivery of bloodflow to the tissues 
[9]. When the pressure waves reach branch points in the vas-
culature they are reflected back towards the heart. In a 
healthy individual the wave arrives during diastole to aid 
filling of the coronary vessels. However, in individuals with 
reduced arterial elasticity the pressure wave returns to the 
heart much quicker and arrives during the systolic phase of 
the cardiac cycle. This serves to augment the afterload (the 
pressure the heart has to overcome to open the aortic semilu-
nar valve) [8]. Some notable complications of arterial stiff-
ness include insufficient myocardial perfusion leading to 
angina or a myocardial infarction, and left ventricular hyper-
trophy which may result in heart failure [130]. It is therefore 
not surprising that assessments of arterial stiffness are asso-
ciated with a number of CVD risk factors such as ageing, 
smoking, hypertension and dyslipidaemia [130]. Stiffening 
of the vascular wall can occur due to a reduction in NO pro-
duction from endothelial cells, loss of smooth muscle tone 
[131], as well as degeneration of elastin fibres and increased 
collagen deposition in the vascular wall [132]. Consequently, 
arterial stiffness is dependent on functional and structural 
changes in the vasculature. 

 A number of techniques can be used to assess arterial 
stiffness non-invasively from the peripheral circulation. The 
most widely used techniques at present are pulse wave 
analysis (PWA) and pulse wave velocity (PWV) due to their 
good reproducibility and ease of use [133]. These assess-
ments have been reported to associate with coronary mi-
crovascular endothelial function [134]. PWA is the single 
measurement of radial artery pressure waveforms which are 
recorded using a transducer which flattens but not occludes 
the artery (applanation tonometery). The waveforms are 
calibrated against the standard brachial blood pressure which 
gives the maximum (systolic) and minimum (diastolic) 
points of the pressure curve. The pressure waveform is then 
mathematically transformed into a central aortic waveform 
which contains the first and second systolic peaks and dis-
plays the augmentation index (AIx). AIx is calculated as the 
difference between the second and first systolic peaks and is 
expressed as a percentage of the pulse pressure, with a high 
value indicating greater arterial stiffness [135]. To obtain 
PWV readings, arterial pressure waveforms are simultane-
ously derived from two arteries, usually the carotid and ra-
dial arteries, using an applanation tonometer. The distance 
between the two arteries is then measured and the wave tran-
sit time between these two points is recorded to give a quan-
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tifiable PWV, with a greater PWV indicating quicker wave 
reflection back towards the heart and therefore greater arte-
rial stiffness [136].  

d) Carotid Intima-Media Thickness 

 Assessment of carotid-intima media thickness (cIMT) 
using B-mode ultrasound was first introduced in 1986 by 

Pignoli and colleagues [137]. The assessment detects thick-
ening of the medial layer of the vascular wall and is a good 
predictor of cardiac events in patients with early atheroscle-
rosis [138], and is also an important predictor for restenosis 

in patients who have undergone percutaneous coronary in-
tervention [139]. In addition, increased cIMT has been re-
ported to relate to a number of classical CVD risk factors 
such as ageing, hypertension, and dyslipidemia [140]. 

Changes in cIMT represents a sequence of events resulting 
from a decrease in NO bioavailability as well as an increase 
in ET-1 levels, which over time increase production of in-
flammatory cytokines, free radicals, adhesion molecules and 

thrombotic factors leading to smooth muscle proliferation 
[141, 142]. Assessment of cIMT is typically performed in 
the common carotid artery, internal carotid artery and at ca-
rotid bifurcation points [143], and each site has a similar 

ability to predict future cardiovascular events [144].  

ENDOTHELIAL DYSFUNCTION IN SELECTED 

CLINICAL POPULATIONS 

a) Endothelial Dysfunction and Cardiovascular Disease  

 Endothelial dysfunction is evident before the presentation 
of obstructive atherosclerotic lesions in both conduit and 
resistance coronary vessels [145], and can even occur in 
children with a family history of cardiovascular disease 

[118]. The magnitude of ED increases in line with the accu-
mulation of CVD risk factors in peripheral conduit vessels 
[146]. Furthermore, endothelial function is a good prognostic 
marker of future cardiac events in patients with CVD [99]. 

Administration of L-arginine can increase NO bioavailability 
and improve endothelial function in patients with CVD risk 
factors [147]. In addition, medications that control CVD risk 
factors like anti-hypertensives or statins may also have bene-

ficial effects on endothelial function primarily through de-
creasing oxidative stress and lipid accumulation [101].  

b) Endothelial Dysfunction and Hypertension  

 In hypertension, the delicate balance between vasodila-

tors and vasoconstrictors produced by the endothelium is 
disrupted, with disturbance in the NO pathway leading to 
predominance of vasoconstrictors like ET-1, which contrib-
ute to high blood pressure [148]. Even though it is still un-

clear whether ED is the cause or the consequence of elevated 
blood pressure , it appears to be an essential factor in hyper-
tension [149]. Studies in humans have reported a significant 
impairment of the vasodilator response of small resistance 

vessels to ACh, but not to SNP, in hypertensive patients 
[150]. Additionally, impaired FMD in the conduit vessels 
identifies hypertensive patients at increased risk for non-fatal 
and fatal cardiovascular events [151], whereas the AIx is  

a predictor of cardiovascular mortality in subjects with  
essential hypertension [152]. Treatment with angiotensin-
converting enzyme (ACE) inhibitors have been shown to 
improve endothelial function [153]. ACE inhibitors reduce 

oxidative stress and stimulate bradykinin to help increase 

NO bioavailability [154].  

c) Endothelial Dysfunction and Diabetes  

 Individuals with type I and type II diabetes have evidence 
of both microvascular and macrovascular ED [155]. ED can 
even be evident in healthy individuals with a family history 
of diabetes [156], suggesting a genetic link. Patients with 
diabetes often have reduced NO bioavailability which results 
from increased oxidative stress [157], and oxidation of LDL 
due to hyperglycaemia [158]. Patients with type 1 diabetes 
have shown improved endothelial function when taking ACE 
inhibitors [159], through a reduction in oxidative stress, and 
an increase in NO bioavailability [154]. 

d) Endothelial Dysfunction and Inflammatory Diseases 

 Patients with a variety of inflammatory disorders such as 
rheumatoid arthritis, bechet’s disease and inflammatory 
bowel disease are also at an increased risk for developing 
CVD [160-163]. In RA, the severity of inflammation can 
impact on the extent of ED [164]. Assessments of carotid 
atherosclerosis appear to have good prognostic value in pa-
tients with inflammatory diseases [165, 166], and as such 
their use to determine CVD risk has been advocated in such 
conditions [167]. Use of anti-inflammatory medications can 
improve endothelial function in the resistance and conduit 
vessels [168, 169], which further supports the role of in-
flammation as an important predictor of CVD in inflamma-
tory diseases [170]. 

SUMMARY 

 The endothelium is important in maintaining vascular 
homeostasis and preventing the development of atheroscle-
rosis. However, perturbation of its activity may lead to ED 
which, if left untreated, could progress to atherosclerotic 
lesion formation and subsequent cardiac events. Therefore, 
assessing endothelial function in patients at risk of cardio-
vascular disease is important to identify vascular abnormali-
ties and may help monitor strategies and interventions that 
can improve endothelial function and lower CVD risk.  
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