
Send Orders for Reprints to reprints@benthamscience.net

 The Open Cybernetics & Systemics Journal, 2014, 8, 29-39 29

 1874-110X/14 2014 Bentham Open

Open Access

Two-phase Automated Software Measure Approach – From Class
Diagram Design to Object-Oriented Metrics
Liu Yang1,*, Zhigang Hu1, Jun Long2 and Yufei Liu1,3

1School of Software, Central South University, Changsha 410075, China
2School of Information Science and Engineer, Central South University, Changsha 410075, China
3School of Software, Fudan University, Shanghai 201203, China

Abstract: Object-Oriented Metrics (OOM) is important for the Object-Oriented software. However, it is too difficult to
measure the metric point values of OOM manually, and it is also too late to measure them after Object-Oriented
programming. This paper presents an efficient two-phase automated software measure approach to generate OOM results
automatically. In the software design phase, the corresponding XMI file is extracted from the class diagrams, which are
designed to present the classes and their relationships of an Object-Oriented system. Therefore, some measure results of
OOM can be directly generated from the class diagrams by designing algorithms of analysing the XMI file. In the
software programing phase, other measure results of OOM can be generated from the source codes and the XMI file of the
systems automatically. Experimental results with class diagrams show that the proposed approach gives the correct
measure results of OOM efficiently.

Keywords: Automated software metrics, class diagram, object-oriented metrics, software measure, software metrics.

1. INTRODUCTION

Measuring quality is the key to developing high-quality
Object-Oriented software [1, 2]. It is widely recognized that
measuring the quality of models should be focused on at
very beginning of Object-Oriented software analysis and
design in order to develop high-quality software products [3-
8]. Therefore, the automated software measurement method
in the early analysis and design phases is necessary for
Object-Oriented Metrics (OOM). On the one hand, the
complexity of the classes and the classes’ relationships
makes it difficult to measure the metric points of OOM
manually. On the other hand, as the software metrics is to
learn, to know, to correct and to improve the problems
existing in the software development, so it is too late to
measure the metric points of OOM after Object-Oriented
programming.

The Unified Modeling Language (UML) [9] helps
software developers to express, communicate, and validate
the design and development of software by UML models. As
one type of UML models, class diagrams are the important
design diagrams in the process of Object-Oriented Analysis
(OOA) and Object-Oriented Design (OOD) of software
development. Firstly, class diagrams can reflect a large
portion of metric points of OOM, such as Class Size (CS),
NOO (Number of Operations Overridden), NOA (Number of
Added), DIT (Depth of Inheritance Tree), NOC (Number of
Children), CBO (Coupling between Objects), and so on.

*Address correspondence to this author at the Central South University,
School of Software, Changsha. Hunan, China, 410075;
Tel: +86-0731-82655363; E-mail: yangliu@csu.edu.cn

Secondly, class diagrams are the key outcomes in the early
phases and the foundation for all later design and coding
phases. For an instance, measuring class diagrams allow
software designers to identify and repair weak
design spots early, rather than repair consequent errors at later
 phases. For an instance, measuring class diagrams allow
software designers to identify and repair weak design spots
early, rather than repair consequent errors at later implemen-
tation phases. Thirdly, they help to predict external quality
characteristics, such as reliability, maintainability and so on.

In recent years, some patents have presented methods or
system of measuring software to predict software defect,
estimate software quality or manage software. The U.S
patent US2,013,042,149 [10] provided a system for
analyzing one or more process of software defect handling
using one or more percentile-based statistical metrics. In the
K.R Patent KR20,100,088,399 [11], the inventors provided
an apparatus and a method for software faults prediction
using metrics to change a measured metric value in other
system, thereby to apply fault prediction model to the other
system. The U.S patent US8,332,822 [12] provided
technologies for estimating code failure proneness
probabilities for a code set and/or the files that make up the
set. In the C.N patent CN102,096,633 [13], the inventors
provided an application field oriented software quality
standard evaluating method to quantitatively and
comprehensively evaluate the software quality based on the
application field oriented software quality standard
comparison system. The U.S patent US2,010,114,638
[14] provided a method and software for the measurement of
quality of process in software development projects. In the

30 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yang et al.

C.N patent CN102,034,169 [15], the inventors presented a
software metric modeling system for a process management
production line, which comprises a metric information input
module and other relational modules.

In order to measure software products in the initial
phases of Object-Oriented software development, Genero
et al. [16] proposed a method of measuring the structural
complexity of UML class diagrams, and they built measure-
based prediction models of UML class diagram
understandability, modifiability and maintainability [17].
Monperrus M. et al. [18] presented an automated approach
to measure requirement models, including inheritance
hierarchy models and requirement concept models, so as to
identify risks and flaws very early in the system life cycle by
measuring requirements. Jose A. et al. [24] identified the
impact of structural complexity on the understandability of
UML state-chart diagrams. Marcela Genero et al. [25] built
measure-based prediction models for the understandability,
modifiability and maintainability of UML class diagram.
Those researches all presented the importance of UML
models, especially the UML class models in the software
design phase. However, those previous works do not make
good use of the class information and relationship
information parsed from the UML class models, and not
designed effective algorithms or tools to provide quantitative
measure results to guide software development.

This paper presents a sophisticated two-phase approach
for generating the measure results of OOM by analyzing the
class diagrams in the design phase and analyzing the source
codes in the programing phase. The organization of this
paper is as follows: Section II presents the OOM methods.
Section III proposes two-phase automated Object-Oriented
Metrics
approach and its implementation procedures. Section IV
 presents the two-phase automated measure algorithms for
OOM, including the design phase measure and the
programming phase measure. Section V shows the
automated measure results of the Automated System Tools
for Object-Object Metric (ASTOOM) by the proposed
approach. Section VI concludes the paper.

2. OBJECT-ORIENTED METRICS

There are several classical Object-Oriented Metrics
methods, such as CK Metrics [19], LK Metrics [20], MOOD
Metrics [21], and so on. (Table 1) shows the classical OOM
and their metric points [19-22]. These metric points reflect
OO characteristics respectively, such as class size,
inheritance, encapsulation, polymorphism, coupling and
cohesion.

In the above metric points of the classical OOM, some
are available for a UML class diagram, but some of them are
not available until the programing phase. The following are
the detail description of CK metric points.

In the above metric points of the classical OOM, some
are available for a UML class diagram, but some of them are
not available until the programing phase. The following are
the detail description of CK metric points.

Table 1. Classical object-oriented Metrics and Metric Points.

OO
Characteristics

CK
Metrics

MOOD
Metrics

LK
Metrics

Size &
Complexity

WMC
PIM, NIM, NIV,

NCM, NCV

Inheritance DIT, NOC AIF, MIF
NMO, NMI,
NMA, SIX

Encapsulation AHF,MHF

Polymorphism PF PF

Coupling CBO, RFC CF

Cohesion LCOM

1) WMC

The WMC (Weighted Methods per Class) is defined as

1

n

i

i

WMC c

=

=! , where c1,…, cn are the complexities of the

methods
of a class with methods M1,…, Mn. If all method complexities
 are considered to be unity, then the WMC is equal to n,
which means the number of methods.

2) DIT

The DIT (Depth of Inheritance of a class) is the
maximum length from the class node to the root of the tree
and is measured by the number of ancestor classes. The
deeper a class is in the hierarchy, the greater the number of
methods it is likely to inherit.

3) NOC

The NOC (Number of Children) is the number of
immediate subclasses subordinated to a class in the class
hierarchy. NOC is an indicator of the potential influence a
class can have on the design and on the system.

4) CBO

The CBO (Coupling between Objects) is a count of the
number of other classes to which a class is coupled. It is a
measure of interactions between classes, and measured by
counting the number of distinct non-inheritance related class
hierarchies on which a class depends. The large the number
of couples, the higher the sensitivity to changes in other parts
of the design, and therefore maintenance is more difficult.

5) RFC

The RFC (Response for a Class) is the count of the set of
that all methods that can be invoked in response to a
message to an object of the class. RFC=|RS|, and

all i{ } { }
i

RS M R= ! , where { }
i
R is the set of methods called by

method i and {M} is the set of all the methods in the class.
The larger the number of methods that can be invoked from
a class through messages, the greater the complexity of the
class.

Two-phase Automated Software Measure Approach – From Class Diagram Design The Open Cybernetics & Systemics Journal, 2014, Volume 8 31

6) LCOM

If a class has different methods performing different
operations on the same set of instance variables, the class has
cohesion. The LCOM (Lack of Cohesion) means that a class
is performing several unrelated tasks, and it implies the class
should probably be split into two or more subclasses. Sup-
pose that class Ck with n methods M1,…, Mn, and Ij is the set
of instance variables used by Mj. There are n such sets I1,…,
In, and {(,)|()= }

i j i j
P I I I I= ! " , {(,)|() }i j i jQ I I I I= ! "# .

| |-| |, if | |>| |

0,

P Q P Q
LCOM

otherwise

!
= "

As to CK Metrics, such the metric points as WMC, DIT,
NOC and CBO are available for the UML class diagrams in
the software design phase, but the metric points of RFC and
LCOM that refer to methods, method calls, and member
variables are not available from UML class diagram [20].
Therefore, those unavailable metric points should be
calculated from the program codes in the software
programing phase.

3. TWO-PHASE AUTOMATED OBJECT-ORIENTED
METRICS APPROACH

The two-phase automated Object-Oriented Metrics
approach contains two phase measurements: the design
phase measurement and the programing phase measurement.
In the design phase, some measure results of OOM are
calculated by the analyzing the UML class diagrams of the
system. In the programing phase, other measure results of
OOM are analyzed and calculated by analyzing the UML
class diagrams combined with source codes of the system.

As shown in (Fig. 1) the two-phase automated Object-
Oriented Metrics approach consists of three key steps: 1)
Parsing the UML class diagrams into the XML documents,
and extract class information from UML class diagrams; 2)
Two-phase automated Object-Oriented Metrics by analyzing
class information and source codes by OOM; 3) Showing
and statistic analyzing the measure results of OOM.

In the above three steps of the proposed two-phase
automated Object-Oriented Metrics approach, the first two

steps contain the design phase measurement by UML class
diagram and the programing phase measurement by source
codes. This proposed approach tries to find out the design
faults in the initial development phase, and has the advantage
of focusing on Object-Oriented design instead of writing
codes.

4. THE MEASURE PROCESS OF TWO-PHASE
AUTOMATED OBJECT-ORIENTED METRICS

4.1. Transforming from UML Class Diagrams into XML

In the software design phase, the UML class diagrams
are designed to describe classes and their relationships in the
system. In order to retain the class information, the UML
class diagrams are transformed to XMI documents by certain
tools. The class information extracted from the UML class
diagrams includes two types of information: class element
data and class relationship data. Class element data include
the information of classes, attributes and operations. Class
relationship data include the information of class
relationships, such as aggregation, composition, association,
inheritance and so on.

 From the above, the UML class diagrams perfectly
reflect the characteristics of class, class complexity,
localization, inheritance, encapsulation, polymorphism,
coupling between objects. Moreover, all of those
characteristics are the key metric points of OOM. Therefore,
this paper presents a novel approach to implement OOM
using UML class diagrams at the software design phase.

UML class diagrams can be transformed into a
corresponding XML document by UML Case Tools. (Table
2) shows the transformation relationships between the
elements of a UML class diagram and XML. The classes
themselves in the class diagram are transformed into classes,
class names, attributes and operations, and the class
relationships between classes in the class diagram are
transformed into all types of relationships, such as
generalizations, associations, aggregations, compositions and
dependencies.

For example, (Fig. 2). shows the transformation result of
“Teacher” class diagram parsing into the corresponding
XML,

Object -Oriented

Metrics Method

Analyse Class

Information by

OOM

Extract Class

Information
XMI

doc

 Measurement

Calculation by

OOM

Show Measure

Results of

OOM

UML Class

Diagram

Sstatistics

Aanalysis of

Measurem Results

codes

Analyse Source

Codes by OOM

Class Diagram

Designing and Parsing

Two-phase Automated

OOM

Measure Results

of OOM

Fig. (1). Two-phase automated OOM approach.

32 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yang et al.

in which<o:Attribute Id="o9"><a:Name>author</a:Name>
…</o:Attribute> represents the “auther” attribute in the
“Teacher” class diagram, and <o:Operation Id="o10">
<a:Name>addBook</a:Name> <o:Operation > represents
the “addBook” operation in the “Teacher” class diagram.

Table 2. Transformation relationships between class
diagrams and XML.

Class Diagram XML

Class <o:Class>

Class Name <a:Name>

Class Attribute <o:Attribute>

Class Operation <o:Operation>

Generalization Relationship <o:Generaliaztion>

Association Relationship <o:Association>

Aggregation Relationship <o:Aggregation>

Composition Relationship <o:Composition>

Dependency Relationship <o:Dependency>

 (Fig. 3) shows the transformation result of class
relationship diagram parsing into the corresponding XML
file, in which <o:Class Id="o10"> <a:Name> Person
</a:Name> ...</o:Class> represents the “Person” class in the
“Person-Teacher” class relationship diagram, <o:Class
Id="o11"> <a:Name>Teacher

</a:Name>…</o:Class> represents the “Teacher” class
in the “Person-Teacher” class relationship diagram, and
<o:Generalization Id="o9">…<o:Generalization> represents
the “generalization” relationship between the “Person” class
and the “Teacher” class in the “Person-Teacher” class
relationship diagram.

Fig. (2). The transformation result of “Teacher” class diagram
parsing into the XML file.

4.2. Automated Measure of OOM in the Design Phase

In the software design phase, such the metric points as
WMC, DIT, NOC and CBO are available from the UML
class diagrams, and those measure results of OOM can be
calculated by designed algorithms of analyzing the above
parsed XML file. The following are the algorithms designed
to generate the above listed metric points’ measure results of
OOM automatically.

Fig. (3). The transformation result of class relationship diagram parsing into the XML file.

Library_card

-
-

id
author

: int
: String

+
+

addBook (Book book)
delBook (Book book)

: void
: void

Person

-
-
-
-

name
age
sex
birthday

: String
: int
: String
: String

+
+

getName ()
setName (String name)

: String
: void

Teacher

-
-
-

id
department
card

: int
: String
: Library_card

+
+

getCard ()
setCard (Library_card card)

: Library_card
: void

Two-phase Automated Software Measure Approach – From Class Diagram Design The Open Cybernetics & Systemics Journal, 2014, Volume 8 33

(Table 3) shows the automatic WMC Metric Algorithm.
The algorithm extracts class sets and their method sets from
the XMI parsing file of UML class diagram, and then gets
the number of methods in each class. The inputs of the
following algorithms showed in (Tables 4 and 6) are all XMI
parsing file of UML class diagrams.

Table 3. The automatic WMC metric algorithm.

WMC Metric Algorithm

Input:

FXMI: XMI Parsing file from the UML Class Diagram

Output:

Value_WMC(Classi): WMC Value of the Class Classi

Begin

1. Value_WMC(Classi) := 0;

2. Extract Class Sets {Class}m and their method Sets

{Method}mn from FXMI;

3. For i: = 0 to m

4. For j := 0 to n

5. If (Methodj.Class() == Classi)

6. Value_WMC(Classi)++;

7. End If

8. End For

9. End For

10. Output Value_WMC(Classi);

End

(Table 4) shows the automatic DIT Metric Algorithm.
The algorithm extracts class sets from the XMI parsing file,
and also builds the inheritance tree of generalization
relationship between classes, and then gets the depth of
inheritance of each class.

Table 4. The automatic DIT metric algorithm.

DIT Metric Algorithm

Input:

FXMI: XMI Parsing file from the UML Class Diagram

Output:

Value_DIT(Classi): DIT Value of the Class Classi

Begin:

1. Value_DIT(Classi) := 0;

2. Extract Class Sets {Class}m from FXMI;

3. Build Inheritance Tree Structure M_Generaliazation

from FXMI I;

4. GetFather(Classi)

5. While (GetFather(Classi .Father()) != !)

6. Value_DIT(Classi)++ I;

7. End While

8. Output Value_DIT(Classi) I;

End

(Table 5) shows the automatic NOC Metric Algorithm.
The algorithm extracts class sets from the XMI parsing file,
and builds the inheritance tree of generalization relationship
between classes, and then gets the immediate children
number of each class.
Table 5. The automatic NOC metric algorithm.

NOC Metric Algorithm

Input:

 FXMI: XMI Parsing file from the UML Class Diagram

Output:

Value_NOC(Classi): NOC Value of the Class Classi

Begin

1. Value_NOC (Classi) := 0;

2. Extract Class Sets {Class}m from FXMI;

3. Build Inheritance Tree Structure M_Generaliazation

from FXMI;

4. For i := 0 to m

5. For j := 0 to m

6. If (i!=j) && (Classj.Father() == Classi)

7. Value_NOC(Classi)++;

8. End If

9. End For

10. End For

11. Output Value_NOC(Classi);

End

(Table 6) shows the automatic CBO Metric Algorithm.
The algorithm extracts class sets and their relationship sets
from the XMI parsing file. It gets the value of coupling
between objects of each class by counting the number of
classes that has the relationship besides generalization with
the particular class. That is, the relationship including
association, dependency, aggregation and Composition.
Table 6. CBO metric algorithm.

CBO Metric Algorithm
Input:

FXMI: XMI Parsing file from the UML Class Diagram
Output:

Value_CBO(Classi): CBO Value of the Class Classi
Begin
1.Extract Class Sets {Class}m and their Relationship Sets

{Relation}mn from FXMI;

2. For i: = 0 to m
3. For j := 0 to n
4. If (i!=j) && (Classi.Relation() != Generalization)
5. Value_CBO(Classi)++;
6. End If
7. End For

8. End For
9. Output Value_CBO(Classi);
End

34 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yang et al.

The class diagrams must be designed in the Object-
Oriented Design phase, and all the Object-Oriented
characteristics of the class diagrams can be generated from
the XMI parsing file. Therefore, the value of such metric
points as WMC, DIT, NOC and CBO can be calculated by
the above designed algorithms.

4.3.Automated Measure of OOM in the Programing Phase
Some metric points such as RFC and LCOM are not

available from the class diagram directly [13]. The source
codes of the system must be analyzed together with the class
diagrams to get the measure results of RFC and LCOM.

(Table 7) shows the automatic RFC Metric Algorithm.
The algorithm extracts class sets and their methods sets from
the XMI parsing file, and also extracts the calling methods in
the methods of each class from the source codes, and then
gets the value of RFC by counting the method number of the
class and the number of calling methods in those methods.

(Table 8) shows the automatic LCOM Metric Algorithm.
The algorithm extracts class sets and their methods sets from
the XMI parsing file, and also extracts the variables from the
methods of each class from the source codes. If every two
method pairs share variables and then the value of LCOM
increases by 1, else decreases by 1.

5. EXPERIMENTAL RESULTS
We design and implement the Automated System Tools

for Object-Object Metrics (ASTOOM) by our proposed
approach. The configuration environments of the system are
listed in the (Table 9).

Table 7. RFC metric algorithm.

RFC Metric Algorithm

Input:
FXMI: XMI Parsing file from the UML Class Diagram
SC: Source codes

Output:

Value_RFC(Classi): RFC Value of the Class Classi
Begin
1.Extract the Class Sets {Class}m and their Methods Sets

{Method}mn from FXMI;
2.Extract the Calling Method Sets {CMethod}p in the Method Sets

{Method}mn from SC;

3. For i: = 0 to m
4. For j := 0 to n

5. For k := 0 to p
6. If (CMethodk Called in the Classi.Method())

 &&(CMethodk ! System Methods)
7. Value_RFC(Classi)++;
8. End If
9. End For

10. Value_RFC(Classi) = Value_RFC(Classi) + n
11. End For
12. End For
13. Output Value_ RFC(Classi);
End

Table 8. LCOM Metric Algorithm.

LCOM Metric Algorithm

Input:

FXMI: XMI Parsing file from the UML Class Diagram

SC: Source codes

Output:

Value_LCOM(Classi): LCOM Value of the Class Classi

Begin

1. Extract the Class Sets {Class}m and their Methods Sets

{Method}mn from FXMI;

2. For i: = 0 to m

3. For j := 0 to n

4. Extract the Variable Sets {Variable}j in the Method Methodij of the Class
from SC;

5. For k := 0 to n

6. If (j!=k)

7. Extract the Variable Sets {Variable}k in the Method Methodij of the Class from
SC;

8. If ({Variable}j! {Variable}k ==!)

9. p(Classi)++;

10. Else

11. q(Classi)++;

12. End If

13. End If

14. End For

15. LCOM(Classi)= p(Classi)-q(Classi);

16. If (LCOM(Classi)<0)

17. LCOM=0;

18. End If

19. End For

20. Output (LCOM(Classi);

 End

Table 9. Configuration environments of the system.

Configuration Parameter

Web Container Tomcat 7.0

JDK Version JDK 7.0

Web Browser Browser with Webkit Kernel

In the experiments, we use PowerDesigner 15.0 to design
UML class diagram, and use dom4j of Java XML API to
parse the UML class diagram. To evaluate the performance
of the proposed approach, we experimented with 30 UML
class diagrams and 60 Java code sections.

(Fig. 4) show simple snapshots of execution implemented
in the Automated Object-Object Metric System Tools. On
the top right of “UPLOAD”, the UML class diagram is
required to upload to the system, and the .zip file or .rar file
of the java code sections is also required to upload.

Two-phase Automated Software Measure Approach – From Class Diagram Design The Open Cybernetics & Systemics Journal, 2014, Volume 8 35

Fig. (4). Snapshot of the automated object-object metric system tools.

Administrator
-
-
-

department
e_mail
id

: String
: String
: int

+
+
+
+
+
+

getId ()
setId (int id)
getDepartment ()
setDepartment (String department)
getE_mail ()
setE_mail (String e_mail)
. . .

: int
: void
: String
: void
: String
: void

Person
-
-
-
-

name
age
sex
birthday

: String
: int
: String
: String

+
+
+
+
+
+
+
+

getName ()
setName (String name)
getAge ()
setAge (int age)
getSex ()
setSex (String sex)
getBirthday ()
setBirthday (String birthday)
. . .

: String
: void
: int
: void
: String
: void
: String
: void

Book
-
-
-
-
-
-
-
-

id
name
author
price
check_in_time
check_out_time
expire_time
state

: int
: String
: String
: double
: String
: String
: int
: String

+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

getState ()
setState (String state)
getCheck_in_time ()
setCheck_in_time (String check_in_time)
getCheck_out_time ()
setCheck_out_time (String check_out_
time)
getExpire_time ()
setExpire_time (int expire_time)
getId ()
setId (int id)
getName ()
setName (String name)
getAuthor ()
setAuthor (String author)
getPrice ()
setPrice (double price)
. . .

: String
: void
: String
: void
: String
: void

: int
: void
: int
: void
: String
: void
: String
: void
: double
: void

DoCheckBookManagement

+

+

check_in_book (Library_card card,
 ArrayList<Book> books)
check_out_book (Library_card card,
 ArrayList<Book> books)
. . .

: void

: void

DoFindHistory

+
+

findBookHistory (Library_card card)
findPunishmentHistory (Library_
card card)
. . .

: void
: voidLibraryManagement

-
-
-

a
b
c

: String
: String
: String

 = 1
 = 2
 = 3

+
+
+

check_in_library (Library_card card)
check_out_library (Library_card card)
do_punish (Library_card card, ArrayList<
Book> books)
. . .

: void
: void
: void

Library_card
-
-
-

id
author
books

: int
: String
: ArrayList<Book> = new ArrayList<Book>()

+
+
+
+
+
+

getId ()
setId (int id)
getAuthor ()
setAuthor (String author)
addBook (Book book)
delBook (Book book)
. . .

: int
: void
: String
: void
: void
: void

Punish_info
-
-
-
-
-

id
punisher_id
punish_time
punishment
info

: int
: int
: Date
: double
: String

+
+
+
+
+
+
+
+
+
+

getId ()
setId (int id)
getPunisher_id ()
setPunisher_id (int punisher_id)
getPunish_time ()
setPunish_time (Date punish_time)
getPunishment ()
setPunishment (double punishment)
getInfo ()
setInfo (String info)
. . .

: int
: void
: int
: void
: Date
: void
: double
: void
: String
: void

Student
-
-
-
-
-
-

id
department
student_number
e_mail
max_num
card

: int
: String
: String
: String
: int
: Library_card

+
+
+
+
+
+

+
+
+
+
+
+

getId ()
setId (int id)
getDepartment ()
setDepartment (String department)
getStudent_number ()
setStudent_number (String student_
number)
getE_mail ()
setE_mail (String e_mail)
getCard ()
setCard (Library_card card)
getMax_num ()
setMax_num (int max_num)
. . .

: int
: void
: String
: void
: String
: void

: String
: void
: Library_card
: void
: int
: void

Teacher
-
-
-
-
-
-

id
department
teacher_number
e_mail
max_num
card

: int
: String
: String
: String
: int
: Library_card

+
+
+
+
+
+

+
+
+
+
+
+

getId ()
setId (int id)
getDepartment ()
setDepartment (String department)
getTeacher_number ()
setTeacher_number (String teacher_
number)
getE_mail ()
setE_mail (String e_mail)
getCard ()
setCard (Library_card card)
getMax_num ()
setMax_num (int max_num)
. . .

: int
: void
: String
: void
: String
: void

: String
: void
: Library_card
: void
: int
: void

Fig. (5). The class diagram of the LIMS.

36 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yang et al.

Fig. (6). The class tree parsed from the class diagram.

To evaluate the functions of the proposed approach, a
Library Information Management System (LIMS) is tested.
After uploading the UML class diagram of the LIMS showed
in (Fig. 5) and the .zip file of the LIMS from ASTOOM, the
system output the classes parse results of UML class
diagram, which showed in the (Fig. 6).

 (Table 10) shows the experience results of the C&K
metric. (Figs. 6-11) show experimental results for WMC,
DIT, NOC, CBO, RFC and LCOM, respectively.

After running ASTOOM, the measure results of C&K
Metric can be generated automatically. (Figs. 7 and 12)
shows the automated measure results of WMC, DIT, NOC,
CBO, RFC and LCOM for each class in the class diagram,
respectively. From those figures, we can clearly observe the

Object-Oriented characteristics of the system, such as
inheritance, complexity, encapsulation, coupling and
cohesion, and can easily find out faults and errors in the
design phase or in the coding phase. In addition, we can also
identify the classes and the methods prone to errors, which
must be implemented and tested carefully.

In the (Fig. 6), the WMC value of the “Book” class is 16,
which is the highest in all classes. In addition, the RFC value
of the “Book” class is 16, which is also the highest in all
classes. That means that there are 16 methods in the “Book”
class, and we should pay more attention to write those
method codes.

From the (Fig. 9), we can find out that the CBO value of
the “Library_card” class is 6, which is the highest in all
classes. That means that the “Library_card” class has the
closest interactions with other classes, and it is more
sensitive to changes in other classes and more difficult to
maintain. Therefore, we should pay more attention to design,
implement and test the “Library_card” class.

5. CURRENT & FUTURE DEVELOPMENTS

This paper presents a novel approach of automated two-
phase software measure of Object-Oriented Metrics. The
approach contains three key steps, including transforming
the UML class diagrams into the corresponding XMI files,
making measure of OOM by class information parsing from
XMI files in the design phase and by source codes in the
programing phase, and showing and analyzing the measure
results of OOM. We design the algorithms for automated
measure of OOM, and implement the Automated System
Tools for Object-Object Metrics (ASTOOM) by our
proposed approach and algorithms. The experiment results
show that the proposed approach is effective for Object-
Oriented software to carry out automated measurement. In
addition, the measure results of OOM are instructive to
learn, to know, to correct the problems existing in the
software development, so as to improve the software quality.
In the future work, we will combine interaction diagrams
with class diagrams in the design phase to analyzing the

Table 10. Measure results of C&K metric.

Class Name WMC DIT NOC CBO RFC LCOM

Book 16 0 0 3 16 104

Student 12 1 0 1 12 54

Teacher 12 1 0 1 12 54

DoFindHistroy 2 0 0 1 2 1

Administrator 6 1 0 0 6 9

DoCheckBook 2 0 0 2 2 1

Punish_info 10 0 0 1 10 35

Library_card 6 0 0 6 6 9

Library_mana 3 0 0 3 4 0

Person 8 0 3 0 8 20

Two-phase Automated Software Measure Approach – From Class Diagram Design The Open Cybernetics & Systemics Journal, 2014, Volume 8 37

Fig. (7). The measure results of WMC.

Fig. (8). The measure results of DIT.

Fig. (9). The measure results of NOC.

38 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Yang et al.

Fig. (10). The measure results of CBO.

Fig. (11). The measure results of RFC.

Fig. (12). The measure results of LCOM.

Two-phase Automated Software Measure Approach – From Class Diagram Design The Open Cybernetics & Systemics Journal, 2014, Volume 8 39

response number of a class, which reflects the complexity of
the class.

CONFLICT OF INTEREST

The authors confirm that this article content has no
conflict of interest.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science
Foundation of China under the Grant No.61301136, No.
61272148 and No. 61272150, and the national High-tech
R&D Program of China under the Grant No.
SS2012AA010105.

REFERENCES
[1] J. Conejo, M. A. Plazas, R. Espnola, and A. B. Molina, “Day-ahead

electricity price forecasting using the wavelet transform and
ARIMA models”, IEEE Trans. Power Syst., vol. 20, no. 2, pp.
1035-1042, May 2005.

[2] N.F. Schneidewind, “Methodology for validating software metrics”,
IEEE Trans. Softw. Eng., vol. 18, no.5, pp. 410-422, 1992.

[3] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of the
MOOD set of object-oriented software metrics. IEEE Trans. Softw.
Eng., vol. 24, pp. 491-496, June 1998.

[4] N. F. Schneidewind, “Body of knowledge for software quality
measurement”, IEEE Computer, vol.35, no.2, pp.77-83, 2002.

[5] L. Briand, J. Wust, and H. Lounis, “Investigating quality factors in
object-oriented designs: an industrial case study”, Technical report
ISERN 98-29 (version 2), 1998.

[6] L. Briand, C. Bunse, and J. Daly, “A controlled experiment for
evaluating quality guidelines on the maintainability of object-
oriented designs”, IEEE Trans. Softw. Eng., vol. 27, no.6, pp. 513-
530, 2001.

[7] J. Bansiya and C. Davis, “A hierarchical model for object-oriented
design quality assessment”, IEEE Trans. Softw. Eng., vol. 28, no.1,
pp. 4-17, 2002.

[8] F. Fioravanti and P. Nesi, “Estimation and prediction metrics for
adaptive maintenance effort of object-oriented systems. IEEE
Trans. Softw. Eng., vol.27, no.12, pp. 1062-1083, 2001.

[9] OMG, Unified Modeling Language Specification, v.1.4.2, Object
Management Group & International Organization for
Standarization, 2005.

[10] C. Murry, F. Amit, SS. Sateesh, W. Segev, and Z. Sergey,

“Analyzing a process of software defects handling using percentile-
based metrics”, U.S. Patent 2,013,042,149, Feb 14, 2013.

[11] C. H. Seok, K. T. Yeon. “Aapparatus and method for software
faults prediction using metrics”, K. R. Patent 20,100,088,399, Aug
09, 2010.

[12] N. Nachiappan and B. Thirumalesh, “Technologies for code failure
proneness estimation”, U.S. Patent 8,332,822, Dec 11, 2012.

[13] Z. M. Meng, X. Q. Liu, “Application field oriented software quality
standard evaluating method”, C.N. Patent 102,096,633, Jun 15, 2011.

[14] B. Yegor, T. Corp, “Method and software for the measurement of
quality of process”, U.S. 2,010,114,638, May 06, 2010.

[15] H. Hou, J. Ding, “Software metric modeling system and method for
process management production line”, C.N. Patent 102,034,169,
Apr 27, 2011.

[16] M. Genero, M. Piattini, and C. Calero “Metrics for high-level
design UML class diagrams: an exploratory analysis”, J. Object
Technol., vol. 4, no. 9, 2005, [Available at http://www.jot.fm].

[17] M. Genero, E. Manso, A. Visaggio, G. Canfora, and M. Piattini,
“Building measure-based prediction models for UML class diagram
maintainability”, Empir. Softw. Eng., vol. 12, pp.517-549, 2007.

[18] M. Monperrus, B. Baudry, J. Champeau, B. Hoeltzener, and J. M.
Jezequel, “Automated measurement of models of requirements”,
Softw. Qual. J., vol. 21, pp. 3-22, 2013.

[19] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design”, IEEE Trans. Softw. Eng., vol. 20, no.6, pp. 476-
493, 1994.

[20] M. Loernz and J. Kidd, “Object-Oriented Software Metrics- A
Practical Guide”, Englewood Clisff. N.J.: PTR Prentice-Hall, 1994.

[21] L. Rosenberg, R. Stapko, and A. Gallo, “Applying Object-Oriented
Metrics”, The 6th International Symposium on Software Metrics.
Boca Raton, Florida, November 4-6, 1999.

[22] M. Genero, M. Piattini, and C. Calero, “A Survey of Metrics for
UML Class Diagrams”, J. Object Technol., vol. 4, no.9, pp. 59-92,
2005.

[23] S. R. Chidamber, D. P. Darcy, and F. Chris, “KemererManagerial
use of metrics for object-oriented software: an exploratory
analysis”, IEEE Trans. Softw. Eng., vol. 24, pp. 629-640, 1998.

[24] J. A. Cruz-Lemus, A. Maes, M. Genero, G. Poels, and M. Piattini,
“The impact of structural complexity on the understandability of
UML statechart diagrams”, Inform. Sci., vol. 180, pp. 2209-2220,
2010.

[25] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, “A methodology
to assess the impact of design patterns on software quality”,
Information Softw. Technol., vol. 54, pp. 331-346, 2012.

[26] J. Al Dalla and L. C. Briand, “An object-oriented high-level design-
based class cohesion metric”, Inform. Softw. Technol., vol. 52, pp.
1346-1361, 2010.

Received: July 23, 2014 Revised: August 14, 2014 Accepted: August 17, 2014

© Yang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

