
Send Orders for Reprints to reprints@benthamscience.ae

322 The Open Cybernetics & Systemics Journal, 2014, 8, 322-329

 1874-110X/14 2014 Bentham Open

Open Access

Multi-tenant Data Authentication Model for SaaS

Lin Li1,3, Lanju Kong1,2, Qingzhong Li1,2*, Zhongmin Yan1,2 and Hui Li1,2

1School of Computer Science and Technology, Shandong University, Jinan, P.R. China; 2Shandong Provincial Key
Laboratory of Software Engineering, Jinan, P.R. China; 3School of Mathematical Sciences, Shandong Normal
University, Jinan, P.R. China

Abstract: In SaaS, most tenants rely on the service provider for data maintenance and computation. As tenants no longer
possess their application and data locally, it is of critical importance for the tenants to ensure that their data are being cor-
rectly stored and maintained. However, the customized multi-tenants sharing storage mode makes it hard for tenants to
guarantee their data integrity because multiple tenants’ data is stored in one physical universal table and different data
types may be stored into a flex column based on tenants’ customization. Meanwhile to ensure performances of query,
adequate pivot table is set up. These introduce new challenges to data integrity protection for tenants. This paper presents
a review of the state of the art solutions and recent patents in the fields of data authentication, and puts forward a multi-
tenant data authentication model (MTDA). MTDA is a composite structure that constructs pivot authentication tree (PAT)
on the pivot table and combines it with signature set (S-set) built on universal table to ensure that malicious insiders can't
modify the data in pivot table and universal table. The main contribution of MTDA is it can guarantee the tenant query re-
sult in one tree travels and return the verification object, corresponding to the result on pivot table and universal table. We
demonstrate effectiveness of our model compared with direct adoption of the MB tree based approaches on pivot table
and universal table through the experiment. MTDA shows a better performance on VO verification.

Keywords: Authentication, database, data integrity, multi-tenant, SaaS.

1. INTRODUCTION
Software-as-a-Service, i.e. SaaS [1], is an emerging

model that allows tenants to outsource computation and stor-
age of their data to external service providers. By leasing the
service and giving the data to the service providers, the ten-
ants can be relieved of the burden of computation and stor-
age and pay more attention to their business. However, the
service provider malicious insiders may violate tenant data
integrity for to some benefits, they may delete, modify, fab-
ricate tenant’s data for ulterior motives. Since the service
provider may not be trusted, or may be compromised, ten-
ants need to be affirmed that their query results have both
correctness and completeness. Correctness implies that the
result data records indeed be the tenant's legitimate original
data, and that they have not been tampered with in any way.
Completeness requires that no qualifying records have been
omitted.

However, there are some obstacles for the existing meth-
od to apply suitably on tenant data authentication in SaaS.
First, most SaaS service providers adopt the single instance
multi-tenancy strategy to take full advantage of resources
such as hardware and database, and multiple tenants data is
stored in one physical table such as universal table which
means different data types may be stored into a flex column
based on tenants’ customization [2-4]. Second, in order to

*Address correspondence to this author at the High-tech Industry Develop-
ment Zone Shunhua Road 1500, Shandong University, Jinan Shandong,
China 250101; Tel: (86) (86)18663719666; Fax: 0531-88390081;
E-mail: lqz@sdu.edu.cn

guarantee performances of query operations in large multi-
tenants data set, adequate pivot table [5-7] for tenant data are
set up to speed up the query process. Those data stored in
pivot table should also be included in the integrity considera-
tion of tenants’ data.

Existing methods for query result authentication fall into
two categories. One is Merkle hash tree based approaches [8-
13] the other is signature based [14-18]. And the MHT based
approaches shows advantage over the signatures based, due
to the efficiency of hashing computing compared to signa-
ture computing. However it is improper to build an authenti-
cation structure such as MHT directly on the multi-tenant
universal table, for there may be different data types con-
tained in one column and some tenant may not want the in-
tegrity guarantee. And it needs multiple MHTs to be set up
to guarantee both the universal table and pivot table, which
leads to double travels of the MHT on verification object
(VO) set up and reconstruct. Compared to the MHT ap-
proaches, the signature based ones are easier to guarantee
isolation between tenants on the universal table for they re-
quire signatures on every record, but it brings lots of signing
work to the pivot table which may contain several-fold data
records compared to the universal table. So it is inefficient to
use MHT based or signature based approaches alone for the
tenant data integrity in SaaS.

Based on recent methods and patents in the fields of data
authentication and secure storage, this paper puts forward a
multi-tenant data authentication model (MTDA). The main
idea of MTDA is to constructs MHT tree based authentica-
tion structure Tenant Pivot authentication tree (PAT) on the

Multi-tenant Data Authentication Model for SaaS The Open Cybernetics & Systemics Journal, 2014, Volume 8 323

pivot table for each tenant to ensure that malicious insiders
can't modify the index data in pivot table, and MTDA com-
bine PAT with signature set (S-set) built on universal table to
ensure the integrity of tenant query results. In order to meet
the different integrity requirement of different tenants,
MTDA is independent with the index structures built on
pivot table by setting up separated authentication structures
instead of coalescing as the MHT into the data index. The
MTDA tree can guarantee the tenant query result in one tree
travels, while return the VO corresponding to the result on
pivot table and universal table. We demonstrate effectiveness
of our model compared with applying the MB tree based
approaches directly on pivot table and universal table
through the experiment.

The rest of this paper is organized as follows. The next
section covers related works. In Section 3 we present the
system model as our work basis. Section 4 introduces the
MTDA model and Section 5 presents the experiment. And
Section 6 gives the conclusion of this paper.

2. RELATED WORK

Nowadays, most of the existing methods for data integ-
rity verification fall under two categories -MHT-based ap-
proaches and signature aggregation. Reference [10] utilize
the Merkle hash tree to provide authentication. The owner
builds a Merkle tree on the records in the database, based on
the query attribute. Similar to the original MHT, the root
digest is signed by the owner. The server returns the query
result along with the necessary hashes for the client to recon-
struct the root of the Merkle tree to verify the query results.
And it proposes MB tree which combines B+-tree with
MHT. Reference [11] introduces EMB tree for one-
dimensional queries over disk-resident data. However those
indexing authentication structures are not suitable to multi-
tenant, because they incorporate the MHT into the data index
while in SaaS the data index is shared by multiple tenants
and some of them may not want the integrity guarantee, even
all the tenants need the guarantee it is hard for those applied
directly on the shared storage because there may be different
data types contained in one column. Reference [12] proposes
a partially materialized digest scheme in which they split the
authentication structure from the data index and extend their
work to the spatial database, but it does not apply for the
multi-tenant circumstance.

The work in [15] proposed two signature schemes that
enable aggregating multiple individual signatures into one
unified signature, verifying which is equivalent to verifying
ALL individual component signatures. The size of the ag-
gregated signature equals that of a single plain digital signa-
ture (which is constant), irrespective of either the database
size or the query reply size. The condensed multiple signa-
tures can be verified almost as fast as an individual signa-
ture. Reference [16, 18] introduce approach based on signa-
ture aggregation and chaining to achieve authentication of
query replies. With the database ordered on an attribute, the
owner hashes and signs every three sets of consecutive data
records. Posed a range selection query on the attribute, the
server returns the qualifying data, along with hashes of
boundary record. The signatures of all the result records are
aggregated and placed into the verify object. Signature ag-

gregation has a smaller proof and is amenable to concurrent
updates. Reference [14] constructs a signature aggregation
protocol that provides freshness and guarantees authentica-
tion for the basic relational operators. Compared to the MHT
approach, the signature aggregation makes it easier to guar-
antee isolation between tenants for they require signature of
every record, but it needs to chain the searching attribute to
protect the completeness, if there are multiple searching at-
tribute it need lots of consecutive data records to check the
completeness. In our scenario, we need to consider the pivot
table integrity along with the tenant data, since the pivot ta-
ble stores the tenant index data only and there may be several
attributes stored into pivot table, using signature method to
protect the pivot table will lead to several-fold signatures and
as to the tenant data in the universal table which leads to lot
of resources wasted on storing those signatures.

Beyond those, Reference [8] focuses on the authentica-
tion of long-running queries on outsourced data streams and
presents a CADS model to achieve correctness and com-
pleteness on continuous data streams. Reference [9, 19]
mainly aims at handling aggregation queries (e.g., SUM,
MAX, etc.) and promoting authentication structures on SUM
queries. Reference [20] inserted certain fake tuples into the
real data and verified query integrity by checking the fake
tuple in the result. Reference [21] presented the dual encryp-
tion approach, where certain data are encrypted with differ-
ent keys and query integrity could be checked by “cross ex-
amination”. All of these works well in their respective sce-
narios but could not be applied to the multi-tenant storage
ideally. Reference [21] presented a formal security definition
of query integrity in outsourced dynamic databases. Refer-
ence [22] focuses on the case that service providers are not
always trustworthy and promote a meta-data driven data
chunk based secure data storage model for SaaS to ensure the
data integrity. But it also did not give an appropriate solution
on how to guarantee both the pivot table and tenant data.

Besides these works, there are many patents on data
authentication and secure storage. US Patent Application
20080115194 “Authentication of modified data” [23] intro-
duces an authentication method that uses authentication in-
formation to authenticate the modified data. US Patent Ap-
plication 20100031048 “Data Authenticator” [24] make use
of user encoded result to authenticate target data based on
signature. US Patent Application 20120222127 "Authenticat-
ing a web page with embedded javascript "[25] presents a
method for detecting if a digital document (e.g. an HTML
document) is changed by others than authenticated script
code, the digital document can then at any time be compared
with the most recent snapshot to verify if it is authentic. The
patents on SaaS storage contain US Patent 8280874 [26]
which puts forward a multi-tenant database using dynamic
tuning of database indices, JP Patent 2013168044 [27] aim-
ing to provide a SaaS management system capable of facili-
tating the management of the SaaS by a system manager. US
Patent Application 20110126168 [28] provides a cloud plat-
form for managing resources wherein the SaaS applications
and customer data are stored logically and physically inde-
pendent of the computing resources. US Patent 7693970 [29]
presents secure shared storage infrastructure accessible by
more than one customer in isolation.

324 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Li et al.

Base on the above mentioned works, we know the MHT
base approach and signature aggregation have their disad-
vantages to apply to multitenant sharing storage and MTDA
combines them together to ensure tenant query integrity. For
the tenant data in universal table, MTDA signatures each
record and does not link the signatures on searching attrib-
ute, this can ensure the data correctness but not the com-
pleteness. The data completeness can be guaranteed by the
pivot table where MTDA creates separate PATs on each
query attribute. Based on the correctness and completeness
of the pivot table, MTDA can ensure the completeness of
tenant data.

3. PRELIMINARY

This section gives the system model, attack model and
problem description as our work basis.

3.1. System Model

The system model for SaaS includes three entities: ten-
ant, trusted third party and the service provider. The system
architecture is shown in Fig. (1).

Tenants: an entity that customizes and consumes SaaS
applications provided by service provider and relies on the
service provider for data maintenance and computation.

The trusted third party (TTP): The TTP which has exper-
tise and capabilities that tenant do not have is used to assist
the tenant to manage their secret key information and pro-
vides integrity policy for data integrity verification of ten-
ants. TTP mainly contains identity management, tenant key
management and the integrity policy management. Identity
management is used for prohibiting untrustworthy entity
from getting tenant’s secret key and the integrity policy. Se-
cure tenant key management assists the tenants to manage

their public key and secret key. Integrity policy management
stores the customization integrity policy of the tenants.

Service provider (SP): an entity, which has significant
computing resource and storage space to maintain the ten-
ants' applications and data storage.

3.2. Attack Model

We assume that the SP’s are not necessarily trusted be-
cause of the possibility of the malicious insider. Based on the
researches and patents on trust platform [30-33], we assume
that the SaaS platform can be trusted, that is, the applications
implementation mechanism on the Service provider such as
data engine shown in Fig. (1) is trusted. And we explore an
integrity protection module in platform. This module can
assist tenants on their data integrity customization and verify
the data integrity with the help of the trusted third party. Be-
sides, we assume that all communications go through a se-
cure channel between the SP, TTP and tenants.

Based on the above assumptions, we concentrate on the
analysis of malicious behavior from the SP malicious insid-
ers which means that the Data storage of the Service pro-
vider may be violated by the malicious insider. For example,
insiders may delete the record of a tenant in universal table,
change the data item in pivot table or universal table or forge
some non-existent record to tenants’ data hosted by SP stor-
age, which violates tenant data integrity.

On the SP side, the trusted data engine (DE) contains
metadata manager and data integrity protection module (the
other functions of the data engine have little to do with our
research, so we ignore them here). The metadata manager
manages the customization information of tenants based on
their logical view. The data integrity protection module is
used to establish the authentication structure of the tenants

Fig. (1). System architecture.

Data integrity protection

module

Meta Data Manager

5.Data,
verification structure

Trusted Data Engine

Tenant A

Tenant B

Index Data

Verification

Universal Table

Data Storage
MetaData

SP

Identity

Management

 Tenant key

management

Integrity Policy

Management

TTP

TenantA

TenantB

Tenant

browser

browser

2.Register
Subscribe
Customize

3.Register
Policy

management

4. Data
Submit

1.Registraction
 5. auxiliary information

Multi-tenant Data Authentication Model for SaaS The Open Cybernetics & Systemics Journal, 2014, Volume 8 325

data though the customization of tenant data and verify the
data integrity with the help of a trusted third party.

The Data storage stores the metadata, universal table, in-
dex data and the verification structures of tenant's data.
Metadata is used to store the customization information of
tenant. Based on the metadata data engine can convert the
tenant logical view into the physical storage view in trans-
parency. The universal table is a physical sparse table that
stores all the tenant data in one table on the data node.
Among which, GUID (Globally Unique Identifier) is treated
as the physical primary key to achieve the rapid location in
the record level. SP copies field data to be indexed into the
pivot table and creates physical indices such as B+ tree on
the table to accelerate the query speed. This index model
could support customization and isolation characteristics of
multitenant applications. The verification structures stores
the verification structures of the tenant. In this paper, the
verification structures of a tenant is built on the physical
pivot table and sparse table records and stored in an external
file on the data node.

3.3. Problem Description

Given a tenant T, suppose tenant T has a logical view
R(A1, A2, ..., An) and tenant customizes A1 as the search at-
tribute and registers query on it (Here we mainly aim at the
case of searching key data type that does not have dupli-
cates). The physical view in shared table corresponding to R
containing records as r(guid, T, value1, value2, ..., valuen),
while value1, value2, ..., valuen corresponding to A1, A2, ...,
An. The values of A1 are stored in pivot table as record
t(indexID, value, guid).

In this paper we consider equality and range selections.
Equality selections are treated as a special case of range se-
lections, so we focus on the latter. Suppose tenant T request
a query Q such as (SELECT * FROM R WHERE ql< A1<qu),
where ql(qu) is the lower(upper) bound of Q. The set of tu-
ples that satisfy the query predicate is denoted by SAT(Q),
and the final answer returned is ANS(Q). The process of que-
ries of tenant in SaaS can be defined as follows: When tenant

pose queries Q to SP, the data engine takes charge of query
transformations and submits those queries to the data node:
first data engine registers the query QP on the pivot table to
get the middle result set, Set(QP); then data engine registers
query, QS, on the sparse table based on Set(QP) and obtains
the result set ANS(Q). So the DE obtains the ANS(Q) along
with the VO. VO enables the data engine to verify the cor-
rectness and completeness of ANS(Q). If the result set is le-
gitimate, the data engine returns those data to the tenant
through the application, else the data engine rejects the result
set.

The problem of authenticating queries of tenant in SaaS
is to define the appropriate verification structures on the
sharing storage mode that ensures the data engine to verify
the correctness and completeness of ANS(Q), in other words
ANS(Q) has been indeed computed solely from SAT(Q). Be-
cause the sharing storage mode leads to a situation that the
same column may contain numerous data types of multiple
tenants' and tenant data loses their logical semanteme in
shared table. So we may not be able to determine the con-
secutive pairs of tuples in shared table which have a definite
order in tenant logical view given a searching attribute. To
resolve this problem, we take a roundabout solution that
combines the tenant data in sparse table with the index data
together to establish the tenant data authentication which will
be discussed in detail in the next section.

4. MULTI-TENANT DATA AUTHENTICATION
MODEL

In this section, we proposed a solution for tenant data
authentication in SaaS called tenant composite data authenti-
cation model(MTDA). Conceptually, MTDA is a composite
tree and consists of two layers: the upper is PAT which is a
MHT based authentication structure building for pivot table
and the lower is S set with the corresponding signatures of
the records in the universal table. The exact structure of
MTDA is shown in Fig. (2).

PAT is an extended MHT with fanout f (f ≥2) built for
each tenant's searching attribute. Each leaf entry of PAT cor-

Fig. (2). Multi-tenant data authentication model for SaaS.

<TenantID, guidi, sn>

ki|guidi|hi=H(ki|guidi)

Root=sigsk(H(TenantID|TableID

|ColumnID|hroot))

...

...

PAT

of Tenant T01

on A1

Directory root

PAT

 of Tenant T01

on A2

 PAT

of Tenant T02

 on A1

rootn

S set of Tenant T01 S set of Tenant T02

 kf|guidf|hf

ks|ps|hs=H(hi|…|hf)

...

root
Traditional index on

TenantID,TableID, ColumnID

...

...root1 rooti

326 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Li et al.

responds to the data record, t, in pivot table with the form
<k, guid, h > where k is the searching key of PAT, guid is
used to locate the signature that corresponds to k and the
hash value h=H(k|guid). For the internal nodes of PAT, each
nodes is a triplet < k, p, h>, where k is the search key of the
first record in the subtree of this node, p is a pointer to the
corresponding child node and h=H(h1|...|hf), where h1,..., hf
are the hash values of the node's children. Here we pick up
those repetitions in pivot table like tenantID, TableID and
ColumnID as public information and put the public informa-
tion into PAT's root, root=< TenantID, TableID, ColumnID
k ,p, Root>, where Root is the signature of PAT and Root =
sigsk(H(TenantID|TableID|ColumnID|hroot)), hroot is the di-
gest of the PAT root, denotes string concatenation and sk is
tenant's private key and stored in TTP.

The Signature set S set contains all the signatures of the
universal table with the form <TenantID, GUID, SN>,
where the TenantID indicates the owner of the signature,
GUID is the search key value and SN represents the digital
signature. Here the GUID is corresponding with the leaf
node of PAT. When tenant data stores into universal table
via DE, the DE computes the signature snri.guid of each record
ri in universal table, snri.guid =sigsk(h(guid|TenantID| ta-
bleID|a1i|a2i|...|ani)). Based on the signature in S, the DE can
verify the correct and provenance integrity of ANS(Q), but it
can’t discover if the malicious insider deletes the tenant re-
cord in universal table, for the records of ANS(Q) may be
scattered in the share table based on the query attribute.

The PAT is, respectively, built on the searching columns
on pivot table for each searching key. As the example shown
in Fig. (2), there has two tenants with TenantID T01 and T02.
Tenant T01 specify the column A1 and A2 as the searching
key, while the Tenant T02 specify the column A1 as the
searching key. The MTDA creates three PATs respectively
on those columns, as shown in the red, orange and green
dotted box and PAT of T01-A1 an T01-A2 share the signatures
set of Tenant T01. From Fig. (1), we can see that multiple
PATs could be set up on the pivot table to adapt the query
conditions of different attribute, while all the PATs of a ten-
ant shares the SignatureSet. The server combines these indi-
vidual signatures into a single aggregated signature and re-
turns the result set comprised of the tuples along with the
aggregated signature. Upon receipt, the tenant simply veri-
fies the latter. This organization form could effectively adapt
the changes of the tenant query conditions on different
searching attribute in index table while introduce fewer in-
fluence to the S, because the PAT and Signature Set are two
independent structures associated by GUID.

4.1. Verification Object Construction and Authentication
of MTDA

As shown in Fig. (2), suppose tenant T01 register a range
query Q :[ql,qu] on A1. On receiving the query request of the
DE, the data manager performs two top-down traversals to
locate the leaf node that is immediately before ql and after qu
in the PAT, respectively. Those leaf are necessary to enforce
the set(QI) has completeness and to ensure the DE dose not
omit results at the range limits. Then the data manager lo-
cates the signature of Set(QS) based on PAT in the signature
set S and computes the VO of the data result set ANS(Q) for
the DE to check the integrity of the query results.

Table 1. VO construction algorithm.

Algorithm 1 MTDAVO(Query Q; PAT T ;Signature Set S; String VO)
Begin
VO=Null;
P=Null;
RangeTAB(T.root,[ql,qu])
Append boundary leaf node to VO
Append Root to VO
For every element in P Append sn to VO
 RangeTAB(Node N, Range R)
Aggregate signature returned by S
Begin
Append { to the VO
 For each entry e in N
 If N is a intermediate node
 If e intersects the query range
 RangeTAB(e.prt, R)
 Else append e.h to the VO
 Else if e is leaf node
 Append t correspond to e.k to the VO
Append e.guid to P
Append } to the VO
End
End

Specifically, the VO includes: (1) the digest the pruned

internal node of PAT, (2) the record of pivot table in every
visited leaf node, (3) the lower (upper) boundary of an inter-
nal node, here we use {indicate the lower boundary and }
present the upper; (4) the Root of PAT , and (5) the aggre-
gated signatures of all the records that satisfy the Q in S. The
VO construction algorithm is shown in Table 1.

When the DE verifies the VO, it first reconstructs the root
digest h'root. Based on the h'root and Root, the DE can estab-
lish if Set(QI) is correct and complete. For the result in
Set(QS), first the DE checks if all the GUID in Set(QI) ap-
pears in Set(QS), then computes the digest of the record in
Set(QS) and authenticates with the signatures of all the re-
cords that satisfy the Q in S, the verification algorithm is
shown in Table 2.

4.2. The Correctness and Completeness of MTDA

Based on the signature involved in VO, the data engine
can verify the correct and provenance integrity of ANS(Q),
but it can’t discover if the malicious insider deletes the ten-
ant record in shared table for the records of ANS(Q) may be
scattered in the share table based on the query attribute.

As the query process of QS can be treated as equal-join
query between index table and shared table with join condi-
tion Indextable.GUID= Sharedtable.GUID in their respec-
tive attribute. Because the GUID attribute is the globally
unique identifier for record level rapid positioning, it is a
one-to-one correspondence between Index table and Shared
table. Based on the query process, we get the following con-
clusion.

Multi-tenant Data Authentication Model for SaaS The Open Cybernetics & Systemics Journal, 2014, Volume 8 327

Table 2. The verification algorithm.

Algorithm 1 CAS verification(VerificationObject VO, Set(QS))
Begin
h'root= Reconstruct(VO)
verify h'root with VO.Root or reject
For every t in VO
If t.GUID contained in Set(QS) or reject
For every r in Set(QS) verify r.digest with sn or reject
//
Reconstruct (VerificationObject VO)
Begin
 S=Null
 While VO≠ Null
 Remove next entry e from VO
 If e is a hash value Append e to S
 If e is a point of record r Append h(r) to S
 If e is (, Append Reconstruct h'root(VO) to S
 If e is), return hash(S)
End

Theorem 1 If the Set(QI) is correct and complete, any
deletion on the shared table of Set(QS) can be checked by
compare Set(QI) with {GUID| Set(QS)}, if Set(QI)={GUID|
Set(QS)}, we can say that Set(QS) is complete.

Proof: Consider the contrary, suppose the Set(QS) is
complete, but Set(QI) ! {GUID| Set(QS)}. Consider the two
situations: a, Set(QI)< {GUID| Set(QS)} ; b, Set(QI)>
{GUID| Set(QS)}.

Against a, it means ! r, r!Set(QS) and r.guid!Set(QI),
r is omitted from Set(QI) which means Set(QI) is incom-
plete, it conflicts with the precondition that Set(QI) is correct
and complete.

Against b, it means ! r, r!Set(QS) and r.guid!Set(QI),
because precondition that Set(QI) is correct and complete, r’s
absent from Set(QS) is conflict with the assumption that the
Set(QS) is complete.

So give the precondition that Set(QI) is correct and com-
plete, we can check the completeness of ANS(Q) by compar-
ing Set(QI) with {GUID| Set(QS)}.

The correctness of the index data is guaranteed by PAT
due to the security of collision-resistance hash functions and
the public key digital signature for the hash value of the root
node. Completeness can be assured by the sorted binary sets
and the boundary binary set that enclose the select range.
Based on the PAT, we can ensure the correctness and com-
pleteness of Set(QI). And according to Conclusion 1 and
PAT, we can check the completeness of ANS(Q) by compare
Set(QI) with {GUID| Set(QS)}.

4.3. Data Update

In MTDA the data update contains three kinds of circum-
stance: data insert, delete and modify. For data deleted, we
can mark on the tree and set to delete information and don’t
adjust the structure; for data insert, we insert in the leaf node
with new hash and signature and then bottom-up change the
path node until the root. For data modification, there are two

types of modification: one is only the universal table that
does not involve the pivot table and the other involves both.
For the former category, we only need to update the signa-
ture of the corresponding to the modified record while the
later need to amend the PTA tree and S-set at one time and
insert belongs to the later one.

4.4. Cost Analysis of MTDA

Suppose there are N records in Tenant logical view R and
the ANS(Q) has NQ records, |k|, |p|, |h| and |sn| denote the
size of the searching key, pointer, hash value and signature.

Storage cost the storage cost of PAT is:

C
s

MTDA = (
Nf - 1

f - 1
)(| k |+| p |+| h |)+ 2! | sn | (1)

VO Construction Suppose δi is the total number of
query results contained in the left boundary leaf node of the
query sub tree, µi on the right boundary of the sub tree, the
size of the VO is:

C
s

VO = (logN!" #$ - logN
Q

!
"

#
$) % (f - 1)| h |

+ 2f - d
i
- m

i() | h |
i=0

logN
Q

!
"

#
$-1

& + 2 | sn |

+(f - d
logN

Q
!
"

#
$
- m

logN
Q

!
"

#
$
)+ 2(N

Q
+ 2)| h |

 (2)

Verification cost Given the VO, DE has to compute the
missing digests and combine them with the VO to retrieve
the root of the PTA tree. This procedure involves calculating
2·|NQ|−1 hashes on top of ANS(Q), and combining them with
the VO digests, incurring a maximum of 2·(dPTA tree−1) addi-
tional digest computations. Finally, DE has to verify whether
the computed PTA tree root matches the one returned in the
VO, using the tenant’s public key. Letting the verification
cost of signature be Cv and hash cost be Ch. The total verifi-
cation cost is:

C
c

VO = f i + logN!" #$ - logN
Q

!
"

#
$

i=1

logN
q

!
"

#
$

%
&

'

(
(

)

*

+
+
, c

h

+N
Q
, c

h
+ 2 , c

sn

 (3)

5. EXPERIMENT

We perform an experiment to demonstrate our analysis of
the multi-tenant data authentication scheme approach. Based
on the meta-data driven multi-tenancy storage model, we
construct the shared database storage model with MySQL
5.6.14 and the development environment is Eclipse-SDK-
4.3.1-win 64 Bit, operating system is Windows XP Profes-
sional Service Pack 3, CPU is Inter Core (TM)2 2,33GHz,
and the memory is 2Gb. We utilize RSA signatures that are
typically 128 bytes in size and SHA1with 20-byte outputs.

5.1. Query Performances

In this experiment, we test the query performances influ-
ence to T01 of the index authentication scheme to multitenant
sharing database. We compare the pivot based index models

328 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Li et al.

with the case that builds MB trees on pivot table with search-
ing key A1. We set up a Tenants T01 with a data set cardinal-
ity with 300k records with size of 1024 bits and range que-
ries with selectivity σ varying between 10% and 50%. The
result shows that the query response of independent authen-
tication model is about three times faster than index authen-
tication scheme, shown in Fig. (3). So for the diversity of
tenant requirement, it is inappropriate to apply generic index
authentication scheme for tenants.

Fig. (3). Query performances.

5.2. Construct Cost

In this experiment, we set up a Tenants T01 with data set
with 100k record and they customize the same application
while T01 specify A1 A2 as the searching key. We stores T01-
A1, T01-A2 into pivot table. We compare our models MTDA
with the case T that builds MB tree on universal table with
searching key and pivot table. We specify the fanout of MB
tree and PAT as f=10 in our experiment. The set up cost of
them is shown in Fig. (4). Since in MB tree, in order to sup-
port simple range queries on multiple single attribute, hash
trees for all possible attributes orders of relation must be pre-
computed [16]. The construction cost of MB tree solution is
growing with the specified index attributes numbers, so is
pivot table authentication. But the construction cost of the
universal table of S set is constant because S set is shared by
multiple searching attributes.

Fig. (4). The initial set up cost of MTDA and MB on Universal
table and Pivot table.

Fig. (5). Total hash operations of VO verification.

Fig. (6). VO verification Time.

5.3. VO Verification

In this experiment, we create workloads of random 100
range queries with selectivity σ varying between 10% and
50% on data cardinality 300K on T01-A1. MTDA show a better
performance on VO verification, because in the case T, they
have to set up separate MB trees on universal table and pivot
table which leads to double reconstruction of MB tree, while
in MTDA, they only need to travel the tree once and combine
with one aggregated signature to verify tenants data. Fig. (5)
shows the total hash operations and Fig. (6) gives the total
VO verification times. It shows that MTDA have an advan-
tage on the query conditions changing to different searching
attribute, compared with MB tree approaches.

6. CONCLUSION AND FUTURE WORK

In SaaS, applications and databases are both hosted at the
service providers, tenant query result authentication become
the biggest challenge caused by the untrustworthiness of
service providers. In this paper, we put forward a multi-
tenant data authentication model MTDA. MTDA can accom-
modate the multi-tenant properties perfectly by establishing
isolated authentication structures for each tenant based on
their integrity demands. There remains some problem of
MTDA for the future work such as the tenant dynamic data

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5

Q
u
e
ry
 T
i
m
e(
ms
) MB tree

MTDA

0

50

100

150

200

250

300

350

400

0.1 0.2 0.3 0.4 0.5

H
as

h
 c

o
m

p
u

ti
n

g(
in

 t
h

o
u

sa
n

d
s)

MB tree

MTDA

200

300

400

500

600

700

800

900

1000

1100

1200

0.1 0.2 0.3 0.4 0.5

To
ta

l T
im

e
(m

s)

MB tree

MTDA

Multi-tenant Data Authentication Model for SaaS The Open Cybernetics & Systemics Journal, 2014, Volume 8 329

operation and multiple attribution query authentication. To
combine data integrity with data privacy in SaaS is a chal-
lenging problem which remains to be solved.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENT

This work is supported by National Key Technologies
R&D Program No.2012BAH54F01; National Natural Sci-
ence Foundation of China under Grant No.61272241,
No.61303085; Natural Science Foundation of Shandong
Province of China under Grant No.ZR2013 FQ014; Science
and Technology Development Plan Project of Shandong
Province No. 2012GGX10134; Independent Innovation
Foundation of Shandong University under Grant No.
2012TS075, No.2012TS074; Shandong Province Independ-
ent Innovation Major Special Project No. 2013CXC30201.

REFERENCES
[1] Wikipedia. Software as a service. http://en.wikipedia.org/wiki/

Software_as_a_service.
[2] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, J. Rittinger, “Multi-

Tenant Databases for Software as a Service,” Schema-Mapping
Techniques. SIGMOD, 2008.

[3] J. L. Beckmann, A. Halverson, R. Krishnamurthy, J. F. Naughton,
“Extending RDBMSs To Support Sparse Datasets Using An Inter-
preted Attribute Storage Format,” ICDE, 2006.

[4] E. Chu, J. Beckmann, J. Naughton, “The MDAe for a Wide-Table
Approach to Manage Sparse Relational Data Sets,” SIGMOD, 2007.

[5] C. D Weissman, S. Bobrowski, “The Design of the Force.com
Multitenant Internet Application Development Platform,” SIG-
MOD, 2009.

[6] L. Kong, Q. Li, Y.Shi, X. Wang, “A research on SaaS-oriented
multitenant indexing model based on keyvalue pairs,” Chinese J.
Comput., 2010.

[7] C. Pang, Q. Li, L. Kong, “An Index Model for Multitenant Data
Storage in SaaS”, WAIM 2013, LNCS 7923, vol. 7923, pp. 423-428.
2013.

[8] S. Papadopoulos, Y. Yang, D. Papadias, “Continuous authentication
on relational streams”, VLDB J. (VLDB), vol. 19, no. 2, pp. 161-
180, 2010.

[9] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, “Authenticated
Index Structures for Aggregation Queries,” ACM Trans. Inf. Syst.
Secur. (TISSEC), vol. 13, no. 4, pp. 32, 2010.

[10] P. T. Devanbu, M. Gertz, Charles U. Martel, S. G. Stubblebine,
“Authentic Third-party Data Publication”, DBSec, pp. 101-112, 2000.

[11] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, “Dynamic
authenticated index structures for outsourced databases”, SIGMOD,
pp.121-132, 2006.

[12] K. Mouratidis, D. Sacharidis, and H. Pang, “Partially materialized
digest scheme: An efficient verification method for outsourced da-
tabases,” Int. J. Very Large Data Bases, vol. 18, no. 1, pp. 363-381,
2009.

[13] W. Wei, T. Yu, R. Xue, “iBigTable: practical data integrity for
bigtable in public cloud”, CODASPY, pp. 341-352, 2013.

[14] H. H. Pang, J. Zhang, K. Mouratidis, “Scalable verification for
outsourced dynamic databases,” PVLDB, vol. 2, no. 1, pp. 802-813,
2009.

[15] E. Mykletun, M. Narasimha, G. Tsudik, “Authentication and integ-
rity in outsourced databases,” TOS, vol. 2, no. 2, pp.107-138, 2006.

[16] M. Narasimha, G. Tsudik, “Authentication of outsourced databases
using signature aggregation and chaining,” DASFAA, pp. 420-436,
2006.

[17] H. H. Pang, K. L. Tan, “Authenticating query results in edge com-
puting”, ICDE, pp. 560-571, 2004.

[18] H. Pang, A. Jain, K. Ramamritham, and K. L. Tan, “Verifying
completeness of relational query results in data publishing,” ACM
SIGMOD, pp. 407-418, 2005.

[19] S. Papadopoulos, A. Kiayias, D. Papadias, “Exact in-network ag-
gregation with integrity and confidentiality,” IEEE Trans. Knowl.
Data Eng. (TKDE), vol. 24, no. 10, pp. 1760-1773, 2012,

[20] M. Xie, H. Wang, J. Yin, and X. Meng,”Integrity Auditing of Out-
sourced Data”, In: Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB 2007), pp.782-793, 2007.

[21] H. Wang, J. Yin, C. Perng, and P. Yu, ”Dual encryption for query
integrity assurance”, In: Proceedings of the 17th ACM Conference
on Information and Knowledge Management (CIKM 2008), pp.
863-872, 2008.

[22] Y. Shi, K. Zhang, Q. Li, “Meta-data driven data chunk based secure
data storage for SaaS”, JDCTA: Int. J. Digit. Cont. Tech. and its
Appl., vol. 5, no. 1, pp. 173-185, 2011.

[23] J. G. Apostolopoulos, “Authentication of modified data”, U. S.
Patent Application 20080115194. May 15, 2008.

[24] J. D. Koziol, A. R. Koziol, “Data authenticator”, U. S. Patent Ap-
plication 20100031048. Feb 04, 2010.

[25] M. Boesgaard, “Authenticating a web page with embedded
javascript”, U. S. Patent Application 20120222127, Aug 30, 2012.

[26] C. Weissman, D. Moellenhoff, S. Wong, P. Nakada “Multi-Tenant
Database System”, U. S. Patent 8280874, Oct 2, 2012.

[27] M. Sakai, “SAAS management system, method for saas manage-
ment, and SAAS management program”, J. P. Patent, 2013168044.
Aug 29, 2013.

[28] E. Ilyayev, “Cloud plarform for managing software as a service
(SAAS) resources” U. S. Patent Application 20110126168. May 26,
2011.

[29] C. W. Eidler, W. T. Fuller, M. Hanly, S. H. Berman, R. Joyner, B.
Van Hooser, P. T. Conroy, “Secured shared storage architecture”
U. S. Patent 7693970. Apr 06, 2010.

[30] A. Brown, J. S. Chase, “Trusted platform-as-a-service: a founda-
tion for trustworthy cloud-hosted applications”, CCSW, pp. 15-20,
2011.

[31] J. E. King, R. J. Jones, “Enhancing trusted platform module per-
formance”, U. S. Patent Application 20060005000. Jul 05, 2006.

[32] J. E. King, R. J. Jones, “Trusted platform modules,” U. S. Patent
8429423. Apr 23, 2013.

[33] M. Scott-nash, A. Munoz, A. Altman, “Virtual trusted platform
module”, U. S. Patent Application 20140007087. Jul 02, 2014

Received: September 22, 2014 Revised: November 30, 2014 Accepted: December 02, 2014

© Li et al. Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-
licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

