
Send Orders for Reprints to reprints@benthamscience.ae

1060 The Open Cybernetics & Systemics Journal, 2015, 9, 1060-1063

 1874-110X/15 2015 Bentham Open

Open Access

Research of Improved Shortest Path Algorithm in Campus GIS

Xiaohui Zhang
1,*

 Xiaoyan Guo
1
, Gu Jing

2
and Houliang Xie

3

1
Information Engineering Department, Yellow River Conservancy Technical Institute, Kaifeng 4750004;

2
School of

software, Central South University, Hunan 410004;
3
Information Engineering Department, Zhangjiajie Institute of

Aeronautical Engineering, Zhangjiajie 427000

Abstract: In searching of campus geographic information system, the shortest path is always the key and its efficiency

which determines the quality of the service of the digital campus directly. In the classic algorithm, the time complexity is

proportional to the vertex number's square. With the increasing of the vertex number, the speed will fell down sharply.

Based on the reality such as the large number of population, plenty of buildings, teaching resources, this article proposed

an improved bi-directional A* algorithm which changing the target point into surface in search direction by using the

middle list searching the target bi-directionally. The experimental results show that, compared with Dijkstra and A* algo-

rithm, bi-directional A* algorithm is the fastest in the search, even when the vertex number large, it also can compute

well.

Keywords: Campus GIS, search efficiency, the shortest path algorithm, time complexity.

1. INTRODUCTION

GIS is Geographic Information System [1, 2] (Geo-
graphic Information System, or Geo- Information System). It
is a computerized data management system [3-5] used to
capture, store, manage, retrieve, analyze, and display spatial
information and it is also an important part of "digital earth
network". In searching of campus geographic information
system, the shortest path is always the key and its efficiency
which determines the quality of the service of the digital
campus directly. Based on the number of nodes is large, this
paper studies how to improve the efficiency of node space,
achieve the goal of finding the shortest path and make a
practical application in digital campus.

2. RELATED THEORY FOR THE SHORTEST PATH
ALGORITHM

2.1. Dijkstra Algorithm

Dijkstra algorithm [6, 7] mainly solves the problem of
finding the shortest path from a point in a graph (the source)
to a destination in the directed graph G = (V, E). This one
runs the fastest among three classical Dijkstra, the Bellman –
For [7], Floyd – Warshall [7]. For it set up a vertex set S, the
final weight of the shortest path from the source points to the
vertex in the S set have been determined. The algorithm re-
peatedly chooses the shortest path to estimate the peak of the
u - S V, and put u to join the rest of the S, for u all the
edge one by one to visit (also known as relaxation technique
called Relax [7]). At present, as a classical Dijkstra algo-
rithm, have improved different [8], and the K shortest path
algorithm is appeared [9].

2.2. A* Algorithm

The traditional A* algorithm [10] is an advanced Dijkstra

version, namely, on the basis of Dijkstra it is added in the

heuristic search which helps calculate the evaluation function

F of all the extensible vertex currently when it extends to the

next vertex, however it will choose the superb rather than the

adjacent vertex whose path weight is the minimum to extend.

A* algorithm includes two lists: open list and close list.

The former store those vertex will be accessed; the latter

store those vertex had been accessed already and no longer

accessed again. In A*algorithm, F=G+H is the evaluation

function of extensional, G means the distance from the for-

mer vertex to the current one, also can be considered as the

path weight; H means the estimation of distance that is from

the current vertex to the destination one.

H is called A* algorithm’s heuristic function. At present,

there are many kinds of calculations methods about H func-

tion, for based on GIS, we using the Manhattan calculating,

which calculate the difference between two points of ab-

scissa and ordinate, then add together. Because the shortest

distance between two points is always a straight line. Thus

we speculate that, the H function will compute a minimum

value, so the linear distance will be priority, which conform

to the practical demand of GIS search.

3. THE IMPROVED SHORTEST PATH ALGORITHM
OF GIS

3.1. Bi-Directional A* Algorithm

3.1.1. Main Idea of bi-Directional A* Algorithm

Considering the map entity data is more and more accu-
rate in the GIS, that is in improving the accuracy of the data

Research of Improved Shortest Path Algorithm in Campus GIS The Open Cybernetics & Systemics Journal, 2015, Volume 9 1061

at the same time will increase the storage of data. For im-
prove the efficiency of the algorithm further and provide
search service better, bi-directional A* algorithm is proposed
in this paper.

Bi-directional A* algorithm is based on A* but it has two
distinctiveness: (1) A* algorithm search direction is single,
from the starting point to the target point. Bi-directional A*
algorithm can range from starting point to the target point or
from the target point to the starting point; (2) the direction of
the goal of A* algorithm is only target, the single point of
one direction, and the direction of the bi-directional A* can
include goals around the point, that is, A plane direction.

3.1.2. Design of Bi-Directional A* Algorithm

A* algorithm contains two pairs of lists that respectively
are open (positive) and close (positive) by forward direction
search and open (negative) and close (negative) by back-
wards direction search. In addition, A* can't simply alter-
nates from start point to the target point and the target point
to the starting point of the search. To solve this problem, the
paper puts forward this, if the vertex of forward searching
extension are closer to the goal one, positive search is exe-
cuted, otherwise, the reverse search is executed.

Below are the Bi-directional A * algorithm:

1) Clear the two list that is open list and close list. Add the
starting point to the open positive list, add target point
negative list.

2) Detection whether close positive and close negative two
list have any intersection, if yes then turn to (3); or go
to (4).

3) In the intersection of close positive and the close
negative, choose the direction of the positive and
negative two functions of F value added the smallest
vertices, which as the intersection of the forward and
reverse search path of the output with the corresponding
weights (i.e., the value of the G function), return success.

4) Check open positive and open negative, if one is empty,
then end of the algorithm, and then return inaccessible
information of the starting point to target point;or go to
(5).

5) Comparison of forward and reverse search, specific is as
follows: to compare the function F value of the open
positive and open negative for leftmost node in the
middle-order, if the value of H positive is greater then H
negative, then take positive search, otherwise take the
reverse search.

6) Search forward (search reverse). Delete the leftmost node
Vz of open positive list by middle-order, and put it to
close positive list (close negative list). Expand Vz
adjacent vertices, calculate the corresponding function
values F, one at a time to join the open positive list(open
negative list) (among them, the calculating process of F
function is given in the subsequent), turn to (2).

The process of H function is given in the following:

1) To calculate the G function value of vertex Vp which
need to insert in the open positive(negative) list, among
them, G is the path weight of Vp to its father vertex Vz.

2) To calculate the G function value of vertex Vp which
need to insert in the open positive(negative) list: list all
the vertices of close negative list(close positive list),
calculated the Manhattan distance of Vp to Vq, that is H
= | Xp - Xq | | + Yp - Yq |.

3) F = G + H.

Above is the specific process of bi-directional A *
algorithm. In contrast to traditional Dijkstra and A *
algorithm, the process of bi-directional A * algorithm is
relatively complex, but the bi-directional A * can effectively
reduce the search area, especially in some cases need to
bypass path, bi-directional A * more advantage.

3.1.3. The pseudo-code of bi-Directional A*

The following is the pseudo-code of the bi-directional A
* algorithm(G is the graph input, s initial vertex, t represents
the target vertices, F evaluation function):

ShortestPath_DoubleAStar(G,s,t,F)

(1) Initialize_Source(G,s)

(2) close positive ; close negative

(3) Insert(open positive,s); Insert(open negative,t)

(4) while close positive close negative =

(5) do if open positive = or open negative =

(6) return FALSE

(7) else

(8) u1=Extract_Min(open positive,F); u2=Extract_
Min(open negative,F)

(9) if H(u1) > H(u2) then // forward search

(10) do Insert(close positive,u1)

(11) for each vertex v Adj[u1]

(12) do Relax(u1,v,F)

(13) else //reverse search

(14) do Insert(close negative,u2)

(15) for each vertex v Adj[u2]

(16) do Relax(u2,v,F)

(17) u Extract_Min(close positive close nega-
tive,F+F’)// The best intersection point

(18) GetPathValue(u)

(19) ReturnPath(u,G+G’)

(20) return TRUE

4. EXPERIMENTAL EVALUATION

4.1. Experiment Setting

Considering the bi-directional A* algorithm could be
used in A variety of computer equipment, this article will
choose two configuration of computer hardware for
experimental evaluation, specific configurations are as
follows:

1062 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Zhang et al.

Configuration 1:

CPU: Intel Core i3-3110M 2.4GHz

Memory: 4G DDR3 1333MHz

Disk: WDC SATA 500G

Configuration 2:

CPU: Intel Xeon E5-2600 2 2.0GHz 8cores/CPU
32Mbcache/CPU

Memory: 8G 8 DDR3 1600MHz

Disk: WDC SATA 1T

Using Windows 7 development environment for Visual
Studio 2012 [11], ArcGIS10, development language is c++
[12]. In this paper, experimental data are provided by the
campus GIS, in order to facilitate programming, GIS data
structure using the grid structure. In addition, this experiment
will evaluate traditional Dijkstra and A*, bi-directional A*
three algorithms. To simulate the multiplayer online request
application environment at the same time, the experiment is
divided into single thread and multithreading concurrent.

4.2. Experimental Results

4.2.1. Single Thread Results of the Three Algorithms

In order to highlight three algorithms running time gap,
grid size for practical ground is 1 cm x 1 cm, each algorithm
performs 10 groups of test data, and accumulate the results
after the time, the results are shown as in Table 1.

Experimental results show that as for the total run time of
the 10 groups grid data, bi-directional A* algorithm is the
best, traditional A* is the second, the worst one is Dijkstra

algorithm. The reason why Dijkstra algorithm runs slowest is
its searching with no direction, and too much intermediate
points are produced. In configuration 1, due to Dijkstra
algorithm need a lot of memory for running the 10 groups
grid data, lead to the collapse of the computer system.
Therefore, the sysbol "-" is used to express. Traditional A *
algorithm runs faster because it has directivity. As for bi-
directional A* algorithm, the search is not only bi-directional
but also make the goal direction to be a surface, so it is the
best of them.

4.2.2. Multithreading Concurrent Results of the Three Al-
gorithms

Because the memory leak in Dijkstra algorithm, in the
multitasking test, the grid size switch to the actual ground 50
cm by 50 cm. To evaluate the three algorithms, the each "set-
ting" machine executes multitasking tasks four times, that is:
100, 200, 400, 800; each task is also 10 groups. Multitasking
research requests made by another terminal machine with the
local laboratory network, time interval of sending between
each task is 100 ms, terminal machine will end it and service
machine make the undisposed requests line up, when receiv-
ing the final commanding, it will record the total running
time, and returns the result. The results of configuration 1 are
shown in Fig. (2).

() The running results of configuration 1:

The total time consumed for multitasking by all the three
algorithm increase with the increase of the number of tasks.
In the time consumption of multitasking, bi-directional A*
algorithm is best; traditional A* comes the second; Dijkstra
algorithm is the worst. Traditional A* algorithm is better
than the Dijkstra algorithm for the reason is that the middle

Table 1. Three algorithms comparison for total run time.

Algorithm Configuration 1(ms) Configuration 2(ms)

Dijkstra - 2690033

A* 809755 801688

Bi-directional A* 756819 738896

Fig. (2). Total time comparison of multitasking.

Research of Improved Shortest Path Algorithm in Campus GIS The Open Cybernetics & Systemics Journal, 2015, Volume 9 1063

of the directional search and produce less points. Bi-
directional A* algorithm is the best. The reason is about two-
way characteristic and shape the direction of the search.

() The running results of configuration 2:

The total time consumed for multitasking by all the three
algorithm increase with the increase of the number of tasks.
In the time consumption of multitasking, bi-directional A*
algorithm is best; traditional A* comes the second; Dijkstra
algorithm is the worst. Traditional A* algorithm is better
than the Dijkstra algorithm for the reason this is that the
middle of the directional search and produce less points. Bi-
directional A* algorithm is the best. The reason is about two-
way characteristic and shape the direction of the search.

5. SUMMARY

This experiment used two different configuration of the
machine to run the test about the three algorithms of single
task and multi tasks. The results show that bi-directional A*
algorithm is superior to traditional Dijkstra and A * algorithm.

Search path is the most important and the most com-
monly used function of GIS. With the popularity of elec-
tronic map, there will be more people using GIS path to
search capabilities in the future. And bi-directional A * algo-
rithm is an improvement of traditional A* algorithm. The
algorithm can effectively avoid the search process into the
"dead end" leading to too much time consumption.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Feizizadeh B, Jankowski P, Blaschke T. A GIS based spatially-

explicit sensitivity and uncertainty analysis approach for multi-

criteria decision analysis[J]. Computers & Geosciences, 2014,

64(1):81–95.

[2] Ghosh D, Ghose T, Mohanta D K. Reliability analysis of geo-

graphic information system (GIS) aided optimal phasor measure-

ment unit location for smart grid operation[J]. Proceedings of the

Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability, 2013, 23(5): 06-13.

[3] Pradhan B. A comparative study on the predictive ability of the

decision tree, support vector machine and neuro-fuzzy models in

landslide susceptibility mapping using GIS[J]. Computers & Geo-

sciences, 2013, 51(10): 350-365.

[4] Jakubiec J A, Reinhart C F. A method for predicting city-wide

electricity gains from photovoltaic panels based on LiDAR and

GIS data combined with hourly Daysim simulations[J]. Solar En-

ergy, 2013, 93(8): 127-143.

[5] Devkota K C, Regmi A D, Pourghasemi H R, et al. Landslide sus-

ceptibility mapping using certainty factor, index of entropy and lo-

gistic regression models in GIS and their comparison at Mugling–

Narayanghat road section in Nepal Himalaya[J]. Natural Hazards,

2013, 65(1): 135-165.

[6] Wagner R B D D P S D S D. Combining hierarchical and goal-

directed speed-up techniques for Dijkstra's algorithm[J]. Proceed-

ings of Workshop on Experimental Algorithms Wea’,

2010,43(6):303-318.

[7] Sedgewick R, Flajolet P. An introduction to the analysis of algo-

rithms[M]. Addison-Wesley, 2013.

[8] Dong Jun and Huang Chuan-he. Research on Shortest Path Search

of Improved Dijkstra Algorithm in GIS Navigation Application [J].

Computer Science,2012,10(2):245-257.

[9] Mao Shao-wu, Zhang Huan-guo and Huang Chong-chao. A new

fault-tolerance mechanism in communications based on K shortest

path algorithm[J]. Wuhan Univ, 2013,16(06):534-538.

[10] Bell M G H. Hyperstar: A multi-path Astar algorithm for risk

averse vehicle navigation[J]. Transportation Research Part B:

Methodological, 2009, 43(1):97–107.

[11] Johnson B. Professional Visual Studio 2012[M]. John Wiley &

Sons, 2012.

[12] Meyers S. Effective C++: specific ways to improve your programs

and designs[M]. Pearson Education, 2005.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Zhang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (3). Total time comparison of multitasking.

