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Abstract: This paper puts forward a new maximal margin classification algorithm based on general data field (MM-

GDF). This method transforms the linear inseparable problem into finding the nearest points in the general data field 

(GDF). GDF is inspired by the physical field. Different dimensions represent the different properties. Not all attributes 

play a decisive role in the classification process. Therefore, how to find decisive data points and attributes is a critical is-

sue. This research builds a general data field structure in high dimension data sets. The role of data point is expanded from 

local to global by GDF. We calculate the weights of data points and features by the potential value in data field space. We 

put it into practice. Experiments show that MM-GDF method is better than the exiting common methods.  
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1. INTRODUCTION 

The local hyper plane distance nearest neighbor’s classi-
fication builds an on-linear decision surface with maximal 
local margin in the input space, with in variance inferred 
from the local neighborhood rather than the prior knowledge, 
so that it performs very well in many applications MM-GDF 
is a new nearest neighbor classifiers. The distance metric of 
MM-GDF was calculated in general data space. A new clas-
sification hyper plane was constructed which has been gen-
eral used in SVM. SVM has attracted substantial interest in 
machine learning and pattern recognition since the mid-
1990s [1, 2]. SVM try to find an optimal separating hyper 
plane with the maximal margin. This procedure can be cast 
into a constrained quadratic optimization problem which has 
a unique solution. In MM-GDF, we still find the k nearest 
neighbor points to construct the classification hyper plane. 
The k nearest neighbor (KNN) classification is  popular 
method for classification [3-6]. Independent distance metric 
is used in 1NN method [7]. The performance of KNN relies 
on appropriate distance metric of the input data points. 

performance of KNN is even better than 
1NN [8]. Although KNN is simple and the parameter is only 
one, the value of K is generally small [10]. 

Recently, a series of improved methods have been pre-
sent [11-15]. HKNN method performs very well among the 
manifold-related methods in some applications [16]. The 
extension and improvement of the HKNN algorithm named 
adaptive local hyper plane (ALH) algorithm is present by 
Yang Tao [13, 17].  

The attributes metrics and data preprocessing are basic 
problems in the research of SVM. Maximal margin algo-
rithm doesn’t need any particular statistical distribution of  
 

the training data [9]. It requires the tuning of only one free 
parameter. The goal of building the maximal margin classifi-
cation model is maximizing the distinctions between the in-
put data points by a decision surface. The method presented 
in this paper has been compared to the other maximal margin 
classification methods, including SVM, HKNN, and ALH. 
The MM-GDF method improves the hyper plane selection 
strategy. It calculates data sets attribute weights in GDF. The 
data point in space exist a certain potential value with the 
other nearly points. If the qualities of data points are equal, 
the distribution of the data-intensive areas will have a higher 
potential value. The potential function obtains the maximum 
point in the vicinity. The potential function may reflect the 
distribution of data intensive. This distribution will be used 
as to estimate the overall distribution. The rest of this paper 
is organized as follows: Section 2 presents the concepts of 
data field and general data field. The steps of MM-GDF are 
present in Section3. The competitive experiment and analy-
sis of the results are proposed in Section 4. 

2. BACKGROUND 

In order to overcome the weaknesses of gravity long 
range nuclear, data field space is introduced. Inspired by the 
ideas of the physical field, the interaction between the data 
points is introduced as data field potential value. 

2.1. Definition of Data Field 

The data field equipotential surface is used to describe 

the greater amount potential pitch spaces. The less potential 

field equipotential lines means the distance radiation attenua-

tion of data points are more obvious. { }=  

is a data set which have p features.  is the data 

space of D. x is a potential data point which has a certain 

quality in , x . There is an action field around x. 

Every point of this field will be affected by the other points. 

Thereby a potential data field is defined on the entire data 
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space. The potential value of any data point can be expressed 

as 

           (1) 

where K(x) is the potential function,  is an impact factor 

and mi is the mass of data object xi.  is the unit potential 

function that meets ( ) 1=dxxK ( ) 0=dxxxK .  is an impact 

factor that control the interaction process between the 

points. The quality of the object is that satisfy the nor-

malization condition 1

1

=

=

n

i

i
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This function is different with the kernel function. The 
selection algorithm of current kernel function has certain 
degree randomness, and lacks of theoretical foundation. The 
introduction of the data field theory can be a good solution to 
this problem. The potential value is the strength of field 
source, such as the quality of the particle or point charge 
electricity.  

2.2. General Data Field 

Data field further extends to the general data field 
through the impact factor becoming different in multidimen-
sional space. Assumed that the density function of the data 
set has been known, the potential accuracy of the estimate of 
the function depends primarily on factors and units of poten-
tial function. 

Dataset D consists n data points {x1
(P), x2

(P)… xi
(P), xn

(P)} 

that show n data points in the data space of . Each data 

point xi
(P) is treated as a particle with certain nature Nati. xi

(P) 

has a potential mass. In , every data points are mutually 

interacted. xi
(P) affects other points, and it is further affected 

by all the other points. All the fields from different local 

points xi
(P) (i =1, 2, …, n) are superposed in global data space 

. This superposition enables the data field to characterize 

the interaction among different points. The superposed inter-

action virtually creates a data field in the whole data space . 

The potential value of an arbitrary point x in the data field is 

defined as 

( )
=

=

          (2) 

where, K(x) is the unit potential function that satisfies

0)(,1)( == dxxxKdxxK ,  is an impact factor. Nati(

=

=

) is the nature of xi
(P), we can take the 

value of the data point or the quality of the data point as the 

nature. 

However, the impact factor  is anisotropic. For the ex-

istent multi-dimensional data field, the potential function as 

Equation (1) shows that the impact factor  is stable. That is, 

the isotropic  is supposed to have the same value when 

measured in different directions. As Equation (2), the impact 

factor  is different in multi-dimensions. The potential value 

has different properties along different axes. When measured 

in different directions, a different potential value is obtained. 

The Equation (2) is not appropriate to some extent. Thus, in 

order to get a better estimation of the potential function, the 

general data field is defined as: 

        (3) 

where K(x) is a multivariate potential function and H is a 

positive definite P P matrix that is a non-singular constant 

matrix. Let H= A, where >0, |A|=1. Therefore, the Equa-

tion (3) can also be written as 

        (4) 

In some cases, each data object is considered to be the 

same in terms of mass, Equation (4) is simplified as  

     (5) 

3. MAXIMAL MARGIN CLASSIFICATION ALGO-
RITHM BASED ON DATA FIELD 

The basic idea of MM-GDF algorithm is evaluating the 
local hyper plane by implying potential values of the various 
features. Data field theory is applied in high-dimensional 
data processing and analysis. It has a breakthrough accuracy 
of data processing in practical application. This algorithm 
aims high-dimensional data processing in SVM and the mul-
ti-view mining theory of SVM. Based a wide range of sam-
ple sub-space division rules, it builds the data field structure 
of the appropriate data sets. According to the scalability of 
source data in different features, data field theory is extended 
to general data field. The GDF reveals the intrinsic link be-
tween data attributes and data classification results. GDF 
makes the SVM not only is able to complete the classifica-
tion of high-dimensional data, but also has high interpretabil-
ity. 

Recently, ALH classification method is present by Tao & 
Kecman. They use optimizing the local margin and hyper 
plane in the original and weighted input space to classify 
data. MM-GDF is different from ALH. MM-GDF has two 
hyper parameters: T and K, the weights of feature are con-
sidered in GDF. 

3.1. General Data Field used in Classification 

We extend the maximal margin method to high-

dimensional data space according analyzing the linkages 

between data attributes. We obtain the distribution of data 

points and the corresponding potential values on the different 

dimensions. The same value data points have different po-

tential values in GDF. The respective dimension of the data 

in a multidimensional space should have more anisotropic. 

Through GDF, we depict the relationships of data points by 

potential value. Each data point can be calculated out of its 

corresponding potential value ( ) ( )( )
=

=

. The potential value of point x is ( ), if the difference be-

tween the data dimensions isn’t considered. 

However, the feature weights are important to the classi-
fier. In the actual classification study, we can see that the 
weights of one data points in different dimensions are not 
entirely equal. We use two potential values to measure fea-
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ture’s contribution to the current categories, respectively 
within class potential value Sw, it represent the distance and 
similarity of each sample in the same class. The similarity 
within class is greater when the within-class potential value 
is smaller. The inter-class potential value Sb is used to meas-
ure the difference of the original characteristic of a class with 
another. The great value of Sb means the characteristics are 
more dispersed, this feature play great role in the distinction 
between classes. When the distributions of data points are 
evenly, the potential values of the location points approxi-
mately equal, the corresponding feature importance is close 
to 0. Conversely, when the distributions of data points are 
asymmetrical, the potential values of the location data points 
are also asymmetrical; the importance of this feature is great. 
According to the above ideas, we transform the original data 
set to the data set in data field. 
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       (6) 

where x is a data point, i is the number of record, j is the fea-

ture number, 
1

x
H  is the importance measure of x dimen-

sion, is the importance measure of  dimension. The 

weight of dimension is calculated by summing the corre-

sponding potential value of data point on this dimension. 

And then a new data space is constructed. This data space 

not only reflects the differences between the data points, also 

considers the anisotropy differences between the different di-

mensions. 

3.2. Specific Steps of MM-GDF 

The mathematical model knowledge cannot represent the 

reality information in dealing with the complex and ever-

changing reality data. Some important part may be ignored, 

and a large number of useless noise data points may exist. 

The unbalanced properties and potential value of data points 

can represent some implicit knowledge. Specifically, the first 

step is selected K sequence nearest points in Maximal 

Margin algorithm. Although HKNN expressions explicitly, 

but the K value is essential in the classification process. 

When selected prototypes cannot be choose correctly, the 

accuracy of the classification will be very low. Therefore 

choose of classified prototypes are essential to classifier. The 

parameter selection is particularly important in maximum 

margin classification method. This paper present a new ALH 

algorithm based on general data field, the range of 

parameters is fixed, it still makes a very good classification 

results. It reduces the human factor in classification 

accuracy. The steps of MM-GDF classification algorithm are 

as follows: 

Algorithm MM-GDF: q, x, K, T be a query sample, q is 

the test samples, x is the data points of the samples , K and T 

are the parameter, K is the neighborhood size. 

Stept 1: Calculating the potential of x, map x to the gen-

eral data space ; 

Stept 2:  For every q, select k nearest data points, the value 

of K is 1:10; 

Stept 3:  For each q, we define the local hyper plane with 

; 

Stept 4: Compute the k-local hyper plane distance 

 with 

 

Stept 5: Classify the query q to the class label

. 

4. EXPERIMENTS AND RESULTS 

We used 9 datasets of the UCI Machine Learning Reposi-
tory. The denotations of the datasets are as follows Table1:  

Therefore, the previous performance study of MM-GDF 
simply used a single loop of cross-validation procedure, 
where classifiers with different hyper-parameters are trained 
and tested and the performance with the best hyper-
parameters is reported. Our purpose in this work is not only 
to compare MM-GDF methods with traditional classifiers, 
but also to assess the true accuracy of MM-GDF methods 

Table 1. Characteristic of data sets. 

Data Instances Attributes Classes 

Cancer 198 32 3 

Derm 366 33 6 

Glass 214 9 6 

Heart 270 13 2 

Pro 997 20 3 

Iris 150 4 3 

Sonar 208 60 2 

Wine 178 13 3 

Vote 232 16 3 
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and competing classifiers. Therefore, the hyper-parameters 
should be determined without seeing the correct labels of the 
test data sets. In this work, we test the performance of classi-
fication algorithms by further separating training data into 
two parts, which are respectively used for hyper-parameter 
tuning and validation. We employ the ten-fold cross-
validation procedure for each of the data sets in Table 1. 

Through the above importance measure function, the 
scatter diagram and potential function values image of glass 
data set are given as follows: 

X1, X2…X9 are the features of glass data set. Horizontal 

axe of sub graph is the range of each feature. Vertical axis is 

the frequency of the corresponding value. 

From the comparison between origin data and potential 

data it can be seen that relative to the origin frequency distri-

bution, the general data field frequency graph is more bal-

anced and discrete. We take three categories data in glass 

data sets, and draw the scatter plots and data field image of 

X1, X2 and X3:  

 

Fig. (1). Frequency histogram of glass’s origin data points and its potential values. 

 

Fig. (2). Two-dimensional scatter plots and GDF equipotential line chart. 
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X1, X2 and X3 are the features of glass data set. Each 
color of the left sub graph means one class. Every point in 
left sub graph corresponds one data point. The scatter plots 
can’t describe the distribution rule of the data points. The 
lines in right sub graphs are the GDF equipotential lines. All 
data points are revolving around data field. The equipotential 

lines are denser when the potential values are large. 
Conversely, the sparse equipotential lines mean the small 
corresponding potential values. The processed data points 
based on GDF are more discrete than the original data. The 
combinations of data points within same class are stronger. 
The positive role of GDF for classification is proved. 

 

Fig. (3). Classification accuracies and parameters selection of ALH-GDF. 

Table 2. Classification accuracies of 7methods on 9 data sets. 

Data set k-NN SVM NFL HKNN CNN ALH MM-GDF 

Cancer 79.8 79.8 74.2 76.3 69.7 81.8 82.3 

Derm 96.7 98.1 95.9 97.8 95.9 97.27 95.35 

Glass 72.4 72.9 68.2 74.3 72.4 74.3 95.3 

Heart 59.9 58.6 52.5 54.2 49.2 56.9 58.59 

Pro 89.5 91.4 90.3 91.1 90.8 91.57 93.48 

Iris 96.7 98.0 89.3 97.3 92.0 96.67 98.67 

Sonar 87.5 88.9 88.9 92.3 89.4 90.38 98.56 

Wine 97.8 98.9 96.1 98.3 95.5 98.9 98.9 

Vote 92.7 97.0 95.3 96.1 93.1 96.55 97.0 

Average 85.89 87.07 83.41 86.41 83.11 87.15 90.91 
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We compare GDF with several competing classifiers on 

9 real data sets to prove the effectiveness of MM-GDF: (1) 

KNN; (2) SVM—Gaussian kernel; (3) NFL—nearest feature 

line; (4) HKNN; (5) CNN—center-based nearest neighbor; 

(6) ALH-Adaptive local hyper plane classification [17] ;( 7) 

MM-GDF. In MM-GDF method, the value of K is taken 

from 1 to 10, the range of T is 1to 5, while the value of the 

parameter  is given in accordance with the definition of the 

data field. The accuracies of MM-GDF are shown in Fig. (3) 

when the different parameters K and T are selected. 

The leave-one-out cross-validation procedure is used to 

estimate the hyper parameters estimation and calculate the 

accuracies for all methods over all data sets. The results of 

all methods are shown in Table 2. 

From the Table 2, we can see that MM-GDF is overall 

the best algorithm. The accuracy of MM-GDF is best on 7 

data sets.. It indicates that the optimal values of K and T can 

always be adaptively specified by MM-GDF during each run 

of the experiment. Moreover, it is interesting to see that the 

accuracy rate of the MM-GDF is much higher than the other 

classifiers, which indicates consistency and stability of the 

proposed model. 

CONCLUSION 

In this paper, a new classification method MM-GDF is 

proposed. This method improves the maximal margin meth-

od by calculating the feature weight and data potential value 

in general data field. The sums of potential values used to 

calculate the weights of the between-group and within-

group. The feature weight and the weighted Euclidean dis-

tance in general data field are then used for K data point’s 

selection and local hyper plane construction. MM-GDF 

works very well on 9 UCI data sets. MM-GDF does not need 

any additional parameter. It is more practical. Further re-

search is putting the algorithm on high dimension data sets 

and makes it more effective. 
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