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Abstract: Nowadays, three-dimensional network-on-chip (3D NoC) with its shorter global interconnects, higher perform-

ance, lower loss of interconnection, higher packing density, smaller volume, and many other advantages, has drawn more 

and more attention in both industrial and academic circle. In this paper, an improved algorithm, named the algorithm 

based on particle swarm optimization algorithm to optimize the floorplans (PSO-NoC), has been proposed with simula-

tions conducted to rectify this algorithm. The simulation results are compared with the original Simulated Annealing-

NoC. The experimental results show that the PSO-NoC algorithm reduces the latency and improves the throughput com-

pared with the original one. Particularly, the CPU’s process time is significantly decreased by 52.78% in the average case 

and 87.08% in the best case respectively. 
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1. INTRODUCTION 

With the development of chip manufacturing and the size 
expansion of chips, the former bus architecture and point-to-
point interconnection cannot satisfy the demand of on-chip 
communications any more. Therefore, the network-on-chip 
(NOC) has drawn much more attention because of its good 
scalability and parallel communication capability. However, 
due to the increased functions of chip, the number of inte-
grated transistors multiplied two-dimensional network on 
chip has reached a bottleneck in the aspects of area, power 
consumption, layout, and packing density and so on. In this 
case, the 3D NoC came into being, with its shorter global 
interconnections, higher performance, lower interconnect 
losses, higher packing density, smaller size and many other 
advantages, has caused more and more attention in both in-
dustry and academia. Among many technic issues faced by 
3D NoC researchers floorplanning is a crucial to the per-
formance of the design process for 3D NoCs.  

A floorplan of an IC is a schematic representation of ten-
tative placement of major functional IP blocks in electronic 
design automation (EDA). Floorplans can be categorized 
into two groups, the sliceable floorplans [1-3] and non-
sliceable floorplans [4-7]. For examples, a team from 
Tsinghua University led by She-Qin Dong mainly focused 
on the buffer insertion algorithm for interconnect centric 
floorplanning [8] and 3-D floorplan representation based on 
the methodologies of Corner Block List (CBL) [9]. Their 
contribution also included a divide-and-conquer 2.5-D floor-
planning algorithm [10]. Liang-Li He et al. in [11] con-
ducted a thorough study of virtual layout and proposed a  
 

FOB based man-machine interactive loading layout method. 
Another team led by Young, Evangeline F.Y. from Hong 
Kong university of science and technology delved into the 
problem of bus-driven floorplanning [12] and 3-D floorplan-
ning using labeled tree and dual sequences [13]. Jingjing in 
[14] proposed a space feature optimization based mapping 
layout algorithm and they make a great contribution on en-
ergy consumption optimization of three dimensional net-
works-on-chip. Kakoee Mohammad Reza and Angiolin 
Federico et al. in [15] proposed a floorplan-aware toolchain 
for NoC design and synthesis integrated with a graphical 
front-end. They showed that not only a great amount of time 
and effort can be saved thanks to the easy-to-use proposed 
environment, but also that the quality of the final netlist can 
be improved due to the optimizations unlocked by the early-
stage interaction among the designer and the proposed tool-
chain. They presented a floorplan-aware toolchain for NoC 
design and synthesis integrated with a graphical front-end, 
The resulting design methodology is highly automated yet 
entails rich interaction with the user, spanning across traffic 
flow specification, topology synthesis and physical floor-
planning, with back-annotation capabilities and opportunities 
for incremental design. de Paulo, V and Ababei, C worked 
on homogeneous networks over heterogeneous floorplans 
[16]. They proposed a design methodology consisting of 
floorplanning and router assignment in a specifically de-
signed tool that integrates a cycle accurate NoC simulator. It 
is implemented and then used to investigate the new archi-
tecture and show that experimental results are application 
specific with potential significant performance improve-
ments for some testcases. 

In 1995, Dr. James Kennedy and Russell Eberhart pro-
posed Particle Swarm Optimization (PSO) algorithm [17, 
18], and then PSO is widely used in various fields of social 
life and scientific research. Hao Pan in Wuhan University of 
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Technology applied PSO to the neural network training [19]. 
The number of dimensions of each particle is seen as system 
parameters of neural network studied. Run the PSO and 
you’ll find the global optimal solution, and then you can find 
the corresponding optimal parameters optimal solution to 
achieve the purpose of training the neural network. In addi-
tion, Guoan Liu in Harbin Institute of Technology and Xuan 
Gao in Xi’an Electronic Science and Technology University 
applied PSO to image retrieval [20, 21]. Quan Lin in 
Changsha University of Science and Technology and 
Guangzhou Chen in Hefei University of Technology applied 
PSO to the field of projection pursuit [22, 23]. In this paper, 
we first apply the classical PSO to 3D NoC floorplanning 
algorithm and open a new field of PSO application. 

2. ALGORITHM BASED ON PARTICLE SWARM 

OPTIMIZATION ALGORITHM TO OPTIMIZE THE 
FLOORPLANS 

2.1 PSO-NoC Algorithm Design 

In this paper, an improved algorithm named the algo-
rithm based on particle swarm optimization algorithm to 
optimize the floorplans (PSO-NoC) has been proposed. The 
algorithm is an improvement of the original algorithm based 
on simulated annealing algorithm to optimize the floorplans 
(SA-NoC) [24], using the parallel computing features of 
PSO to mainly optimize CPU processing time and make it 
more suitable for floorplanning on 3D NoCs with a large-
scale topology. 

The cost function of PSO-NoC algorithm used is shown 
in Formula (1), 

thLWAreaonCostfuncti engire)1(+=      
 
(1) 

In (1), represents the cost of completing the layout 

needs. Area represents areas of IP cores layout using. 

thLW represents length of the connection of generat-

ing layout uses. is a parameter specified by the user which 

used to balance the area of tiles and the length of layout uses 

and valued from 0 to 1. In our algorithm, the value of  is 

0.25. The update formulas of velocity and position in our 

algorithm are shown as Formula (2) and Formula (3), 
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In Formula (2), inertia weight  uses variable weight 

and calculated formula is shown as Formula (4). The initial 

value of  and  are 0.5 and 3. The parameter count  

represents the current number of iterations and N  represents 

the maximum number of iterations. Learning factor c  and 

c  use synchronous time-varying way and the calculated 

formula is shown as Formula (5). The initial value of c  

and c are 0.25 and 3. Random parameters d  and d  are 

numbers that program randomly generated from 0 to 1. The 

parameter 
i
tpre cos_  represents the best position of the 

particle itself and 
i

best  represents the optimum position of 

particle swarm, wherein the velocity is in the range [3, 3]. If 

the value exceeds the determined range, then revise it to 

equal to the maximum. The position sequence of particles 

satisfies with binary code. It also needs to be revised if it out 

of the determined range. If the location information obtained 

is less than 0.5, then record it as 0, else record it as 1. 
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2.2. PSO-NoC Algorithm Realization 

In this part, we show the realization of PSO-NoC algo-
rithm. The steps are as follows. 

Step 1: Parameters initialization. Define the number of 

particles as shu  and the maximum number of iterations as 

N , where sizepfptimesN = . Randomly gen-

erate shu  initial particles X  and velocity V  which are 

from -3 to 3. 

Step 2: Assume the best position of the particle itself is 

tpre cos_  and the global best position of particle swarm is 

best . 

Step 3: Decide whether the current iteration number 

reaches the maximum number N . If it achieved, then jump 

to Step 6, else jump to step 4. 

Step 4: Do the following for all particles: 

 Calculate the fitness of each particle according to 

Formula (1). If the particle adapt better than tpre cos_ , 

then the value is assigned to tpre cos_  and update the best 

position of the individual particle. 

 If the fitness of tpre cos_  is better than best , then 

update the value of best  and the value of goodnum  adds to 

1, else the value of badnum  adds to 1. 

 Update the position and velocity of particles according 
to Formula (2) and Formula (3). 

 Correct the obtained position information of particles 
according to the determined range of value of position and 
velocity so that it would not exceed the available space. 

Step 5: The number of iterations minus 1 and jump to 
Step 3. 

Step 6: Output best and end the algorithm. 

2.3. Flowchart of PSO-NoC Algorithm 

The flowchart of PSO-NoC algorithm is shown as Fig. (1). 

3. SIMULATION RESULTS AND DISCUSSION 

3.1. Introduction of the Simulator 

In order to test the degree of improvement of the pro-
posed algorithm on CPU processing time, average flit la-
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tency and network throughput, the algorithm needs to be run 
on an actual system and compared with the original algorithm.  

In this paper, we use the VNOC3 simulation platform 
developed by Cristinel Ababei in North Dakota State Uni-
versity using C++ in the Linux system. The simulator is ac-
tually a platform used to study 3D NoC architecture with two 
or three layers. The platform is built on a previous version of 
VNOC (a simulator for 2D NoC) and a B* tree layout. For 
three-layer architecture, the framework uses hMetis division. 
In addition, the simulator also includes a hidden option 
which allows users to generate new test cases and a GUI 
drawing tools. The drawing tools can be used to generate a 
three-layer network architecture but with only 2D display. 

3.2. Testcases 

In our experiments, we used six testcases whose charac-
teristics are shown in Table 1. In this table, we also present 
the size of the direct topologies for the testcases are all 3d 
NoC with heterogeneous network architecture. We con-

structed these testcases from the classic MCNC testcases, 
whose area was scaled to achieve an average size of about 
1cm 1 cm, which is a typical area for NoCs reported in the 
literature [25]. 

Based on these six testcases, a lot of experiments have 
been conducted and the average of experimental results was 
calculated. But due to the limitation of paper space, we show 
only three testcases of the six to illustrate trends and the im-
provement of the performance. They are apte, hp and ami49. 

We choose apte and ami49 here for they respectively are 
the smallest and largest testcases in these six testcases and 
are more persuasive. The testcase hp is special, because the 
number of its IP core is relatively small (only 11). But its 
aspect ratio is 2 to 3 times the other testcases. So in this pa-
per, we show the comparison in the next session. 

3.3. Simulation Results and Analysis 

With the simulator introduced above we implement PSO-
NoC and compare it with the original SA-NoC. In the simu-

 
Fig. (1). Flowchart of PSO-NoC algorithm. 

Table 1. Characteristics of the used testcases. 

Testcases Number of IP/cores 
Core  

avg. W/H 

Core std. dev. 

of W/H 

Direct Topology 

R R 

apte 8 4324/2499 27/4 3 3 

xerox 10 2114/2872 335/1290 4 4 

hp 11 4533/924 2498/386 4 4 

ami25 25 1770/1408 1201/896 5 5 

ami33 33 1581/1573 830/865 6 6 

ami49 49 1089/1123 768/651 7 7 
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lation data, the performance of the algorithm is mainly 
measured by three parameters, i.e. CPU processor time, 
throughput and average flit latency. In the simulation ex-
periments, in order to ensure a fair comparison, the value of 
command line parameters (for example, operating cycle, 
preheat cycle, input and output buffer size, etc) of the two 
algorithm is always consistent. In certain load conditions or 
of a certain Mesh size, the lower the average latency, higher 
the throughput, less the CPU processing time, the better per-
formance of the algorithm. 

In order to comprehensively study the impact of each in-
dicator of 3D NoC on the performance, in the simulation 
experiment, we compare the throughout, average latency and 
CPU processing time from four aspects while other parame-
ter values remain unchanged. (1) Change the number of vir-
tual channels (from 2 to 6) and analyze the impact of virtual 
channels on average flit latency, throughput and CPU proc-
essing time. (2) Change the buffer size (from 1x to 5x and 
the data indicates 1 to 5 times the default cache) and analyze 
the impact of buffer size on average flit latency and through-
put. (3) Change the injection load (20%-100%) and analyze 
the changes of average flit latency, throughput and CPU 
processing time. (4) Change Mesh size of the architecture 
(number of IP cores and aspect ratio) and analyze their im-
pact on average flit latency, throughput and CPU processing 
time. Detailed comparison and analysis are seen in section 
A, B, C, D. In the experiment, a number of simulations have 
been conducted in each case and the final result is calculated 
from average. In each simulation, total run cycle is set to 
60000cycles and preheat cycle is set to 1000cycles to ensure 
the obtained data values when the system reaches a steady 
state to reduce the error data obtained in the simulation. 

3.3.1. The Impact of the Number of Virtual Channels on 
Performance 

First, we observe the impact of increasing the number on 
virtual channels upon average flit latency, throughput and 

CPU processing time. In this scenario, we observe changes 
of average flit latency, throughput and CPU processing time 
while changing the number of virtual channels (VC) from 2 
to 6 and compare the changes when using PSO-NoC and SA-
NoC.  

For the testcases apte, hp and ami49, the comparison of 

average flit latency, throughput and CPU processing time of 

PSO-NoC and SA-NoC are shown in Figs. (2-4). From the 

three figures, we can observe that for the testcase apte, com-

pared with SA-NoC algorithm, although the average flit la-

tency of PSO-NoC algorithm increases by 1.14% in average, 

network throughput improves by 1.99% in average. The 

most obvious is that the CPU processing time decreases by 

52.35% in average which saves energy greatly. 

For the testcase hp, with the three figures, we can con-

clude that compared with SA-NoC algorithm, the average flit 

latency of PSO-NoC algorithm decreases by 3.67% in aver-

age and the network throughput improves by 8.07% in aver-

age. The most obvious is that the CPU processing time de-

creases by 84.14% in average which saves energy greatly. 

For the testcase ami49, we can observe that compared 

with SA-NoC algorithm, the average flit latency of PSO-

NoC algorithm decreases by 12.99% in average, network 

throughput improves by 0.82% in average. The most obvious 

is that the CPU processing time decreases by 47.64% in av-

erage. So for the testcases hp and ami49, every performance 

of PSO-NoC algorithm is better than the original SA-NoC 

algorithm. 

In summary, it can be seen that compared with the origi-

nal SA-NoC, although latency of PSO-NoC is not better in 

some cases, average flit latency reduces 2.8% and through-

put increases 2.25% as a whole. Especially, CPU processing 

time decreases greatly, by an average of 47.71% and the 

maximum case decreases 86.52%. 

 

Fig. (2). Comparison of average flit latency for apte, hp and ami49 while changing the number of virtual channels from 2 to 6. 
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Fig. (3). Comparison of throughput for apte, hp and ami49 while changing the number of virtual channels from 2 to 6. 

 

Fig. (4). Comparison of CPU processing time for apte, hp and ami49 while changing the number of virtual channels from 2 to 6. 

3.3.2. The Impact of Buffer Size on Performance 

In this scenario, instead of increasing the number of vir-
tual channels, we study the impact of buffer size on perform-
ance by increasing the size of buffers. We assume that the 
areas of routers is about 20% of the total area, we can in-
crease the area of each router to reach to 5 times of the origi-
nal value by increasing the size of input buffer and output 
buffer in each router port. We can observe the impact of 
buffer size on average latency and throughput by changing 
the size of buffers. 

For the testcases apte, hp and ami49, the comparison of 
average flit latency and throughput of PSO-NoC and SA-
NoC are shown in Figs. (5) and (6). From the two figures, 

we can observe that for the testcase apte, compared with SA-
NoC algorithm, although the average flit latency of PSO-
NoC algorithm increases by 1.04% in average, network 
throughput improves by 2.29% in average.  

For the testcase hp, with the two figures, we can con-
clude that compared with SA-NoC algorithm, the average flit 
latency of PSO-NoC algorithm decreases by 3.92% in aver-
age and the network throughput improves by 4.58% in aver-
age. In this case, every performance of PSO-NoC algorithm 
is better than the original SA-NoC algorithm. 

For the testcase ami49, we can observe that although the 
network throughput decreased by 1.36% in average, the av-
erage flit latency decreases by 6.27% in average. 
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In summary, it can be observed that compared with the 
original SA-NoC, although latency of PSO-NoC are not bet-
ter in some cases, average flit latency decreased by 7.51% 
and throughput increases by 5.3% as a whole. 

3.3.3. The Impact of Injection Load on Performance 

In fact, through a lot of experiments, we can conclude 
that the impact of changing the injection load on network 
latency and throughput is the largest. 

For the testcases apte, hp and ami49, the comparison of 
average flit latency, throughput and CPU processing time of 
PSO-NoC and SA-NoC are shown in Figs. (7-9). From the 
three figures, we can observe that for the testcase apte, al-

though the average flit latency increases by 0.86% in aver-
age, the average flit latency are substantially the same when 
the injection load reaches saturation and network throughput 
improves by 5.11% in average. The most obvious is that the 
CPU processing time decreases by 37.65% in average which 
saves energy greatly. 

For hp, before injection load reaches 70%, average flit la-
tency has no change substantially. Based on the three fig-
ures, we can conclude that although the average flit latency 
increases by 11.26% in average, the network throughput im-
proves by 4.91% in average. The most obvious is that the 
CPU processing time decreases by 85.13% in average which 
saves energy greatly. 

 

Fig. (5). Comparison of average flit latency for apte, hp and ami49 while changing the size of buffers from 1x to 5x. 

 

Fig. (6). Comparison of throughput for apte, hp and ami49 while changing the size of buffers from 1x to 5x. 
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Fig. (7). Comparison of average flit latency for apte, hp and ami49 while changing injection load. 

 

Fig. (8). Comparison of throughput for apte, hp and ami49 while changing injection load. 

For the testcaseami49, with the three figures, we can ob-
serve that compared with SA-NoC algorithm, the average flit 
latency of PSO-NoC algorithm increases by 27.72% in aver-
age, network throughput improves by 3.13% in average. The 
most obvious result is that the CPU processing time de-
creases by 49.28% in average. In this case, every perform-
ance of PSO-NoC algorithm is better than the original SA-
NoC algorithm. 

In summary, it can be seen that compared with the origi-
nal SA-NoC, although latency of PSO-NoC is not better in 
some cases, average flit latency reduces 5.92% and through-
put increases 4.41% as a whole. Especially, CPU processing 
time decreases greatly, by an average of 52.78% and the 
maximum case decreases 87.08%.  

3.3.4. The Impact of Different Testcases on Performance 

Different testcases have different numbers of IP cores 
and different aspect ratio of the IP cores. Also, the Mesh size 
of their direct topologies is different. In this section, we 
study the change of average flit latency, throughput and CPU 
processing time of different testcases. In order to get more 
equitable results, in this paper, simulations with different 
injection loads have been run and the results are collected as 
follows. When injection loads are different, the average flit 
latency increases as the number of IP cores increases, and the 
throughput is controlled by two parameters of Mesh size and 
aspect ratio. The variation trend of CPU processing time is 
substantially the same. 
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Fig. (9). Comparison of CPU processing time for apte, hp and ami49 while changing injection load. 

 

Fig. (10). Comparison of average flit latency of architectures with different Mesh size when injection load is 60% and 100%. 

 

In this paper, we conduct simulation experiments of in-
jection load of 20% to 100%, and then we get the bar chart 
and analyze it. But due to the limitations of our paper space, 
we just show the comparison of average flit latency in the 
condition of 60% and saturation injection load as shown in 
Fig. (10). It can be observed in the figures that when the 
Mesh size is less than 6, average flit latency increases more 
slowly and the average flit latency of the proposed PSO-NoC 
algorithm is mostly less than SA-NoC algorithm. When 
Mesh size is over 6, average flit latency of SA-NoC algo-
rithm increases greater while that of the PSO-NoC algorithm 
increases slowly. Thus PSO-NoC algorithm is more suitable 
for network architecture with large Mesh size. 

To illustrate the impact of different testcases on network 
throughput, in this paper, we also show the comparison of 
the impact of different Mesh size and respect ratio on 
throughput in the condition of 60% and saturation injection 
load as shown in Fig. (11). It can be observed in the figures 
that as a whole the throughput does not just increase or de-
crease as the number of IP cores increase, but shows a 
growth trend like a wavy line. This also explains why the 
throughput is not only affected by the number of IP cores but 
also the aspect ratio. According to the configuration parame-
ters of each testcase, we can draw a conclusion that the 
throughput is proportional to the number of IP cores and the 
aspect ratio. Therefore, although the number of IP cores of 
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xerox increases, the aspect ratio decreases close to 1. So the 
throughout presents a certain downward trend. For compari-
son of the two algorithms, the throughput of PSO-NoC algo-
rithm is slightly higher than that of SA-NoC algorithm as a 
whole. In effect overall, PSO-NoC algorithm is better.  

The figure of CPU processing time of each injection load 
is shown in Fig. (12). It can be observed in the figure that 
when the Mesh size is less than 6, CPU processing time in-
creases more slowly. When Mesh size is over 6, CPU proc-
essing time of SA-NoC algorithm increases at a speed of 7 
times while that of PSO-NoC algorithm increasing at a speed 
of 3 to 5 times. So for the architectures with large scale, 
PSO-NoC is much better in improving CPU processing time. 
As a whole, compared with the original algorithm, CPU 

processing time of PSO-NoC algorithm decreases especially 
for architectures with large scale. 

In summary, PSO-NoC algorithm saves more run time as 
Mesh size increases. Also, the whole average latency and 
average throughout of PSO-NoC algorithm improve com-
pared with SA-NoC algorithm. In addition, it can be seen in 
the figures that PSO-NoC algorithm is much better for large-
scale architectures with large number of IP cores. 

CONCLUSION 

In this paper, we propose an improved algorithm named 
the particle swarm optimization algorithm to optimize the 
floorplans (PSO-NoC). The algorithm is based on the advan-

 

Fig. (11) Comparison of throughput of architectures with different Mesh size when injection load is 60% and 100%. 

 

Fig. (12). Comparison of CPU processing time of architectures with different Mesh size when injection load is 60% and 100%. 
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tages of parallel processing units of particle swarm optimiza-
tion algorithm, and optimizes layout of the tiles to make the 
floorplanning path and the CPU processing time shorter and 
more efficient. Also, we adapt and build the original 3D NoC 
simulator to simulate the proposed algorithm and compare it 
with the original one. We add calculation of throughput to 
make the experimental data more comprehensive and persua-
sive.  

In the future, it is helpful for a comprehensive study of 
architectures to design a graphical interface that can display 
3D NoC floorplan in three dimensions. In addition, 3D NoC 
architecture based on heterogeneous layout we discussed in 
this paper is from tree graph mapping. So a better mapping 
algorithm is needed to improve mapping performance of 3D 
NoC and to ensure the quality of the floorplanning. 
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