
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 1145-1154 1145

 1874-110X/15 2015 Bentham Open

Open Access

Research on an Improved Algorithm for 3D NoC Floorplanning Based on
Particle Swarm Optimization

Zhang Dakun
1,*

, Song

Guozhi

1
, Wang Lianlian

2
 and Huang Cui

1

1
School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin300387, China;

2
Network Center, Tianjin Agricultural University, Tianjin 300384, China

Abstract: Nowadays, three-dimensional network-on-chip (3D NoC) with its shorter global interconnects, higher perform-

ance, lower loss of interconnection, higher packing density, smaller volume, and many other advantages, has drawn more

and more attention in both industrial and academic circle. In this paper, an improved algorithm, named the algorithm

based on particle swarm optimization algorithm to optimize the floorplans (PSO-NoC), has been proposed with simula-

tions conducted to rectify this algorithm. The simulation results are compared with the original Simulated Annealing-

NoC. The experimental results show that the PSO-NoC algorithm reduces the latency and improves the throughput com-

pared with the original one. Particularly, the CPU’s process time is significantly decreased by 52.78% in the average case

and 87.08% in the best case respectively.

Keywords: 3D NoC, floorplanning, improved algorithm, PSO.

1. INTRODUCTION

With the development of chip manufacturing and the size
expansion of chips, the former bus architecture and point-to-
point interconnection cannot satisfy the demand of on-chip
communications any more. Therefore, the network-on-chip
(NOC) has drawn much more attention because of its good
scalability and parallel communication capability. However,
due to the increased functions of chip, the number of inte-
grated transistors multiplied two-dimensional network on
chip has reached a bottleneck in the aspects of area, power
consumption, layout, and packing density and so on. In this
case, the 3D NoC came into being, with its shorter global
interconnections, higher performance, lower interconnect
losses, higher packing density, smaller size and many other
advantages, has caused more and more attention in both in-
dustry and academia. Among many technic issues faced by
3D NoC researchers floorplanning is a crucial to the per-
formance of the design process for 3D NoCs.

A floorplan of an IC is a schematic representation of ten-
tative placement of major functional IP blocks in electronic
design automation (EDA). Floorplans can be categorized
into two groups, the sliceable floorplans [1-3] and non-
sliceable floorplans [4-7]. For examples, a team from
Tsinghua University led by She-Qin Dong mainly focused
on the buffer insertion algorithm for interconnect centric
floorplanning [8] and 3-D floorplan representation based on
the methodologies of Corner Block List (CBL) [9]. Their
contribution also included a divide-and-conquer 2.5-D floor-
planning algorithm [10]. Liang-Li He et al. in [11] con-
ducted a thorough study of virtual layout and proposed a

FOB based man-machine interactive loading layout method.
Another team led by Young, Evangeline F.Y. from Hong
Kong university of science and technology delved into the
problem of bus-driven floorplanning [12] and 3-D floorplan-
ning using labeled tree and dual sequences [13]. Jingjing in
[14] proposed a space feature optimization based mapping
layout algorithm and they make a great contribution on en-
ergy consumption optimization of three dimensional net-
works-on-chip. Kakoee Mohammad Reza and Angiolin
Federico et al. in [15] proposed a floorplan-aware toolchain
for NoC design and synthesis integrated with a graphical
front-end. They showed that not only a great amount of time
and effort can be saved thanks to the easy-to-use proposed
environment, but also that the quality of the final netlist can
be improved due to the optimizations unlocked by the early-
stage interaction among the designer and the proposed tool-
chain. They presented a floorplan-aware toolchain for NoC
design and synthesis integrated with a graphical front-end,
The resulting design methodology is highly automated yet
entails rich interaction with the user, spanning across traffic
flow specification, topology synthesis and physical floor-
planning, with back-annotation capabilities and opportunities
for incremental design. de Paulo, V and Ababei, C worked
on homogeneous networks over heterogeneous floorplans
[16]. They proposed a design methodology consisting of
floorplanning and router assignment in a specifically de-
signed tool that integrates a cycle accurate NoC simulator. It
is implemented and then used to investigate the new archi-
tecture and show that experimental results are application
specific with potential significant performance improve-
ments for some testcases.

In 1995, Dr. James Kennedy and Russell Eberhart pro-
posed Particle Swarm Optimization (PSO) algorithm [17,
18], and then PSO is widely used in various fields of social
life and scientific research. Hao Pan in Wuhan University of

1146 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Dakun et al.

Technology applied PSO to the neural network training [19].
The number of dimensions of each particle is seen as system
parameters of neural network studied. Run the PSO and
you’ll find the global optimal solution, and then you can find
the corresponding optimal parameters optimal solution to
achieve the purpose of training the neural network. In addi-
tion, Guoan Liu in Harbin Institute of Technology and Xuan
Gao in Xi’an Electronic Science and Technology University
applied PSO to image retrieval [20, 21]. Quan Lin in
Changsha University of Science and Technology and
Guangzhou Chen in Hefei University of Technology applied
PSO to the field of projection pursuit [22, 23]. In this paper,
we first apply the classical PSO to 3D NoC floorplanning
algorithm and open a new field of PSO application.

2. ALGORITHM BASED ON PARTICLE SWARM

OPTIMIZATION ALGORITHM TO OPTIMIZE THE
FLOORPLANS

2.1 PSO-NoC Algorithm Design

In this paper, an improved algorithm named the algo-
rithm based on particle swarm optimization algorithm to
optimize the floorplans (PSO-NoC) has been proposed. The
algorithm is an improvement of the original algorithm based
on simulated annealing algorithm to optimize the floorplans
(SA-NoC) [24], using the parallel computing features of
PSO to mainly optimize CPU processing time and make it
more suitable for floorplanning on 3D NoCs with a large-
scale topology.

The cost function of PSO-NoC algorithm used is shown
in Formula (1),

thLWAreaonCostfuncti engire)1(+=

(1)

In (1), represents the cost of completing the layout

needs. Area represents areas of IP cores layout using.

thLW represents length of the connection of generat-

ing layout uses. is a parameter specified by the user which

used to balance the area of tiles and the length of layout uses

and valued from 0 to 1. In our algorithm, the value of is

0.25. The update formulas of velocity and position in our

algorithm are shown as Formula (2) and Formula (3),

)()cos_(22111 iiiiii xbestdcxtpredcvv ++=
+

 (2)

iii
vxx +=

+1
 (3)

In Formula (2), inertia weight uses variable weight

and calculated formula is shown as Formula (4). The initial

value of and are 0.5 and 3. The parameter count

represents the current number of iterations and N represents

the maximum number of iterations. Learning factor c and

c use synchronous time-varying way and the calculated

formula is shown as Formula (5). The initial value of c

and c are 0.25 and 3. Random parameters d and d are

numbers that program randomly generated from 0 to 1. The

parameter
i
tpre cos_ represents the best position of the

particle itself and
i

best represents the optimum position of

particle swarm, wherein the velocity is in the range [3, 3]. If

the value exceeds the determined range, then revise it to

equal to the maximum. The position sequence of particles

satisfies with binary code. It also needs to be revised if it out

of the determined range. If the location information obtained

is less than 0.5, then record it as 0, else record it as 1.

N

count
=

)(minmax
max

 (4)

N

countcc
ccc ==

)(minmax
max21 (5)

2.2. PSO-NoC Algorithm Realization

In this part, we show the realization of PSO-NoC algo-
rithm. The steps are as follows.

Step 1: Parameters initialization. Define the number of

particles as shu and the maximum number of iterations as

N , where sizepfptimesN = . Randomly gen-

erate shu initial particles X and velocity V which are

from -3 to 3.

Step 2: Assume the best position of the particle itself is

tpre cos_ and the global best position of particle swarm is

best .

Step 3: Decide whether the current iteration number

reaches the maximum number N . If it achieved, then jump

to Step 6, else jump to step 4.

Step 4: Do the following for all particles:

 Calculate the fitness of each particle according to

Formula (1). If the particle adapt better than tpre cos_ ,

then the value is assigned to tpre cos_ and update the best

position of the individual particle.

 If the fitness of tpre cos_ is better than best , then

update the value of best and the value of goodnum adds to

1, else the value of badnum adds to 1.

 Update the position and velocity of particles according
to Formula (2) and Formula (3).

 Correct the obtained position information of particles
according to the determined range of value of position and
velocity so that it would not exceed the available space.

Step 5: The number of iterations minus 1 and jump to
Step 3.

Step 6: Output best and end the algorithm.

2.3. Flowchart of PSO-NoC Algorithm

The flowchart of PSO-NoC algorithm is shown as Fig. (1).

3. SIMULATION RESULTS AND DISCUSSION

3.1. Introduction of the Simulator

In order to test the degree of improvement of the pro-
posed algorithm on CPU processing time, average flit la-

Research on an Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1147

tency and network throughput, the algorithm needs to be run
on an actual system and compared with the original algorithm.

In this paper, we use the VNOC3 simulation platform
developed by Cristinel Ababei in North Dakota State Uni-
versity using C++ in the Linux system. The simulator is ac-
tually a platform used to study 3D NoC architecture with two
or three layers. The platform is built on a previous version of
VNOC (a simulator for 2D NoC) and a B* tree layout. For
three-layer architecture, the framework uses hMetis division.
In addition, the simulator also includes a hidden option
which allows users to generate new test cases and a GUI
drawing tools. The drawing tools can be used to generate a
three-layer network architecture but with only 2D display.

3.2. Testcases

In our experiments, we used six testcases whose charac-
teristics are shown in Table 1. In this table, we also present
the size of the direct topologies for the testcases are all 3d
NoC with heterogeneous network architecture. We con-

structed these testcases from the classic MCNC testcases,
whose area was scaled to achieve an average size of about
1cm 1 cm, which is a typical area for NoCs reported in the
literature [25].

Based on these six testcases, a lot of experiments have
been conducted and the average of experimental results was
calculated. But due to the limitation of paper space, we show
only three testcases of the six to illustrate trends and the im-
provement of the performance. They are apte, hp and ami49.

We choose apte and ami49 here for they respectively are
the smallest and largest testcases in these six testcases and
are more persuasive. The testcase hp is special, because the
number of its IP core is relatively small (only 11). But its
aspect ratio is 2 to 3 times the other testcases. So in this pa-
per, we show the comparison in the next session.

3.3. Simulation Results and Analysis

With the simulator introduced above we implement PSO-
NoC and compare it with the original SA-NoC. In the simu-

Fig. (1). Flowchart of PSO-NoC algorithm.

Table 1. Characteristics of the used testcases.

Testcases Number of IP/cores
Core

avg. W/H

Core std. dev.

of W/H

Direct Topology

R R

apte 8 4324/2499 27/4 3 3

xerox 10 2114/2872 335/1290 4 4

hp 11 4533/924 2498/386 4 4

ami25 25 1770/1408 1201/896 5 5

ami33 33 1581/1573 830/865 6 6

ami49 49 1089/1123 768/651 7 7

1148 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Dakun et al.

lation data, the performance of the algorithm is mainly
measured by three parameters, i.e. CPU processor time,
throughput and average flit latency. In the simulation ex-
periments, in order to ensure a fair comparison, the value of
command line parameters (for example, operating cycle,
preheat cycle, input and output buffer size, etc) of the two
algorithm is always consistent. In certain load conditions or
of a certain Mesh size, the lower the average latency, higher
the throughput, less the CPU processing time, the better per-
formance of the algorithm.

In order to comprehensively study the impact of each in-
dicator of 3D NoC on the performance, in the simulation
experiment, we compare the throughout, average latency and
CPU processing time from four aspects while other parame-
ter values remain unchanged. (1) Change the number of vir-
tual channels (from 2 to 6) and analyze the impact of virtual
channels on average flit latency, throughput and CPU proc-
essing time. (2) Change the buffer size (from 1x to 5x and
the data indicates 1 to 5 times the default cache) and analyze
the impact of buffer size on average flit latency and through-
put. (3) Change the injection load (20%-100%) and analyze
the changes of average flit latency, throughput and CPU
processing time. (4) Change Mesh size of the architecture
(number of IP cores and aspect ratio) and analyze their im-
pact on average flit latency, throughput and CPU processing
time. Detailed comparison and analysis are seen in section
A, B, C, D. In the experiment, a number of simulations have
been conducted in each case and the final result is calculated
from average. In each simulation, total run cycle is set to
60000cycles and preheat cycle is set to 1000cycles to ensure
the obtained data values when the system reaches a steady
state to reduce the error data obtained in the simulation.

3.3.1. The Impact of the Number of Virtual Channels on
Performance

First, we observe the impact of increasing the number on
virtual channels upon average flit latency, throughput and

CPU processing time. In this scenario, we observe changes
of average flit latency, throughput and CPU processing time
while changing the number of virtual channels (VC) from 2
to 6 and compare the changes when using PSO-NoC and SA-
NoC.

For the testcases apte, hp and ami49, the comparison of

average flit latency, throughput and CPU processing time of

PSO-NoC and SA-NoC are shown in Figs. (2-4). From the

three figures, we can observe that for the testcase apte, com-

pared with SA-NoC algorithm, although the average flit la-

tency of PSO-NoC algorithm increases by 1.14% in average,

network throughput improves by 1.99% in average. The

most obvious is that the CPU processing time decreases by

52.35% in average which saves energy greatly.

For the testcase hp, with the three figures, we can con-

clude that compared with SA-NoC algorithm, the average flit

latency of PSO-NoC algorithm decreases by 3.67% in aver-

age and the network throughput improves by 8.07% in aver-

age. The most obvious is that the CPU processing time de-

creases by 84.14% in average which saves energy greatly.

For the testcase ami49, we can observe that compared

with SA-NoC algorithm, the average flit latency of PSO-

NoC algorithm decreases by 12.99% in average, network

throughput improves by 0.82% in average. The most obvious

is that the CPU processing time decreases by 47.64% in av-

erage. So for the testcases hp and ami49, every performance

of PSO-NoC algorithm is better than the original SA-NoC

algorithm.

In summary, it can be seen that compared with the origi-

nal SA-NoC, although latency of PSO-NoC is not better in

some cases, average flit latency reduces 2.8% and through-

put increases 2.25% as a whole. Especially, CPU processing

time decreases greatly, by an average of 47.71% and the

maximum case decreases 86.52%.

Fig. (2). Comparison of average flit latency for apte, hp and ami49 while changing the number of virtual channels from 2 to 6.

Research on an Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1149

Fig. (3). Comparison of throughput for apte, hp and ami49 while changing the number of virtual channels from 2 to 6.

Fig. (4). Comparison of CPU processing time for apte, hp and ami49 while changing the number of virtual channels from 2 to 6.

3.3.2. The Impact of Buffer Size on Performance

In this scenario, instead of increasing the number of vir-
tual channels, we study the impact of buffer size on perform-
ance by increasing the size of buffers. We assume that the
areas of routers is about 20% of the total area, we can in-
crease the area of each router to reach to 5 times of the origi-
nal value by increasing the size of input buffer and output
buffer in each router port. We can observe the impact of
buffer size on average latency and throughput by changing
the size of buffers.

For the testcases apte, hp and ami49, the comparison of
average flit latency and throughput of PSO-NoC and SA-
NoC are shown in Figs. (5) and (6). From the two figures,

we can observe that for the testcase apte, compared with SA-
NoC algorithm, although the average flit latency of PSO-
NoC algorithm increases by 1.04% in average, network
throughput improves by 2.29% in average.

For the testcase hp, with the two figures, we can con-
clude that compared with SA-NoC algorithm, the average flit
latency of PSO-NoC algorithm decreases by 3.92% in aver-
age and the network throughput improves by 4.58% in aver-
age. In this case, every performance of PSO-NoC algorithm
is better than the original SA-NoC algorithm.

For the testcase ami49, we can observe that although the
network throughput decreased by 1.36% in average, the av-
erage flit latency decreases by 6.27% in average.

1150 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Dakun et al.

In summary, it can be observed that compared with the
original SA-NoC, although latency of PSO-NoC are not bet-
ter in some cases, average flit latency decreased by 7.51%
and throughput increases by 5.3% as a whole.

3.3.3. The Impact of Injection Load on Performance

In fact, through a lot of experiments, we can conclude
that the impact of changing the injection load on network
latency and throughput is the largest.

For the testcases apte, hp and ami49, the comparison of
average flit latency, throughput and CPU processing time of
PSO-NoC and SA-NoC are shown in Figs. (7-9). From the
three figures, we can observe that for the testcase apte, al-

though the average flit latency increases by 0.86% in aver-
age, the average flit latency are substantially the same when
the injection load reaches saturation and network throughput
improves by 5.11% in average. The most obvious is that the
CPU processing time decreases by 37.65% in average which
saves energy greatly.

For hp, before injection load reaches 70%, average flit la-
tency has no change substantially. Based on the three fig-
ures, we can conclude that although the average flit latency
increases by 11.26% in average, the network throughput im-
proves by 4.91% in average. The most obvious is that the
CPU processing time decreases by 85.13% in average which
saves energy greatly.

Fig. (5). Comparison of average flit latency for apte, hp and ami49 while changing the size of buffers from 1x to 5x.

Fig. (6). Comparison of throughput for apte, hp and ami49 while changing the size of buffers from 1x to 5x.

Research on an Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1151

Fig. (7). Comparison of average flit latency for apte, hp and ami49 while changing injection load.

Fig. (8). Comparison of throughput for apte, hp and ami49 while changing injection load.

For the testcaseami49, with the three figures, we can ob-
serve that compared with SA-NoC algorithm, the average flit
latency of PSO-NoC algorithm increases by 27.72% in aver-
age, network throughput improves by 3.13% in average. The
most obvious result is that the CPU processing time de-
creases by 49.28% in average. In this case, every perform-
ance of PSO-NoC algorithm is better than the original SA-
NoC algorithm.

In summary, it can be seen that compared with the origi-
nal SA-NoC, although latency of PSO-NoC is not better in
some cases, average flit latency reduces 5.92% and through-
put increases 4.41% as a whole. Especially, CPU processing
time decreases greatly, by an average of 52.78% and the
maximum case decreases 87.08%.

3.3.4. The Impact of Different Testcases on Performance

Different testcases have different numbers of IP cores
and different aspect ratio of the IP cores. Also, the Mesh size
of their direct topologies is different. In this section, we
study the change of average flit latency, throughput and CPU
processing time of different testcases. In order to get more
equitable results, in this paper, simulations with different
injection loads have been run and the results are collected as
follows. When injection loads are different, the average flit
latency increases as the number of IP cores increases, and the
throughput is controlled by two parameters of Mesh size and
aspect ratio. The variation trend of CPU processing time is
substantially the same.

1152 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Dakun et al.

Fig. (9). Comparison of CPU processing time for apte, hp and ami49 while changing injection load.

Fig. (10). Comparison of average flit latency of architectures with different Mesh size when injection load is 60% and 100%.

In this paper, we conduct simulation experiments of in-
jection load of 20% to 100%, and then we get the bar chart
and analyze it. But due to the limitations of our paper space,
we just show the comparison of average flit latency in the
condition of 60% and saturation injection load as shown in
Fig. (10). It can be observed in the figures that when the
Mesh size is less than 6, average flit latency increases more
slowly and the average flit latency of the proposed PSO-NoC
algorithm is mostly less than SA-NoC algorithm. When
Mesh size is over 6, average flit latency of SA-NoC algo-
rithm increases greater while that of the PSO-NoC algorithm
increases slowly. Thus PSO-NoC algorithm is more suitable
for network architecture with large Mesh size.

To illustrate the impact of different testcases on network
throughput, in this paper, we also show the comparison of
the impact of different Mesh size and respect ratio on
throughput in the condition of 60% and saturation injection
load as shown in Fig. (11). It can be observed in the figures
that as a whole the throughput does not just increase or de-
crease as the number of IP cores increase, but shows a
growth trend like a wavy line. This also explains why the
throughput is not only affected by the number of IP cores but
also the aspect ratio. According to the configuration parame-
ters of each testcase, we can draw a conclusion that the
throughput is proportional to the number of IP cores and the
aspect ratio. Therefore, although the number of IP cores of

Research on an Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1153

xerox increases, the aspect ratio decreases close to 1. So the
throughout presents a certain downward trend. For compari-
son of the two algorithms, the throughput of PSO-NoC algo-
rithm is slightly higher than that of SA-NoC algorithm as a
whole. In effect overall, PSO-NoC algorithm is better.

The figure of CPU processing time of each injection load
is shown in Fig. (12). It can be observed in the figure that
when the Mesh size is less than 6, CPU processing time in-
creases more slowly. When Mesh size is over 6, CPU proc-
essing time of SA-NoC algorithm increases at a speed of 7
times while that of PSO-NoC algorithm increasing at a speed
of 3 to 5 times. So for the architectures with large scale,
PSO-NoC is much better in improving CPU processing time.
As a whole, compared with the original algorithm, CPU

processing time of PSO-NoC algorithm decreases especially
for architectures with large scale.

In summary, PSO-NoC algorithm saves more run time as
Mesh size increases. Also, the whole average latency and
average throughout of PSO-NoC algorithm improve com-
pared with SA-NoC algorithm. In addition, it can be seen in
the figures that PSO-NoC algorithm is much better for large-
scale architectures with large number of IP cores.

CONCLUSION

In this paper, we propose an improved algorithm named
the particle swarm optimization algorithm to optimize the
floorplans (PSO-NoC). The algorithm is based on the advan-

Fig. (11) Comparison of throughput of architectures with different Mesh size when injection load is 60% and 100%.

Fig. (12). Comparison of CPU processing time of architectures with different Mesh size when injection load is 60% and 100%.

1154 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Dakun et al.

tages of parallel processing units of particle swarm optimiza-
tion algorithm, and optimizes layout of the tiles to make the
floorplanning path and the CPU processing time shorter and
more efficient. Also, we adapt and build the original 3D NoC
simulator to simulate the proposed algorithm and compare it
with the original one. We add calculation of throughput to
make the experimental data more comprehensive and persua-
sive.

In the future, it is helpful for a comprehensive study of
architectures to design a graphical interface that can display
3D NoC floorplan in three dimensions. In addition, 3D NoC
architecture based on heterogeneous layout we discussed in
this paper is from tree graph mapping. So a better mapping
algorithm is needed to improve mapping performance of 3D
NoC and to ensure the quality of the floorplanning.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC) (61272006).

REFERENCES

[1] M. Sarrafzadeh, “Transforming an arbitrary floorplan into a slice-

able one” In: Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design, Santa Clara, CA, USA,

1993, pp. 386-389.
[2] Y. Jin-Tai, L. Kai-Ping, and H. Chun-Tsai, “Sliceable transforma-

tion of non-slicing floorplans based on vacant block insertion in
LB-packing process”, In: IEEE International 48th Midwest Sympo-

sium on Circuits and Systems, Covington, KY, 2005, pp. 1075-
1078.

[3] Y. Jin-Tai, C. Chih-Wei, Y. –F. Luo, and C. Yi-Hsiang, “Packing-
driven sliceable transformation for 3D floorplan designs”, In: Joint

IEEE North-East Workshop on Circuits and Systems and TAISA
Conference, 2008, pp. 85-88.

[4] O. Oluwaseun, “Parallel implementation of non-slicing floorplan
with MPI and OpenMP”, MS thesis, Ryerson University, 2012.

[5] Y. M. Li, “An non-slicing area prejudged algorithm for floorplan-
ning without simulated annealing”, In: 2nd International Confer-

ence on Computer and Automation Engineering, Singapore, 2010.
[6] C. Yu-Ning, “Non-slicing floorplanning-based crosstalk reduction

on gridless track assignment for a gridless routing system with fast
pseudo-tile extraction”, In: ACM International Symposium on

Physical Design, New York, NY, USA, 2008, pp. 134-141.
[7] X. Ning, “Hybrid algorithm for non-slicing floorplans optimiza-

tion”, In: 9th International Conference on Solid-State and Inte-
grated-Circuit Technology, Beijing, 2008, pp. 2313-2316.

[8] H. –J. Bai, S. –Q. Dong, and X. –L. Hong, “Buffer insertion based
on single-pair shortest-path algorithm for interconnect-centric

floorplanning”, In: 8th International Conference on Solid-State and

Integrated Circuit Technology Proceedings, Shanghai, China,
2006, pp. 1873-1875.

[9] X. Hong, L. Ma, Y. Cai, C. K. Cheng, and J. Gu, “Sequence cloth
diagram of Angle module and boundary constraint layout planning

algorithm based on angle module expressed in sequence”, Science
China, vol. 32, no. 3, pp. 409-418, 2002.

[10] W. Haiqi, and D. Sheqin, “Topology generation algorithm for
application specific network on chip”, “Journal of Computer-Aided

Design & Computer Graphics, vol. 23, no. 9, pp. 1576-1584, 2011.
[11] H. Liang-li W. Fa-yuan and W. Feng-jun, “A method based on

flock of birds with human-computer technology for packing lay-
out”, Journal of China Academy of Engineering Physics, vol. 3, pp.

29-31, 2009.
[12] E. F. Y. Young, and T. Ma, “TCG-based multi-bend bus driven

floorplanning”, In: Proceedings of the Asia and South Pacific De-
sign Automation Conference, Seoul, Korea, 2008, pp. 192-197.

[13] E. F. Y. Young, and R. Wang, “3-D floorplanning using labeled
tree and dual sequences”, In: Proceedings of the International

Symposium on Physical Design, Seoul, Korea, 2008, pp. 54-59.
[14] J. He, “The Research and Development of Placement Algorithm for

Network on Chip”, PhD thesis, Wuhan University of Technology,
2010.

[15] K. M. Reza, A. Federico, M. Srinivasan, P. Antonio, S. Ciprian,
and B. Luca, “A floorplan-aware interactive tool flow for NoC de-

sign and synthesis”, In: Proceedings of IEEE International SOC
Conference, Belfast, Northern Ireland, UK, 2009, pp. 379-382.

[16] V. De Paulo, and C. Ababei, “A framework for 2.5D NoC explora-
tion using homogeneous networks over heterogeneous floorplans”,

In: International Conference on ReConFigurable Computing and
FPGAs, Cancun, Quintana Roo, Mexico, 2009, pp. 267-272.

[17] J. Kennedy, and R. Eberhart, “Particle swarm optimization”, In:
IEEE International Conference on Neural Networks Proceedings,

Perth, WA, Australia, 1995, pp. 1942-1948.
[18] R. Eberhart, and J. Kennedy, “A new optimizer using particle

swarm theory”, In: Proceedings of the 6th International Symposium
on Micro Machine and Human Science, Nagoya, 1995, pp. 39-43.

[19] P. Hao, and Z. Ming. “Application of immune particle swarm
optimizer in neural network training”, Computer Engineering and

Applications, vol. 45, no. 34, pp. 50-52, 2009.
[20] G. Liu, “Study on Particle Swarm Optimization and its Application

in Image Retrieval” Harbin Engineering University, 2008.
[21] X. Gao, and J. Jiang, “Research on Particle Swarm Optimization

and its Application in Image Retrieval”, Xi’an Electronic Science
and Technology University, 2013.

[22] Q. Lin, Y. Zhu, and J. Ye, “Research on projection pursuit classifi-
cation model based on particle swarm optimization algorithm”,

Journal of Changsha Institute of Transportation, vol. 24, no. 2, pp.
90-95, 2008.

[23] G. Chen, J. Wang, and H. Xie, “Application of particle swarm
optimization for solving optimization problem of projection pursuit

modeling”, Computer Simulation, vol. 25, no. 8, pp. 159-161, 2008.
[24] V. de Paulo, and C. Ababei, “3D network-on-chip architectures

using homogeneous meshes and heterogeneous floorplans”, Inter-
national Journal of Reconfigurable Computing, vol. 2010, pp. 1-

12, 2010.
[25] K. Kim, S. Lee, J. –Y. Kim, and M. Kim, “A 125GOPS 583mW

network-on-chip based parallel processor with bio-inspired visual
attention engine”, In: IEEE International Solid-State Circuits Con-

ference, San Francisco, CA, 2008.

Received: March 16, 2015 Revised: July 23, 2015 Accepted: July 23, 2015

© Dakun et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

