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Abstract: In this paper, an improved floorplanning algorithm, named the floorplanning algorithm based on particle swarm 

optimization algorithm nesting simulated annealing to optimize the floorplans (PSO-SA-NoC), has been proposed with 

simulations conducted to verify this algorithm. The simulation results are compared with the original Simulated Anneal-

ing-NoC. The results show that the CPU’s process time of the PSO-SA-NoC algorithm decreased by 35.39%. The packet 

transmission latency reduces 4.05% in the average case and 83.3% in the best case respectively. The throughput improves 

1.72% in the average case and 10.57% in the best case respectively. 
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1. INTRODUCTION 

Three-dimensional network on chip (3D NoC) has be-
come one of the latest hot interdisciplinary research topics 
involving both integrated circuit (IC) and computer science. 
It was developed on the basis of integrated circuit (IC), sys-
tem on chip (SoC) and on-chip network (2D NoC). The main 
problem solved is on-chip communication bottleneck caused 
by high density integration. Nowadays, because of the 
shorter global interconnections, higher performance, lower 
interconnect losses, higher packing density, smaller size and 
many other advantages, 3D NoC has drawn more and more 
attention from both industry and academia. 

A floorplan of an IC is a schematic representation of ten-
tative placement of major functional IP blocks in Electronic 
Design Automation (EDA). Floorplans can be categorized 
into two groups, the sliceable floorplans [1-3] and non-
sliceable floorplans [4-7]. For examples, a team from 
Tsinghua University led by She-Qin Dong mainly focused 
on the buffer insertion algorithm for interconnect centric 
floorplanning [8] and 3-D floorplan representation based on 
the methodologies of Corner Block List (CBL) [9]. Their 
contribution also included a divide-and-conquer 2.5-D floor-
planning algorithm [10]. Liang-Li He et al. in [11] con-
ducted a thorough study of virtual layout and proposed a 
FOB based man-machine interactive loading layout method. 
Another team led by Young, Evangeline F.Y. from Hong 
Kong university of science and technology delved into the 
problem of bus-driven floorplanning [12] and 3-D floorplan-
ning using labeled tree and dual sequences [13]. Jingjing in 
[14] proposed a space feature optimization based mapping 
layout algorithm and they make a great contribution on en-
ergy consumption optimization of three dimensional  
 

networks-on-chip. Kakoee Mohammad Reza and Angiolin 
Federico et al. in [15] proposed a floorplan-aware toolchain 
for NoC design and synthesis integrated with a graphical 
front-end. They showed that not only a great amount of time 
and effort can be saved thanks to the easy-to-use proposed 
environment, but also that the quality of the final netlist can 
be improved due to the optimizations unlocked by the early-
stage interaction among the designer and the proposed tool-
chain. They presented a floorplan-aware toolchain for NoC 
design and synthesis integrated with a graphical front-end, 
The resulting design methodology is highly automated yet 
entails rich interaction with the user, spanning across traffic 
flow specification, topology synthesis and physical floor-
planning, with back-annotation capabilities and opportunities 
for incremental design. de Paulo, V and Ababei, C worked 
on homogeneous networks over heterogeneous floorplans 
[16]. They proposed a design methodology consisting of 
floorplanning and router assignment in a specifically de-
signed tool that integrates a cycle accurate NoC simulator. It 
is implemented and then used to investigate the new archi-
tecture and show that experimental results are application 
specific with potential significant performance improve-
ments for some testcases. 

In 1983, Kirkpatrick proposed modern Simulated An-
nealing (SA) algorithm, and used the algorithm to solve 
Large-scale combinatorial optimization problem successfully 
[17]. Yurong Feng in Kunming University applied SA to 
web process and current control in zinc, which achieved 
good results from the test in saving electricity costs of zinc 
plant [18]. This benefited from the efficiency and superiority 
of SA algorithm. Lin Wang in Inner Mongolia University of 
Technology applied SA to optimize the design of T-shaped 
micro-reactor [19]. SA has also been applied to assessment 
of dynamic positioning capability by Zhengfeng Liu in 
China Ship Scientific Research Center [20]. In 1995, Dr. 
James Kennedy and Russell Eberhart proposed Particle 
Swarm Optimization (PSO) algorithm [21, 22], and then 
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PSO is widely used in various fields of social life and scien-
tific research. Guangqing Bao in Lanzhou University of 
Technology applied PSO algorithm in wind power system 
[23]. In addition, PSO has also been applied to the optimize 
scheduling of the reservoir [24] and vehicle routing problem 
[25]. Li Jiang in Anhui University applied PSO and SA to 
study of BP network learning method [26]. In this paper, we 
first apply the classical PSO together with SA to 3D NoC 
floorplanning algorithm and open a new field of PSO and SA 
application. 

The rest of the paper is organized as follows. In Section 
2, we specify the design and realization of PSO-SA-NoC 
algorithm. In Section 3, we conduct simulation experiments 
using VNOC3 Simulator to test the degree of improvement 
of the proposed algorithm on CPU processing time, average 
flit latency and network throughput. Finally, Section 4 is the 
conclusion of this paper and the future work we can do. 

2. FLOORPLANNING ALGORITHM BASED ON 
PARTICLE SWARM OPTIMIZATION ALGORITHM 

NESTING SIMULATED ANNEALING ALGORITHM 

TO OPTIMIZE THE FLOORPLANS 

2.1. PSO-SA-NoC Algorithm Design 

In this paper, an improved floorplanning algorithm 
named the floorplanning algorithm based on particle swarm 
optimization algorithm nesting simulated annealing to opti-
mize the floorplans (PSO-SA-NoC) has been proposed. The 
algorithm is an improvement of the original floorplanning 
algorithm based on Simulated Annealing (SA) algorithm to 
optimize the floorplans, using both the parallel computing 
features of PSO and the global optimization features of SA 
to mainly optimize average flit latency and network through-
put. 

The cost function of PSO-SA-NoC algorithm used is 
shown in Formula (1), 

thLWAreaonCostfuncti engire)1(+=       (1) 

In (1), Costfunction represents the cost of completing the 
layout needs. Area represents the layout area used by IP 
cores layout using. Length represents length of the connec-
tion of generating layout uses.  is a parameter specified by 
the user which used to balance the area of tiles and the length 
of layout uses and valued from 0 to 1. In our algorithm, the 
value of  is 0.25. The update formulae of velocity and posi-
tion in our algorithm are shown as Formula (2) and Formula 
(3), 
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In Formula (2), inertia weight  uses variable weight and 
calculated formula is shown as Formula (4). The initial value 
of min and max are 0.5 and 3. The parameter count repre-
sents the current number of iterations and N represents the 
maximum number of iterations. Learning factor c1 and c2 use 
synchronous time-varying way and the calculated formula is 
shown as Formula (5). The initial value of cmin and cmax are 
0.25 and 3. The parameter count represents the current num-

ber of iterations and N represents the maximum number of 
iterations. Random parameters d1 and d2 are numbers that 
program randomly generated from 0 to 1. The parameter 
pre_costi represents the best position of the particle itself and 
besti represents the optimum position of particle swarm, 
wherein the velocity is in the range [3, 3]. If the value ex-
ceeds the determined range, then revise it to equal to the 
maximum. The position sequence of particles satisfies with 
binary code. It also needs to be revised if out of the deter-
mined range. If the location information obtained is less than 
0.5, then record it as 0, else record it as 1. 
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The simulated annealing parameters used in this algo-
rithm include annealing probability p and the calculated for-
mula is shown as Formula (6), in which pre[i] represents the 
fitness value of each particle and T represents the initial tem-
perature. 
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The given initial value of final temperature term_temp is 
0.1. The annealing formula is shown as Formula (7), in 
which r_t represents temperature control parameter,  is 
specified by users and the default value is 1.3, and sv repre-
sents the length of number of particles which have calculate 
fitness value.  
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2.2. PSO-SA-NoC Algorithm Realization 

In this part, we show the realization of PSO-SA-NoC al-
gorithm. The steps are as follows. 

Step 1: Parameters initialization. Define the number of 
particles as shu and the maximum number of iterations as N, 
where N=times*fp_p->size(). Randomly generate shu initial 
particles X0 and velocity V0 which are from -3 to 3. The ini-
tial temperature is T. The temperature control parameter is 
r_t and annealing probability p. 

Step 2: Assume the best position of the particle itself is 
pre_cost and the global best position of particle swarm is 
best. 

Step 3: Decide whether the current temperature reaches 
the final temperature term_temp. If achieved, then jump to 
Step 6, else jump to step 4. 

Step 4: Do the following for all particles: 

 Calculate the fitness of each particle according to 
Formula (1). If the particle adapt better than pre_cost or the 
random number is less than annealing probability P which 
can be calculated by Formula (4), Formula (5) and Formula 
(6), then the value is assigned to pre_cost and update the best 
position of the individual particle. 
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 If the fitness of pre_cost is better than best, then up-
date the value of best and the value of goodnum adds to 1, 
else the value of badmum adds to 1. 

 Update the position and velocity of particles according 
to Formula (2) and Formula (3). 

 Correct the obtained position information of particles 
according to the determined range of value of position and 
velocity so that it would not exceed the available space. 

Step 5: Update temperature value according to Formulate 
(7) and jump to Step 3. 

Step 6: Output best and end the algorithm.  

3. SIMULATION RESULTS AND DISCUSSION 

3.1. Introduction of the Simulator 

In order to test the degree of improvement of the pro-
posed algorithm on CPU processing time, average flit la-
tency and network throughput, the algorithm needs to be run 
on an actual system and compared with the original algo-
rithm.  

In this paper, we use the VNOC3 simulation platform 

developed by Cristinel Ababei in North Dakota State Uni-

versity using C++ in the Linux system. The simulator is ac-

tually a platform used to study 3D NoC architecture with two 

or three layers. The platform is built on a previous version of 

VNOC (a simulator for 2D NoC) and a B* tree layout. For 

three-layer architecture, the framework uses hMetis division. 

In addition, the simulator also includes a hidden option 

which allows users to generate new testcases and a GUI 

drawing tools. The drawing tools can be used to generate a 

three-layer network architecture but with only 2D display.  

3.2. Testcases 

In our experiments, we used six testcases whose charac-

teristics are shown in Table 1. In this table, we also present 

the size of the direct topologies for all the 3d NoC testcases 

with heterogeneous network architecture. We constructed 

these testcases from the classic MCNC testcases, whose area 

was scaled to achieve an average size of about 1cm 1 cm, 

which is a typical area for NoCs reported in the literature 

[27-29]. 

Based on these six testcases we have done a lot of ex-
periments and calculated the average as the experimental 
results. But due to the limitation of paper space, we show 
only three testcases of the six to illustrate trends and the im-
provement of the performance. They are apte,hp and ami49. 

We choose apte and ami49 here since they respectively 
are the smallest and largest testcases in these six testcases 
and more persuasive. The testcase hp is special, because the 
number of its IP core is relatively small (only 11). But its 
aspect ratio is 2 to 3 times the other testcases. So in this pa-
per, we show comparison of 3 testcases. 

3.3. Simulation Results and Analysis 

With the simulator introduced above we implement PSO-
SA-NoC and compare with the original floorplanning algo-
rithm based on simulated annealing algorithm to optimize 
the floorplans (hereinafter referred to as SA-NoC). In the 
simulation, the performance of the algorithm is mainly 
measured by three parameters, i.e. CPU processor time, 
throughput and average flit latency. In the simulation ex-
periments, in order to ensure a fair comparison, the value of 
command line parameters (for example, operating cycle, 
preheat cycle, input and output buffer size, etc) of the two 
algorithm is always the same. In certain load conditions or 
certain Mesh size, the lower the average latency, higher the 
throughput, less the CPU processing time, the better per-
formance of the algorithm. 

In order to comprehensively study the impact of each in-
dicator of 3D NoC on latency and throughput, in the simula-
tion experiment, we compare the throughout and average 
latency from four aspects while other parameter values un-
changed. (1) Change the number of virtual channels (from 2 
to 6) and analyze the impact of virtual channels on average 
flit latency, throughput and CPU processing time. (2) 
Change the buffer size (from 1x to 5x and the data indicates 
1 to 5 times the default cache) and analyze the impact of 
buffer size on average flit latency and throughput. (3) 
Change the injection load (20%-100%) and analyze the 
changes of CPU processing time, average flit latency and 
throughput. (4) Change Mesh size of the architecture (num-
ber of IP cores and aspect ratio) and analyze their impact on 
CPU processing, average flit latency and throughput. De-
tailed comparison and analysis are seen in section A, B, C, 
D. In the experiment, a number of simulations have been 

Table 1. Characteristics of the used testcases. 

Testcases Number of IP/cores 
Core  

avg. W/H 

Core std. dev. 

of W/H 

Direct Topology 

R R 

apte 8 4324/2499 27/4 3 3 

xerox 10 2114/2872 335/1290 4 4 

hp 11 4533/924 2498/386 4 4 

ami25 25 1770/1408 1201/896 5 5 

ami33 33 1581/1573 830/865 6 6 

ami49 49 1089/1123 768/651 7 7 
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conducted in each case and the final result is calculated from 
average. In each simulation, total run cycle is set to 
60000cycles and preheat cycle is set to 1000cycles to ensure 
the obtained data values when the system reaches a steady 
state to reduce the error data obtained in the simulation. 

3.3.1. The Impact of the Number of Virtual Channels on 
Performance 

First, we observe the impact of increasing the number on 
virtual channels upon average flit latency, throughput and 
CPU processing time. In this scenario, we observe changes 
of average flit latency, throughput and CPU processing time 

while changing the number of virtual channels (VC) from 2 
to 6 and compare the changes when using PSO-SA-NoC and 
SA-NoC.  

For the testcases apte, hp and ami49, the comparison of 
average flit latency, throughput and CPU processing time of 
PSO-SA-NoC and SA-NoC are shown in Figs. (1-3). From 
the three figures, we can observe that for the testcase apte, 
compared with SA-NoC algorithm, the average flit latency 
of PSO-SA-NoC algorithm decreases by 2.44% in average 
and the network throughput improves by 2.90% in average. 
The most obvious is that the CPU processing time decreases 
by 20.98% in average which saves energy greatly. 

 

Fig. (1). Comparison of average flit latency for apte, hp and ami49 while changing the number of virtual channels from 2 to 6. 

 

Fig. (2). Comparison of throughput for apte, hp and ami49 while changing the number of virtual channels from 2 to 6. 
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For the testcase hp, with these three figures, we can con-
clude that compared with SA-NoC algorithm, the average flit 
latency of PSO-SA-NoC algorithm decreases by 13.41% in 
average and the network throughput improves by 9.57% in 
average. The most obvious is that the CPU processing time 
decreases by 75.81% in average which saves energy greatly. 

For the testcase ami49, we can observe that compared 
with SA-NoC algorithm, the average flit latency of PSO-SA-
NoC algorithm increases by 45.34% in average and the net-
work throughput decreased by 1.31% in average. The CPU 
processing time decreases by 21.91% in average which saves 
energy greatly. 

In summary, it can be seen that compared with the origi-
nal SA-NoC, average flit latency and throughput of PSO-

SA-NoC are much better when the size of mesh is not very 
large and do not improved when the size of mesh is large. 
However, CPU processing time decreases greatly in all 
cases, by an average of 39.57% and the maximum case de-
creases 75.81%. 

3.3.2. The Impact of Buffer Size on Performance 

In this scenario, instead of increasing the number of vir-
tual channels, we study the impact of buffer size on perform-
ance by increasing the size of buffer. We assume that the 
areas of routers is about 20% of the total area, we can in-
crease the areas of each router to reach to 5 times of the 
original value by increasing the size of input buffer and out-
put buffer in each router port. We can observe the impact of 

 

Fig. (3). Comparison of CPU processing time for apte, hp and ami49 while changing the number of virtual channels from 2 to 6. 

 

Fig. (4). Comparison of average flit latency for apte, hp and ami49 while changing the size of buffers from 1x to 5x. 
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buffer size on average latency and throughput by changing 
the size of buffers. 

For the testcases apte, hp and ami49, the comparison of 
average flit latency and throughput of PSO-SA-NoC and SA-
NoC are shown in Figs. (4 and 5). From the two figures, we 
can observe that for the testcase apte, compared with SA-
NoC algorithm, the average flit latency of PSO-SA-NoC 
algorithm decreases by 2.39% in average and network 
throughput improves by 4.36% in average. 

For the testcase hp, with the two figures, we can con-
clude that compared with SA-NoC algorithm, the average flit 
latency of PSO-SA-NoC algorithm decreases by 13.07% in 
average and the network throughput improves by 50.64% in 
average. In this case, every performance of PSO-SA-NoC 

algorithm is much better than the original SA-NoC algo-
rithm. 

For the testcase ami49, we can observe that compared 
with SA-NoC algorithm, the average flit latency of PSO-SA-
NoC algorithm increases by 41.98% in average and the net-
work throughput decreased by 1.14% in average. 

In summary, it can be seen that compared with the origi-
nal SA-NoC, all performances of PSO-SA-NoC improve 
obviously in all cases when buffer size changes. 

3.3.3. The Impact of Injection Load on Performance 

Through a lot of experiments, we can conclude that the 
impact of changing the injection load on network latency and 
throughput is the largest. To compare the performance of the 

 

Fig. (5). Comparison of throughput for apte, hp and ami49 while changing the size of buffers from 1x to 5x. 

 

Fig. (6). Comparison of average flit latency for apte, hp and ami49 while changing injection load. 
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algorithm we proposed with the original algorithm, we need 
to explain that by changing injection load. In this paper, we 
conducted lots of experiments for the six testcases and even-
tually reach the following results by taking the average. 

For the testcase apte, hp and ami49, the comparison of 
average flit latency, throughout and CPU processing time of 
the two algorithms are shown in Figs. (6-8). From the three 
figures, we can observe that for the testcase apte, compared 
with SA-NoC algorithm, CPU processing time of PSO-SA-
NoC algorithm decreases by 25%, the average flit latency 
decreases by 2.75% network throughput improves by 6.28%. 

For the testcase hp, before injection load reaches 70%, 
average flit latency has no change substantially. With the 

three figures, we can conclude that compared with SA-NoC 
algorithm, CPU processing time of PSO-SA-NoC algorithm 
decreases by 77.24%. Average flit latency increases by 
28.33% and the network throughput improves by 9.77%. In 
summary, for network architecture with smaller scale or 
larger aspect radio, PSO-SA-NoC algorithm improves per-
formance better. 

For the testcase ami49, we can observe that compared 
with SA-NoC algorithm, CPU processing time of PSO-SA-
NoC algorithm decreases by 25.09%. Average flit latency 
decreases by 18.89% and network throughput improves by 
6.86%. In this case, every performance of PSO-SA-NoC 
algorithm is better than the original SA-NoC algorithm. 

 

Fig. (7). Comparison of throughput for apte, hp and ami49 while changing injection load. 

 

Fig. (8). Comparison of CPU processing time for apte, hp and ami49 while changing injection load. 
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In summary, it can be seen that compared with the origi-
nal SA-NoC, CPU processing time of PSO-SA-NoC algo-
rithm decreases greatly, by an average of 35.39% and the 
maximum case decreases 78.59%. Average flit latency de-
creases 11.18% in average and 74.55% in the best case. 
Network throughput increases 6.17% in average and 24.02% 
in the best case.  

3.3.4. The Impact of Different Testcases on Performance 

Different testcases have different numbers of IP cores 
and different aspect ratio of the IP cores. Also, the Mesh size 
of their direct topologies is different. In this section, we 
study the change of average flit latency, throughput and CPU 
processing time of different testcases. In order to get more 

equitable results, in this paper, we do research and simula-
tion of different injection loads and the results are as follows. 
When injection loads are different, the average flit latency 
increases as the number of IP cores increases, and the 
throughput is controlled by two parameters of Mesh size and 
aspect ratio. The variation trend of CPU processing time is 
substantially the same. 

In this paper, we do simulation experiments of injection 
load of 20% to 100%, and then we get the line chart and ana-
lyze it. But due to the limitations of our paper space, we just 
show the comparison of average flit latency in the condition 
of 60% and saturation injection load as shown in Fig. (9). It 
can be observed in the figure that when the Mesh size is less 

 

Fig. (9). Comparison of average flit latency of architectures with different Mesh size when injection load is 60% and 100%. 

 

Fig. (10). Comparison of throughput of architectures with different Mesh size when injection load is 60% and 100%. 
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than 6, average flit latency increases more slowly and the 
average flit latency of PSO-SA-NoC algorithm is better than 
that of SA-NoC algorithm. When Mesh size is over 6, aver-
age flit latency of SA-NoC algorithm increases greater while 
that of the proposed PSO-SA-NoC algorithm increases 
slowly. 

To illustrate the impact of different testcases on network 
throughput, in this paper, we also show the comparison of 
the impact of different Mesh size and respect ratio on 
throughput in the condition of 60% and saturation injection 
load as shown in Fig. (10). It can be observed in the figure 
that as a whole the throughput does not just increase or de-
crease as the number of IP cores increase, but shows a 
growth trend like a wavy line. This also explains why the 
throughput is not only affected by the number of IP cores but 
also the aspect ratio. According to the configuration parame-
ters of each testcase shown in Table 1, we can draw a con-
clusion that the throughput is proportional to the number of 
IP cores and the aspect ratio. Therefore, although the number 
of IP cores of xerox increases, the aspect ratio decreases 
close to 1. So the throughout presents a certain downward 
trend. For comparison of the two algorithms, the throughput 
of PSO-SA-NoC algorithm is slightly higher than that of SA-
NoC algorithm as a whole. In effect overall, PSO-SA-NoC 
algorithm is better. 

For CPU processing time, in this paper, we just show the 
simulation results when the injection load is 60% and satura-
tion injection load as shown in Fig. (11). It can be observed 
in the figure that when the Mesh size is less than 6, CPU 
processing time increases more slowly. When Mesh size is 
over 6, CPU processing time of SA-NoC algorithm increases 
at a speed of 7 times while that of PSO-SA-NoC algorithm 
increasing at a speed of 3 to 5 times. As a whole, compared 
with the original algorithm, CPU processing time of PSO-
SA-NoC algorithm decreases especially for architectures 
with large scale. 

In summary, compared with SA-NoC algorithm, CPU 
processing time of PSO-SA-NoC algorithm decreases by 
35.39%. The network throughput increases and for architec-
tures with Mesh size less than 6, the average flit latency de-
creases. 

CONCLUSION 

In this paper, we propose an improved floorplanning al-
gorithm named the algorithm based on particle swarm opti-
mization algorithm nesting simulated annealing algorithm to 
optimize the floorplans (PSO-SA-NoC). The algorithm is 
based on the advantages of parallel processing units of parti-
cle swarm optimization algorithm, and optimizes layout of 
the tiles to make the floorplanning path and the CPU proc-
essing time shorter and more efficient. Also, we adapt and 
build the original 3D NoC simulator to simulate the pro-
posed algorithm and compare it with the original one. We 
add calculation method of throughput to make the experi-
mental data more comprehensive and persuasive.  

In the future, we need to design NoC architecture based 
on heterogeneous network architecture to replace original 
floorplanning algorithm. Secondly, it is helpful for a com-
prehensive study of architectures to write graphical interface 
that can display in three dimensions. In addition, 3D NoC 
architecture based on heterogeneous layout is from tree 
graph mapping. To ensure the quality of the mapping, re-
searchers need to design better mapping algorithm to im-
prove floorplanning performance of 3D NoC. 

CONFLICT OF INTEREST 

The authors confirm that this article content has no con-
flict of interest. 

ACKNOWLEDGEMENTS 

This work is supported by the National Natural Science 
Foundation of China (NSFC) (61272006). 

 

Fig. (11). Comparison of CPU processing time of architectures with different Mesh size when injection load is 60% and 100%. 
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