
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 1155-1164 1155

 1874-110X/15 2015 Bentham Open

Open Access

An Improved Algorithm for 3D NoC Floorplanning Based on Particle
Swarm Optimization of Nesting Simulated Annealing

Song

Guozhi

1
, Zhang Dakun

1,*
, Huang Cui

1
 and Wang Lianlian

2

1
School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin300387, China;

2
Network Center, TianJin Agricultural University, Tianjin 300384, China

Abstract: In this paper, an improved floorplanning algorithm, named the floorplanning algorithm based on particle swarm

optimization algorithm nesting simulated annealing to optimize the floorplans (PSO-SA-NoC), has been proposed with

simulations conducted to verify this algorithm. The simulation results are compared with the original Simulated Anneal-

ing-NoC. The results show that the CPU’s process time of the PSO-SA-NoC algorithm decreased by 35.39%. The packet

transmission latency reduces 4.05% in the average case and 83.3% in the best case respectively. The throughput improves

1.72% in the average case and 10.57% in the best case respectively.

Keywords: 3D NoC, floorplanning algorithm, heterogeneous floorplans, PSO, SA.

1. INTRODUCTION

Three-dimensional network on chip (3D NoC) has be-
come one of the latest hot interdisciplinary research topics
involving both integrated circuit (IC) and computer science.
It was developed on the basis of integrated circuit (IC), sys-
tem on chip (SoC) and on-chip network (2D NoC). The main
problem solved is on-chip communication bottleneck caused
by high density integration. Nowadays, because of the
shorter global interconnections, higher performance, lower
interconnect losses, higher packing density, smaller size and
many other advantages, 3D NoC has drawn more and more
attention from both industry and academia.

A floorplan of an IC is a schematic representation of ten-
tative placement of major functional IP blocks in Electronic
Design Automation (EDA). Floorplans can be categorized
into two groups, the sliceable floorplans [1-3] and non-
sliceable floorplans [4-7]. For examples, a team from
Tsinghua University led by She-Qin Dong mainly focused
on the buffer insertion algorithm for interconnect centric
floorplanning [8] and 3-D floorplan representation based on
the methodologies of Corner Block List (CBL) [9]. Their
contribution also included a divide-and-conquer 2.5-D floor-
planning algorithm [10]. Liang-Li He et al. in [11] con-
ducted a thorough study of virtual layout and proposed a
FOB based man-machine interactive loading layout method.
Another team led by Young, Evangeline F.Y. from Hong
Kong university of science and technology delved into the
problem of bus-driven floorplanning [12] and 3-D floorplan-
ning using labeled tree and dual sequences [13]. Jingjing in
[14] proposed a space feature optimization based mapping
layout algorithm and they make a great contribution on en-
ergy consumption optimization of three dimensional

networks-on-chip. Kakoee Mohammad Reza and Angiolin
Federico et al. in [15] proposed a floorplan-aware toolchain
for NoC design and synthesis integrated with a graphical
front-end. They showed that not only a great amount of time
and effort can be saved thanks to the easy-to-use proposed
environment, but also that the quality of the final netlist can
be improved due to the optimizations unlocked by the early-
stage interaction among the designer and the proposed tool-
chain. They presented a floorplan-aware toolchain for NoC
design and synthesis integrated with a graphical front-end,
The resulting design methodology is highly automated yet
entails rich interaction with the user, spanning across traffic
flow specification, topology synthesis and physical floor-
planning, with back-annotation capabilities and opportunities
for incremental design. de Paulo, V and Ababei, C worked
on homogeneous networks over heterogeneous floorplans
[16]. They proposed a design methodology consisting of
floorplanning and router assignment in a specifically de-
signed tool that integrates a cycle accurate NoC simulator. It
is implemented and then used to investigate the new archi-
tecture and show that experimental results are application
specific with potential significant performance improve-
ments for some testcases.

In 1983, Kirkpatrick proposed modern Simulated An-
nealing (SA) algorithm, and used the algorithm to solve
Large-scale combinatorial optimization problem successfully
[17]. Yurong Feng in Kunming University applied SA to
web process and current control in zinc, which achieved
good results from the test in saving electricity costs of zinc
plant [18]. This benefited from the efficiency and superiority
of SA algorithm. Lin Wang in Inner Mongolia University of
Technology applied SA to optimize the design of T-shaped
micro-reactor [19]. SA has also been applied to assessment
of dynamic positioning capability by Zhengfeng Liu in
China Ship Scientific Research Center [20]. In 1995, Dr.
James Kennedy and Russell Eberhart proposed Particle
Swarm Optimization (PSO) algorithm [21, 22], and then

1156 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Guozhi et al.

PSO is widely used in various fields of social life and scien-
tific research. Guangqing Bao in Lanzhou University of
Technology applied PSO algorithm in wind power system
[23]. In addition, PSO has also been applied to the optimize
scheduling of the reservoir [24] and vehicle routing problem
[25]. Li Jiang in Anhui University applied PSO and SA to
study of BP network learning method [26]. In this paper, we
first apply the classical PSO together with SA to 3D NoC
floorplanning algorithm and open a new field of PSO and SA
application.

The rest of the paper is organized as follows. In Section
2, we specify the design and realization of PSO-SA-NoC
algorithm. In Section 3, we conduct simulation experiments
using VNOC3 Simulator to test the degree of improvement
of the proposed algorithm on CPU processing time, average
flit latency and network throughput. Finally, Section 4 is the
conclusion of this paper and the future work we can do.

2. FLOORPLANNING ALGORITHM BASED ON
PARTICLE SWARM OPTIMIZATION ALGORITHM

NESTING SIMULATED ANNEALING ALGORITHM

TO OPTIMIZE THE FLOORPLANS

2.1. PSO-SA-NoC Algorithm Design

In this paper, an improved floorplanning algorithm
named the floorplanning algorithm based on particle swarm
optimization algorithm nesting simulated annealing to opti-
mize the floorplans (PSO-SA-NoC) has been proposed. The
algorithm is an improvement of the original floorplanning
algorithm based on Simulated Annealing (SA) algorithm to
optimize the floorplans, using both the parallel computing
features of PSO and the global optimization features of SA
to mainly optimize average flit latency and network through-
put.

The cost function of PSO-SA-NoC algorithm used is
shown in Formula (1),

thLWAreaonCostfuncti engire)1(+= (1)

In (1), Costfunction represents the cost of completing the
layout needs. Area represents the layout area used by IP
cores layout using. Length represents length of the connec-
tion of generating layout uses. is a parameter specified by
the user which used to balance the area of tiles and the length
of layout uses and valued from 0 to 1. In our algorithm, the
value of is 0.25. The update formulae of velocity and posi-
tion in our algorithm are shown as Formula (2) and Formula
(3),

)()cos_(22111 iiiiii xbestdcxtpredcvv ++=
+ (2)

iii
vxx +=

+1 (3)

In Formula (2), inertia weight uses variable weight and
calculated formula is shown as Formula (4). The initial value
of min and max are 0.5 and 3. The parameter count repre-
sents the current number of iterations and N represents the
maximum number of iterations. Learning factor c1 and c2 use
synchronous time-varying way and the calculated formula is
shown as Formula (5). The initial value of cmin and cmax are
0.25 and 3. The parameter count represents the current num-

ber of iterations and N represents the maximum number of
iterations. Random parameters d1 and d2 are numbers that
program randomly generated from 0 to 1. The parameter
pre_costi represents the best position of the particle itself and
besti represents the optimum position of particle swarm,
wherein the velocity is in the range [3, 3]. If the value ex-
ceeds the determined range, then revise it to equal to the
maximum. The position sequence of particles satisfies with
binary code. It also needs to be revised if out of the deter-
mined range. If the location information obtained is less than
0.5, then record it as 0, else record it as 1.

N

count
=

)(minmax

max (4)

N

countcc
ccc ==

)(minmax

max21 (5)

The simulated annealing parameters used in this algo-
rithm include annealing probability p and the calculated for-
mula is shown as Formula (6), in which pre[i] represents the
fitness value of each particle and T represents the initial tem-
perature.

],0[)
cos_][

exp(shui
T

tpreipre
p = (6)

The given initial value of final temperature term_temp is
0.1. The annealing formula is shown as Formula (7), in
which r_t represents temperature control parameter, is
specified by users and the default value is 1.3, and sv repre-
sents the length of number of particles which have calculate
fitness value.

)
*

exp(_,*_
sv

T
trTtrT == (7)

2.2. PSO-SA-NoC Algorithm Realization

In this part, we show the realization of PSO-SA-NoC al-
gorithm. The steps are as follows.

Step 1: Parameters initialization. Define the number of
particles as shu and the maximum number of iterations as N,
where N=times*fp_p->size(). Randomly generate shu initial
particles X0 and velocity V0 which are from -3 to 3. The ini-
tial temperature is T. The temperature control parameter is
r_t and annealing probability p.

Step 2: Assume the best position of the particle itself is
pre_cost and the global best position of particle swarm is
best.

Step 3: Decide whether the current temperature reaches
the final temperature term_temp. If achieved, then jump to
Step 6, else jump to step 4.

Step 4: Do the following for all particles:

 Calculate the fitness of each particle according to
Formula (1). If the particle adapt better than pre_cost or the
random number is less than annealing probability P which
can be calculated by Formula (4), Formula (5) and Formula
(6), then the value is assigned to pre_cost and update the best
position of the individual particle.

An Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1157

 If the fitness of pre_cost is better than best, then up-
date the value of best and the value of goodnum adds to 1,
else the value of badmum adds to 1.

 Update the position and velocity of particles according
to Formula (2) and Formula (3).

 Correct the obtained position information of particles
according to the determined range of value of position and
velocity so that it would not exceed the available space.

Step 5: Update temperature value according to Formulate
(7) and jump to Step 3.

Step 6: Output best and end the algorithm.

3. SIMULATION RESULTS AND DISCUSSION

3.1. Introduction of the Simulator

In order to test the degree of improvement of the pro-
posed algorithm on CPU processing time, average flit la-
tency and network throughput, the algorithm needs to be run
on an actual system and compared with the original algo-
rithm.

In this paper, we use the VNOC3 simulation platform

developed by Cristinel Ababei in North Dakota State Uni-

versity using C++ in the Linux system. The simulator is ac-

tually a platform used to study 3D NoC architecture with two

or three layers. The platform is built on a previous version of

VNOC (a simulator for 2D NoC) and a B* tree layout. For

three-layer architecture, the framework uses hMetis division.

In addition, the simulator also includes a hidden option

which allows users to generate new testcases and a GUI

drawing tools. The drawing tools can be used to generate a

three-layer network architecture but with only 2D display.

3.2. Testcases

In our experiments, we used six testcases whose charac-

teristics are shown in Table 1. In this table, we also present

the size of the direct topologies for all the 3d NoC testcases

with heterogeneous network architecture. We constructed

these testcases from the classic MCNC testcases, whose area

was scaled to achieve an average size of about 1cm 1 cm,

which is a typical area for NoCs reported in the literature

[27-29].

Based on these six testcases we have done a lot of ex-
periments and calculated the average as the experimental
results. But due to the limitation of paper space, we show
only three testcases of the six to illustrate trends and the im-
provement of the performance. They are apte,hp and ami49.

We choose apte and ami49 here since they respectively
are the smallest and largest testcases in these six testcases
and more persuasive. The testcase hp is special, because the
number of its IP core is relatively small (only 11). But its
aspect ratio is 2 to 3 times the other testcases. So in this pa-
per, we show comparison of 3 testcases.

3.3. Simulation Results and Analysis

With the simulator introduced above we implement PSO-
SA-NoC and compare with the original floorplanning algo-
rithm based on simulated annealing algorithm to optimize
the floorplans (hereinafter referred to as SA-NoC). In the
simulation, the performance of the algorithm is mainly
measured by three parameters, i.e. CPU processor time,
throughput and average flit latency. In the simulation ex-
periments, in order to ensure a fair comparison, the value of
command line parameters (for example, operating cycle,
preheat cycle, input and output buffer size, etc) of the two
algorithm is always the same. In certain load conditions or
certain Mesh size, the lower the average latency, higher the
throughput, less the CPU processing time, the better per-
formance of the algorithm.

In order to comprehensively study the impact of each in-
dicator of 3D NoC on latency and throughput, in the simula-
tion experiment, we compare the throughout and average
latency from four aspects while other parameter values un-
changed. (1) Change the number of virtual channels (from 2
to 6) and analyze the impact of virtual channels on average
flit latency, throughput and CPU processing time. (2)
Change the buffer size (from 1x to 5x and the data indicates
1 to 5 times the default cache) and analyze the impact of
buffer size on average flit latency and throughput. (3)
Change the injection load (20%-100%) and analyze the
changes of CPU processing time, average flit latency and
throughput. (4) Change Mesh size of the architecture (num-
ber of IP cores and aspect ratio) and analyze their impact on
CPU processing, average flit latency and throughput. De-
tailed comparison and analysis are seen in section A, B, C,
D. In the experiment, a number of simulations have been

Table 1. Characteristics of the used testcases.

Testcases Number of IP/cores
Core

avg. W/H

Core std. dev.

of W/H

Direct Topology

R R

apte 8 4324/2499 27/4 3 3

xerox 10 2114/2872 335/1290 4 4

hp 11 4533/924 2498/386 4 4

ami25 25 1770/1408 1201/896 5 5

ami33 33 1581/1573 830/865 6 6

ami49 49 1089/1123 768/651 7 7

1158 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Guozhi et al.

conducted in each case and the final result is calculated from
average. In each simulation, total run cycle is set to
60000cycles and preheat cycle is set to 1000cycles to ensure
the obtained data values when the system reaches a steady
state to reduce the error data obtained in the simulation.

3.3.1. The Impact of the Number of Virtual Channels on
Performance

First, we observe the impact of increasing the number on
virtual channels upon average flit latency, throughput and
CPU processing time. In this scenario, we observe changes
of average flit latency, throughput and CPU processing time

while changing the number of virtual channels (VC) from 2
to 6 and compare the changes when using PSO-SA-NoC and
SA-NoC.

For the testcases apte, hp and ami49, the comparison of
average flit latency, throughput and CPU processing time of
PSO-SA-NoC and SA-NoC are shown in Figs. (1-3). From
the three figures, we can observe that for the testcase apte,
compared with SA-NoC algorithm, the average flit latency
of PSO-SA-NoC algorithm decreases by 2.44% in average
and the network throughput improves by 2.90% in average.
The most obvious is that the CPU processing time decreases
by 20.98% in average which saves energy greatly.

Fig. (1). Comparison of average flit latency for apte, hp and ami49 while changing the number of virtual channels from 2 to 6.

Fig. (2). Comparison of throughput for apte, hp and ami49 while changing the number of virtual channels from 2 to 6.

An Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1159

For the testcase hp, with these three figures, we can con-
clude that compared with SA-NoC algorithm, the average flit
latency of PSO-SA-NoC algorithm decreases by 13.41% in
average and the network throughput improves by 9.57% in
average. The most obvious is that the CPU processing time
decreases by 75.81% in average which saves energy greatly.

For the testcase ami49, we can observe that compared
with SA-NoC algorithm, the average flit latency of PSO-SA-
NoC algorithm increases by 45.34% in average and the net-
work throughput decreased by 1.31% in average. The CPU
processing time decreases by 21.91% in average which saves
energy greatly.

In summary, it can be seen that compared with the origi-
nal SA-NoC, average flit latency and throughput of PSO-

SA-NoC are much better when the size of mesh is not very
large and do not improved when the size of mesh is large.
However, CPU processing time decreases greatly in all
cases, by an average of 39.57% and the maximum case de-
creases 75.81%.

3.3.2. The Impact of Buffer Size on Performance

In this scenario, instead of increasing the number of vir-
tual channels, we study the impact of buffer size on perform-
ance by increasing the size of buffer. We assume that the
areas of routers is about 20% of the total area, we can in-
crease the areas of each router to reach to 5 times of the
original value by increasing the size of input buffer and out-
put buffer in each router port. We can observe the impact of

Fig. (3). Comparison of CPU processing time for apte, hp and ami49 while changing the number of virtual channels from 2 to 6.

Fig. (4). Comparison of average flit latency for apte, hp and ami49 while changing the size of buffers from 1x to 5x.

1160 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Guozhi et al.

buffer size on average latency and throughput by changing
the size of buffers.

For the testcases apte, hp and ami49, the comparison of
average flit latency and throughput of PSO-SA-NoC and SA-
NoC are shown in Figs. (4 and 5). From the two figures, we
can observe that for the testcase apte, compared with SA-
NoC algorithm, the average flit latency of PSO-SA-NoC
algorithm decreases by 2.39% in average and network
throughput improves by 4.36% in average.

For the testcase hp, with the two figures, we can con-
clude that compared with SA-NoC algorithm, the average flit
latency of PSO-SA-NoC algorithm decreases by 13.07% in
average and the network throughput improves by 50.64% in
average. In this case, every performance of PSO-SA-NoC

algorithm is much better than the original SA-NoC algo-
rithm.

For the testcase ami49, we can observe that compared
with SA-NoC algorithm, the average flit latency of PSO-SA-
NoC algorithm increases by 41.98% in average and the net-
work throughput decreased by 1.14% in average.

In summary, it can be seen that compared with the origi-
nal SA-NoC, all performances of PSO-SA-NoC improve
obviously in all cases when buffer size changes.

3.3.3. The Impact of Injection Load on Performance

Through a lot of experiments, we can conclude that the
impact of changing the injection load on network latency and
throughput is the largest. To compare the performance of the

Fig. (5). Comparison of throughput for apte, hp and ami49 while changing the size of buffers from 1x to 5x.

Fig. (6). Comparison of average flit latency for apte, hp and ami49 while changing injection load.

An Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1161

algorithm we proposed with the original algorithm, we need
to explain that by changing injection load. In this paper, we
conducted lots of experiments for the six testcases and even-
tually reach the following results by taking the average.

For the testcase apte, hp and ami49, the comparison of
average flit latency, throughout and CPU processing time of
the two algorithms are shown in Figs. (6-8). From the three
figures, we can observe that for the testcase apte, compared
with SA-NoC algorithm, CPU processing time of PSO-SA-
NoC algorithm decreases by 25%, the average flit latency
decreases by 2.75% network throughput improves by 6.28%.

For the testcase hp, before injection load reaches 70%,
average flit latency has no change substantially. With the

three figures, we can conclude that compared with SA-NoC
algorithm, CPU processing time of PSO-SA-NoC algorithm
decreases by 77.24%. Average flit latency increases by
28.33% and the network throughput improves by 9.77%. In
summary, for network architecture with smaller scale or
larger aspect radio, PSO-SA-NoC algorithm improves per-
formance better.

For the testcase ami49, we can observe that compared
with SA-NoC algorithm, CPU processing time of PSO-SA-
NoC algorithm decreases by 25.09%. Average flit latency
decreases by 18.89% and network throughput improves by
6.86%. In this case, every performance of PSO-SA-NoC
algorithm is better than the original SA-NoC algorithm.

Fig. (7). Comparison of throughput for apte, hp and ami49 while changing injection load.

Fig. (8). Comparison of CPU processing time for apte, hp and ami49 while changing injection load.

1162 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Guozhi et al.

In summary, it can be seen that compared with the origi-
nal SA-NoC, CPU processing time of PSO-SA-NoC algo-
rithm decreases greatly, by an average of 35.39% and the
maximum case decreases 78.59%. Average flit latency de-
creases 11.18% in average and 74.55% in the best case.
Network throughput increases 6.17% in average and 24.02%
in the best case.

3.3.4. The Impact of Different Testcases on Performance

Different testcases have different numbers of IP cores
and different aspect ratio of the IP cores. Also, the Mesh size
of their direct topologies is different. In this section, we
study the change of average flit latency, throughput and CPU
processing time of different testcases. In order to get more

equitable results, in this paper, we do research and simula-
tion of different injection loads and the results are as follows.
When injection loads are different, the average flit latency
increases as the number of IP cores increases, and the
throughput is controlled by two parameters of Mesh size and
aspect ratio. The variation trend of CPU processing time is
substantially the same.

In this paper, we do simulation experiments of injection
load of 20% to 100%, and then we get the line chart and ana-
lyze it. But due to the limitations of our paper space, we just
show the comparison of average flit latency in the condition
of 60% and saturation injection load as shown in Fig. (9). It
can be observed in the figure that when the Mesh size is less

Fig. (9). Comparison of average flit latency of architectures with different Mesh size when injection load is 60% and 100%.

Fig. (10). Comparison of throughput of architectures with different Mesh size when injection load is 60% and 100%.

An Improved Algorithm for 3D NoC Floorplanning The Open Cybernetics & Systemics Journal, 2015, Volume 9 1163

than 6, average flit latency increases more slowly and the
average flit latency of PSO-SA-NoC algorithm is better than
that of SA-NoC algorithm. When Mesh size is over 6, aver-
age flit latency of SA-NoC algorithm increases greater while
that of the proposed PSO-SA-NoC algorithm increases
slowly.

To illustrate the impact of different testcases on network
throughput, in this paper, we also show the comparison of
the impact of different Mesh size and respect ratio on
throughput in the condition of 60% and saturation injection
load as shown in Fig. (10). It can be observed in the figure
that as a whole the throughput does not just increase or de-
crease as the number of IP cores increase, but shows a
growth trend like a wavy line. This also explains why the
throughput is not only affected by the number of IP cores but
also the aspect ratio. According to the configuration parame-
ters of each testcase shown in Table 1, we can draw a con-
clusion that the throughput is proportional to the number of
IP cores and the aspect ratio. Therefore, although the number
of IP cores of xerox increases, the aspect ratio decreases
close to 1. So the throughout presents a certain downward
trend. For comparison of the two algorithms, the throughput
of PSO-SA-NoC algorithm is slightly higher than that of SA-
NoC algorithm as a whole. In effect overall, PSO-SA-NoC
algorithm is better.

For CPU processing time, in this paper, we just show the
simulation results when the injection load is 60% and satura-
tion injection load as shown in Fig. (11). It can be observed
in the figure that when the Mesh size is less than 6, CPU
processing time increases more slowly. When Mesh size is
over 6, CPU processing time of SA-NoC algorithm increases
at a speed of 7 times while that of PSO-SA-NoC algorithm
increasing at a speed of 3 to 5 times. As a whole, compared
with the original algorithm, CPU processing time of PSO-
SA-NoC algorithm decreases especially for architectures
with large scale.

In summary, compared with SA-NoC algorithm, CPU
processing time of PSO-SA-NoC algorithm decreases by
35.39%. The network throughput increases and for architec-
tures with Mesh size less than 6, the average flit latency de-
creases.

CONCLUSION

In this paper, we propose an improved floorplanning al-
gorithm named the algorithm based on particle swarm opti-
mization algorithm nesting simulated annealing algorithm to
optimize the floorplans (PSO-SA-NoC). The algorithm is
based on the advantages of parallel processing units of parti-
cle swarm optimization algorithm, and optimizes layout of
the tiles to make the floorplanning path and the CPU proc-
essing time shorter and more efficient. Also, we adapt and
build the original 3D NoC simulator to simulate the pro-
posed algorithm and compare it with the original one. We
add calculation method of throughput to make the experi-
mental data more comprehensive and persuasive.

In the future, we need to design NoC architecture based
on heterogeneous network architecture to replace original
floorplanning algorithm. Secondly, it is helpful for a com-
prehensive study of architectures to write graphical interface
that can display in three dimensions. In addition, 3D NoC
architecture based on heterogeneous layout is from tree
graph mapping. To ensure the quality of the mapping, re-
searchers need to design better mapping algorithm to im-
prove floorplanning performance of 3D NoC.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC) (61272006).

Fig. (11). Comparison of CPU processing time of architectures with different Mesh size when injection load is 60% and 100%.

1164 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Guozhi et al.

REFERENCES

[1] M. Sarrafzadeh, “Transforming an arbitrary floorplan into a slice-

able one”, In: Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design, Santa Clara, CA, USA,

1993.
[2] Y. Jin-Tai, L. Kai-Ping, and H. Chun-Tsai, “Sliceable transforma-

tion of non-slicing floorplans based on vacant block insertion in
LB-packing process”, In: IEEE International 48th Midwest Sympo-

sium on Circuits and Systems, Covington, KY, USA, 2005.
[3] Y. Jin-Tai, C. Chih-Wei, Y. –F. Luo, C. Yi-Hsiang, “Packing-

driven sliceable transformation for 3D floorplan designs”, In: Joint
IEEE North-East Workshop on Circuits and Systems and TAISA

Conference, Toulouse, France, 2008.
[4] O. Oluwaseun, “Parallel implementation of non-slicing floorplan

with MPI and OpenMP”, MS thesis, Ryerson University, 2012.
[5] Y. M. Li, “An non-slicing area prejudged algorithm for floorplan-

ning without simulated annealing”, In: 2nd International Confer-
ence on Computer and Automation Engineering, Singapore, 2010.

[6] C. Yu-Ning, “Non-slicing floorplanning-based crosstalk reduction
on gridless track assignment for a gridless routing system with fast

pseudo-tile extraction”, In: ACM International Symposium on
Physical Design, New York, NY, USA, 2008, pp. 134-141.

[7] X. Ning, “Hybrid algorithm for non-slicing floorplans optimiza-
tion”, In: 9th International Conference on Solid-State and Inte-

grated-Circuit Technology, Beijing, 2008, pp. 2313-2316.
[8] H. –J. Bai, S. –Q. Dong, and X. –L. Hong, “Buffer insertion based

on single-pair shortest-path algorithm for interconnect-centric
floorplanning”, In: 8th International Conference on Solid-State and

Integrated Circuit Technology Proceedings, Shanghai, 2006, pp.
1873-1875.

[9] X. Hong, L. Ma, Y. Cai, C. K. Cheng, and J. Gu, “Sequence cloth
diagram of Angle module and boundary constraint layout planning

algorithm based on angle module expressed in sequence”, Science
China, vol. 32, no. 3, pp. 409-418, 2002.

[10] W. Haiqi, and D. Sheqin, “Topology generation algorithm for
application specific network on chip”, Journal of Computer Aided

Design & Computer Graphics, vol. 23, no. 9, pp. 1576-1584, 2011.
[11] H. Liang-li W. Fa-yuan and W. Feng-jun, “A method based on

flock of birds with human-computer technology for packing lay-
out”, Journal of China Academy of Engineering Physics, vol. 3, pp.

29-31, 2009.
[12] E. F. Y. Young, and T. Ma, “TCG-based multi-bend bus driven

floorplanning”, In: Proceedings of the Asia and South Pacific De-
sign Automation Conference, Seoul, Korea, 2008, pp. 192-197.

[13] E. F. Y. Young, and R. Wang, “3-D floorplanning using labeled
tree and dual sequences”, In: Proceedings of the International

Symposium on Physical Design, Seoul, Korea, 2008, pp. 54-59.
[14] J. He, “The Research and Development of Placement Algorithm for

Network on Chip”, PhD thesis, Wuhan University of Technology,
2010.

[15] K. M. Reza, A. Federico, M. Srinivasan, P. Antonio, S. Ciprian,

and B. Luca, “A floorplan-aware interactive tool flow for NoC de-
sign and synthesis”, In: Proceedings of IEEE International SOC

Conference, Belfast, Northern Ireland, UK, 2009, pp. 379-382.
[16] V. De Paulo, and C. Ababei, “A framework for 2.5D NoC explora-

tion using homogeneous networks over heterogeneous floorplans”,
In: International Conference on ReConFigurable Computing and

FPGAs, Cancun, Quintana Roo, Mexico, 2009, pp. 267-272.
[17] D. Wang, J. Wang, and H. Wang, ‘Intelligent Optimization Algo-

rithms’. Higher Education Press, 2007, pp. 136-137.
[18] Y. Feng, “Research and application of simulated annealing algo-

rithm”, PhD thesis, Kunming University of Science and Technol-
ogy, 2005, pp. 1-2.

[19] L. Wang, and Y. Qi, ‘Application of simulated annealing algorithm
to optimize the design of t-shaped micro-reactor’, Computer Appli-

cation and Chemistry, vol. 10, no. 30, pp. 1193-1196, 2013.
[20] Z. Liu, C. Liu, X. Kuang, and D. Zhou, “Application of simulated

annealing algorithm to assessment of dynamic positioning capabil-
ity”, Journal of Ship Mechines, vol. 4, no. 17, pp. 375-381, 2013.

[21] J. Kennedy, and R. Eberhart, “Particle swarm optimization”, In:
IEEE International Conference on Neural Networks Proceedings,

Perth, WA, Australia, 1995, pp. 1942-1948.
[22] R. Eberhart, and J. Kennedy, “A new optimizer using particle

swarm theory”, In: Proceedings of the 6th International Symposium
on Micro Machine and Human Science, Nagoya, 1995, pp. 39-43.

[23] G. Q. Bao, and K. Mao, “An improved PSO algorithm and its utili-
zation in wind power generation system”, Control Engineering of

China, vol. 20, no. 2, pp. 262-271, 2013.
[24] G. Ding, and W. Cao, “Application of improved particle swarm

optimization algorithm in optimal operation of reservoir”, South to
North Water Transfers and Water Science & Technology, vol. 12,

no. 1, pp. 127-130, 2014.
[25] J. Zheng, “Research oil vehicle routing problem based onimproved

particle swarm optimization algorithm”, PhD thesis, North China
Electric Power University, 2013, pp. 1-2.

[26] L. Jiang, “Study of BP network learning method based on particle
swarm optimization algorithm and simulated annealing algorithm”,

PhD thesis, Anhui University, 2013, pp.1-2
[27] K. Kim, S. Lee, J. –Y. Kim, and M. Kim, “A 125GOPS 583mW

network-on-chip based parallel processor with bio-inspired visual
attention engine”, In: IEEE International Solid-State Circuits Con-

ference, San Francisco, CA, 2008.
[28] S. R. Vangal, J. Howard, G. Ruhl, and S. Dighe, “An 80-Tile Sub-

100-W TeraFLOPS processor in 65-nm CMOS”, IEEE Journal Of
Solid-State Circuits, vol. 43, no. 1, pp. 29-40, 2008.

[29] C. Mineo, R. Jenkal, and S. Melamed, “Inter-Die signaling in three
dimensional integrated circuits”, In: IEEE 2008 Custom Intergrated

Circuits Conference, San Jose, CA, 2008, pp. 655-658.

Received: March 16, 2015 Revised: July 23, 2015 Accepted: July 23, 2015

© Guozhi et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

