
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 1449-1452 1449

 1874-110X/15 2015 Bentham Open

Open Access

Research and Implementation on Virtual Network Mapping Mechanism
based on SDN

Yanqin Mao
*
, Yanxing Gui and Subin Shen

School of Computer Science & Technology, School of Software, Nanjing University of Posts and Telecommunications,

Nanjing, 210003, P.R. China

Abstract: Network virtualization technology allows multiple logical networks or network applications to run simultane-

ously on the underlying physical network. The virtual network mapping is the key method to realize network virtualiza-

tion. Virtual tenant network (VTN) is a new technique for construction of multi-tenant network in software definition

networking (SDN) network. VTN mapping mechanism is a core problem. In this paper MAC address-based mapping

method which maps the host to the virtual network according to the host’s MAC address is proposed. Besides, a virtual

network based on MAC address mapping method is established to verify the effectiveness of the VTN mapping method

based on MAC address.

Keywords: Network virtualization, software defined networking, virtual network mapping, virtual tenant network.

1. INTRODUCTION

SDN [1] is a new network architecture. The main differ-
ence between SDN network and traditional network is that
the control function of network equipment in SDN is sepa-
rated from data forwarding functions [2]. Control function of
the network device is configured and managed by SDN con-
trollers. SDN switch [3] only provides a simple data for-
warding function. Using OpenFlow protocol [4], SDN con-
troller [5] can get information about the state of SDN
switches and can dynamically add, delete, update the flow
table entries for the switches. SDN controller can control the
physical network devices and capture the whole network
topology and physical network resource information.

With the rapid development of cloud computing, cloud
service providers need to provide a large number of tenants
with isolated and quality assurance virtual networks, namely
network as a service (NaaS) [6]. Tenant may be a single cus-
tomer or customer organization who requests the resources
from data center network [7]. Virtual Tenant Network
(VTN)[8] is an extension technology on OpenDaylight [9]
controller that can be used to build a multi-tenant virtual
network in cloud data center network scenarios. Virtual net-
work constructed by VTN technology can automatically map
to the underlying physical network. In fact, internal commu-
nication of virtual network refers to internal communication
of the physical network virtual network mapping. Therefore,
how to map the SDN virtual network into the physical net-
work is the core technology of VTN. Virtual network map-
ping problems involve node mapping and link mapping [10].
This paper focuses on node mapping problem.

Currently, VTN provides two node mapping methods in-

cluding port mapping and VLAN mapping. Port mapping

refers to the mapping from virtual interface of VTN virtual

switches to port number of the physical switch. The for-

warded data from a physical switch port will be regarded as

the forwarded data from a virtual interface of virtual net-

work. VLAN mapping refers to the mapping according to the

vlan_id value of data frame header. All data frames with the

same vlan_id belong to the same virtual network. Although

these two mapping methods are relatively mature, they have

difficulty in joining a specific physical host to virtual net-

works. Thus, a host’s MAC address-based mapping method

is proposed in this paper.

Experimental results show that the host’s MAC address-

based mapping method simplifies the VTN mapping mecha-

nism and increases the reliability of the VTN.

2. DESIGN OF THE NODE MAPPING ON HOST’S

MAC ADDRESS

Fig. (1) shows the major components of VTN. VTN in-

cludes VTN manager and VTN coordinator. VTN manager

is deployed inside SDN controller in the form of plug-in

which manages the information of the virtual network in-

cluding network topology and mapping information. VTN

coordinator coordinates multiple SDN controller and pro-

vides REST APIs [11] for VTN application. VTN applica-

tions are network applications deployed in the virtual net-

work.

A virtual network [12] built by VTN technology consists

of virtual nodes(VN), virtual links (VL) and virtual inter-

faces (VI) on virtual nodes. Virtual nodes (VN) include vir-

tual switch (VS), virtual router (VR) and virtual tunnel (VT),

etc.

1450 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Mao et al.

VTN Application

VTN manager

SDN controller

VTN manager

SDN controller

Switch SwitchSwitch Switch

VTN Coordinator

Fig. (1). VTN architecture.

This section introduces the mapping method based on the
host's MAC address, which gets the MAC address of the
host, then maps the MAC address of the host with the virtual
switch, and sends the mapping information to VTN manager.
VTN manager then calls the appropriate module interfaces of
SDN controller which calculates the path and issues the for-
ward rules to flow table of underlying physical switch to
complete VTN internal forwarding.

The sequence diagram of virtual node mapping flow based
on host’s MAC address is shown in Fig. (2).

SDN controller provides host track (HostTrack) module
to record the host information in SDN network. Firstly, log
on North interface to resolve the host information recorded
by HostTrack and extract the MAC address of the host for
storage. Secondly, according to tenant requests, the mapping
relationships are built between host MAC address and virtual
node which include the host’s MAC address, switch infor-
mation connected to a host, and virtual node information.
Finally, VTN manager stores these mapping relations, calls
the routing module API of SDN controller to calculate the
corresponding path and calls flow table module API to add
flow table forwarding entries which are issued to the physi-
cal switch.

3. IMPLEMENTATION OF THE NODE MAPPING
BASED ON HOST MAC ADDRESS

Implementation platform of VTN mapping uses the open
source SDN controller OpenDaylight. By mininet tool,
physical network topology including switches and hosts is
created.

In order to achieve mapping method based on host’s
MAC address, the host MAC address needs to be obtained
firstly. Then, add MacMap mapping method to the mapping
lists and design MacMap class to record the MAC address of
the hosts. Details are as follows.

(1) Get host information

The North interface module HostTrack of OpenDaylight
controller records the host information including IP address,
MAC address, vlan-id, etc. In myeclipse development plat-
form, import OpenDaylight controllers including Host-

Track.jar package and resty kit which provides a simple
HTTP/REST client for accessing the north interfaces of
OpenDaylight using authentication information. Using the
client resolver function, host information in HostTrack is
resolved. The directory where the information is saved is
hosttracker/default/hosts/acive. The resolved data is saved in
the form of JSON object. Code snippets are as follows.

URI odl =
URI.create("http://10.10.101.174:8080/co
ntroller/nb/v2/");

// IP addresses of OpenDaylight
controller
Resty client = new Resty();

//use Resty to establish client
client.authenticate(odl, "admin",
"admin".toCharArray());

//enter authentication data
JSONObject response = cli-
ent.json(odl.resolve("hosttracker/defau
lt/hosts/active")).toObject();
//Verification pass, parse the infor-

mation recorded in north interface
module.

Extract the MAC address information of each host stored
in the form of DataLinkHost class, DataLinkHost class con-
tains the following information.

Host ID Mac Address Node ID Port ID

(2) Establish a virtual network

Point out the MAC address for the mapping which will
constitute a virtual network. Call DataLinkHost class which
represents the host MAC address information. Use the class
as the type to point out the MAC address for the distribution
and not for distribution. The definition of MacMap is as fol-
lows.

VTN mapping
VTN

manager
Routing

Get host

information

response

Get the

MAC

address of

host

Send the mapping

information

Request for the path

between nodes

Return the path for nodes

Host Tracing

Fig. (2). Sequence diagram of virtual node mapping based on host’s

MAC address.

Research and Implementation on Virtual Network Mapping Mechanism The Open Cybernetics & Systemics Journal, 2015, Volume 9 1451

Public class MacMap implements Serializ-
able

{
Private final

Set<DataLinkHost>allowedHosts=New
HashSet<DataLinkHost>();

Private final
Set<DataLinkHost>deniedHosts=New Hash-
Set<DataLinkHost>();

}

(3) Virtual Node Mapping

When calling VTN interface to create a virtual node
(VN), call the method getAllowedHost() to get a host MAC
address for mapping and physical switch (nodeID) used for
mapping. In this case the physical switches and virtual
switches will be associated. The mapping information in-
cluding VTN ID, VN, MAC Address, nodeID is stored in the
VTN manager. Finally, VTN manager stores all topology
information including physical nodes, the virtual node and
host MAC address. When the physical switch receives a
packet, it checks the MAC address of the packet, sends a
packet-in message to the controller, and requests packet for-
warding rules. The controller queries VTN manager to know
which virtual network the packet belongs to and issues flow
table in accordance with the internal virtual network for-
warding rules.

4. TEST AND ANALYSIS

4.1. Test Environment

In order to provide virtual network for tenants in SDN
network, node mapping mechanism based on host’s MAC
address is tested and analyzed. Run ubuntu12.04 system built
on a physical host server test environment, configure java
environment and install OpenDaylight controller helium ver-
sion. Use simulation tool Mininet for constructing data for-
warding network.

OpenDaylight controller runs on the server side. Mininet
forwarding network is created including four hosts and three
OpenFlow switch. Close default network forwarding appli-
cation of OpenDaylight controller to make four hosts un-
reachable to each other.

As shown in Fig. (3), node mapping based on MAC ad-
dresses can establish the appropriate virtual network for dif-
ferent tenants.

Fig. (3). VTN test network.

4.2. Test Process

Firstly, establish the physical network topology with
Mininet. Command of establishing a network is as follows.
Close the simple forwarding function inside the controller
and each two hosts are unreachable.

Sudo mn --controller=remote,
ip=<controller-ip> --topo tree, 2

Secondly, open command terminal of Ubuntu system and
call REST APIs for VTN to create two virtual network,
named VTN1 and VTN2. VTN1 contains host1 and host3.
VTN2 contains host2 and host4. In the establishment of a
virtual switch (vBridge), specify the Port mapping for each
virtual interface of the virtual switch. The code snip is as
follows.

//Create VTN:
Curl -X POST –d
'{"vtn":{"vtn_name":"vtn1"}}'

http://172.16.168.51:8080/vtnwebapi/vtns
.json

//create vBridge:
curl -X POST -d
'{"vbridge":{"vbr_name":"vbr1","contro

ller_id":"CONTROLLER1","domain_id":"(DEF
AULT)"}}'
http://172.16.168.51:8080/vtnwebapi/vtns
/vtn1/vbridges.json

//create virtual switch
curl -X POST -d

'{"interface":{"if_name":"if1"}}'
http://172.16.168.51:8080/vtnwebapi/vt

ns/vtn1/vbridges/vbr1/interfaces.json
curl -X POST -d

'{"interface":{"if_name":"if2"}}'
http://172.16.168.51:8080/vtnwebapi/vt

ns/vtn1/vbridges/vbr1/interfaces.json
//create port mapping
curl -X PUT -d

'{"portmap":{"logical_port_id":"PP-0000-
0000-0000-0004-eth3"}}'

http://172.16.168.51:8080/vtnwebapi/vt
ns/vtn1/vbridges/vbr1/interfaces/if1/por
tmap.json

curl -X PUT -d
'{"portmap":{"logical_port_id":"PP-0000-
0000-0000-0006-eth4"}}'

http://172.16.168.51:8080/vtnwebapi/vt
ns/vtn1/vbridges/vbr1/interfaces/if2/por
tmap.json

Use ping command between host1 and host3. The result
is shown in Fig. (4). The VTN establishment is successful
based on the port mapping.

Thirdly, use MAC address-based host mapping to test.
The difference from port mapping is that switch virtual inter-
face need not to create and a host directly is mapped to a
virtual switch. The specific command is as follows. The

1452 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Mao et al.

reachability test result between host1 and host 3 based on MAC
address-based host mapping is the same as port mapping.

Curl -X PUT
http://localhost:8080/controller/nb/v2

/vtn/default/vtns/Tenant1/vBridge1/macma
p -d’{“host1mac”:{....},}’

When using the ping test for host1 and host3 within
VTN1, two hosts can access each other. The test results
show that building a successful VTN and MAC address-
based node mapping method is feasible.

Next, in order to demonstrate the reliability of the VTN
based on MAC address Host mapping, a Mininet command
is shown as follows and used to make the link between s2
and host1 broken to simulate the port of switch s2 is failure.
Then use ping command between host1 and host3 based on
the port mapping. The result shows that the two hosts are
unreachable.

mininet> link s1 h1 down

Lastly, Mininet not only supports input commands to es-
tablish network, but also provides Python API to easily cus-
tomize the topology by creating a .py file that defines a to-
pology. Add a switch named s4 and connect the host1 with
switch s4.

class Swicthtopo(topo):
Def_init_(self,n=4,**opts):
Topo._init_(self,**opts)
Switch=self.addSwitch(‘s4’)
self.addLink(host1,s4)

According to the test results, when the port fails, port-
based node mapping method cannot be used. But by using
the MAC address-based node mapping method, through add-
ing the host to the other switches, connectivity among hosts
in virtual network will not be affected.

CONCLUSION

Based on the study of SDN-based VTN technology and
the node mapping mechanism between virtual networks and

physical network, node mapping method based on the MAC
address is proposed which simplifies the VTN mapping
mechanism and increase VTN reliability. Experimental result
shows that the scheme is feasible.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work was financially supported by the innovative
research joint funding project of Jiangsu Province (No.
BY2013095-108).

REFERENCES

[1] A. Lara, A. Kolasani, and B. Ramamurthy, "Network innovation

using OpenFlow: a survey", Communications Surveys & Tutorials,

vol. 16, no. 1, pp. 493-512, 2014.

[2] L. Chen, and Q. Wu, “Based on construction of data center network

SDN techniques”, The internet world, vol. 1, pp. 40-44, 2013.

[3] ONF, OpenFlow Switch Specification (version 1.3). 2012.

[4] M. Jarschel, and R. Pries, “An openflow-based energy-efficient data

center approach”, In: SIGCOMM '12 Proceedings of the ACM SIG-

COMM, Helsinki, 2012, pp. 87-98.

[5] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-

based comparison and selection of Software Defined Networking

(SDN) controllers”, In: Computer Applications and Information

Systems (WCCAIS), Hammamet, 2014, pp. 1-7.

[6] J. Kempf, Y. Zhang, R. Mishra, and N. Beheshti, “Zeppelin-A third

generation data center network virtualization technology based on

SDN and MPLS”, In: IEEE 2nd International Conference on Cloud

Networking (CloudNet), San Francisco, 2013, pp. 1-9.

[7] J. Mudigonda, P. Yalagandula, and J. Mogul, “NetLord: a scalable

multi-tenant network architecture for virtualized datacenters”, In:

ACM SIGCOMM Computer Communication Review, Toronto,

2011, pp. 62-73.

[8] OpenDaylight.Project.Virtual_Tenant_Network[Online]. Available:

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_

Network_(VTN):Main/, 2013.

[9] OpenDaylight_Project.WhyOpenDaylight[EB/OL]. Available: http://

www.opendaylight.org/why-opendaylight/, 2013.

[10] M. F. Bari, S. R. Chowdhury, R. Ahmed, and B. Raouf, “Policy-

Cop: an autonomic QoS policy enforcement framework for soft-

ware defined networks”, In: IEEE SDN for Future Networks and

Services (SDN4FNS), Trento, 2013, pp. 1-7.

[11] L. Li, and W. Chou, “Design and describe REST API without vio-

lating REST: a Petri Net Based Approach”, In: IEEE International

Conference on Web Services (ICWS), Santa Clara, 2011, pp. 508-

515.

[12] R. Cohen, K. Barabash, and L. Schour, “Distributed Overlay Vir-

tual Ethernet (DOVE) integration with Openstack”, In: IFIP/IEEE

International Symposium on Integrated Network Management (IM

2013), Ghent, 2013, pp. 1088-1089.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Mao et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (4). Host reachability test result.

