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Abstract: Maximum flow problem on hypergraphs (hyper-networks) is an extension of maximum flow problem on nor-

mal graphs. In this paper, we consider a generalized fuzzy version of maximum flow problem in hyper-networks setting. 

Our algorithm is a class of genetic algorithms and based on genetic tricks. The crisp equivalents of fuzzy chance con-

straints in hyper-networks setting are defined, and the execution steps of encoding and decoding are presented. Finally, we 

manifest the implement procedure. 
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1. INTRODUCTION 

Maximum flow problem of weighted graph, an important 

component of graph theory and artificial intelligence, has 

been widely used in many fields, such as computer network, 

data mining, image segmentation and ontology computation 

(see [1-7]). Hyper-graph is a subset system for limited set, 

which is the most general discrete structure, and it is the 

generalization of the common graph. For many practical 

problems, adopting the concept of hyper-graph is more use-

fully than adopting the concept of graph. At present, the 

model of hypergraph has been applied in many fields, such 

as: VLSI layout, electricity network topology analysis. Re-

cently, intelligence algorithms and learning algorithms on 

hyper-graph and its computer applications are studied by 

researchers (see [8-17] for example).  

Let V={v1,v2,…,vm} be a limited set, E is family of subset 

of V, i.e., E 2
V
. Then H=(V,E) is a hypergraph on V. the 

element of V is called a vertex, the elements of E is called a 

hyperedge. Let V  be the order of H, E be the scale of H. 

e  is basic number of hyperedge e. r(H)=
j

max
j
e is rank 

of hyperedge e, and s(H)= 
j
min

j
e  lower rank of hyper-

edge e. If e =k for each hyperedge e of E (that is 

r(H)=s(H)=k), then H is a k-uniform hypergraph. If k=2, then 

H is just a normal graph. 

A hypergraph H is called a simple hypergraph or a 

sperner hypergraph, if any two hyperedges are not contained 

with each other. Let 
'

H =(V,
'
E ) is a hypergraph on V, if  

 

'
E E, then 

'
H  is a part-hypergraph of H. For S V, 

H[S]={e E:e S} is called a sub-hypergraph of H induced 

by S. 

Hypergraph H can be represented by graph by using the 

set of vertices to represent the elements of V. If j
e =2, us-

ing a continuous curve which attach to the elements of ej to 

representing ej; If j
e =1, using a loop which contain ej to 

represent ej; If j
e 3, using a simple close curve which 

contains all the elements of ej to represent ej. 

In this paper, we assume H is a weighted hypergraph, 

each edge given a wight w(e). The degree of vertex vj in hy-

pergraph H is denoted as  

deg ( )
j
H

= ( ) ( , )
e E

w e h v e ,  

where  

( , )h v e
=
1,

0,

if v e

if v e
. 

Let ( )e = ( , )
v V

h v e . Then, the normalized laplacian 

L(H)
m m

 on hypergraph H is defined by  

( )
ij
L H

= { , }

1
( )

( )

deg ( )

i j e

j

w e i j
e

H

. 

Let H=(V, E) be a fixed a directed, weighted hyper-graph 

with n vertices which express a hyper-network. In many pro-

jects like large super-network research, database systems 

research, timing research, circuit design research and so on, 
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directed hypergraph models can represent relationships be-

tween elements there. Due to its good application back-

ground, directed hypergraph theory has become a rapidly 

developing subject in the field of graph theory. 

Specifically, a directed hyper-graph is a hyper-graph 

where each hyper-edge divided into two sets: e= ( , )X Y  

with X Y =  and X, Y can be the empty set. Here, X 

called a tail point set and Y called a head point set denoted 

by ( )T e  and ( )H e  respectively. Similar as undirected hy-

per-graph, we can define the hyper-road, hyper-path, hyper-

cycle in the directed hyper-graph in directed hypernetworks.  

We intorduce a {-1,0,1} incidence matrix to represent the 

directed hyper-graph. The j-th column express the j-th vertex 

j
v  and i-th row express the i-th hyper-edge 

i
e : 

[ ]
ij m n
a

=

1,   ( )

1,      ( ) 

0,       otherwise

i j

i j

v T e

v H e . 

Following is an example of directed hyper-graph and its 

incidence matrix: 

 

In many hyper-networks applications, there are exist the 
uncertain factors which can’t expressed by fixed functions or 
parameters. Hence, the fuzzy theory is widely applied in 
networks and hyper-networks (see [18-22]). In this paper, we 
consider the fuzzy maximum flow problem in hyper-
networks. The new optimization model is presented by virtue 
of fuzzy capacities calculating and crisp equivalents of fuzzy 
chance constraints.  

2. SETTING 

Consider a directed flow hyper- network H= ( , , )V E C , 

where V implies the finite set of vertices, denoted by the 

number {1, 2,…, n}. E expresses the set of directed hyper-

edge, each directed hyper-edge e is denoted by an ordered 

pair ( ( ), ( ))H e T e , where e E. C represents the set of 

directed hyper-edge capacities. In the fuzzy maximum flow 

problem in hyper-networks setting, every directed hyper-

edge e has a nonnegative, independent, fuzzy flow capacity 

e
 with the membership functions

e
μ . Then, for each pair of 

vertices ( ,
i j
v v ), we use  

ij =

{ , }i j

e

v v e E

  

to denote its fuzzy flow capacity associated with certain 

membership functionsμ . 

In what follows, flow representation is employed by: 

x=
{ , }

{ }
i j

ij e

v v e E

x x=

 

where 
e
x  denotes the flow of directed hyper-edge e. The 

flow is called a feasible flow in hyper-networks setting if the 

below two conditions are established: 

(1) For each vertex, the outgoing flow and incoming flow 

must meet the following balance conditions. 

1 1

1 1

{ , } { , }

{ , } { , }

{ , } { , }

0,    2 1

j j

i j j i

n j j n

j j

v v e E v v e E

ij ji

v v e E v v e E

nj jn

v v e E v v e E

f

i n

f

e E

=

=

=

x x

x x

x x

 

in which f denotes the flow of the hyper-network H. 

(2) The flow at each directed hyper-edge must be satisfied by 

the capacity constraint. 

In this paper, we use the fuzzy set technologies to deal 
with the fuzziness, which were first introduced by Zadeh. In 
fuzzy setting, there are three classes of measures consisting 
of necessary, possibility and credibility measure [23, 24]. As 
we know, a fuzzy event may fail even though its possibility 
attains 1, and established even though its possibility reaches 
0. However, the fuzzy event should be happened when its 
credibility becomes 1 and fail when its credibility is zero. In 
our article, we model fuzzy maximum flow problem in hy-
per-network setting in terms of credibility measure. Our 
technologies mainly followed the tricks raised in [25]. 

Use  to denote the fuzzy variable with the membership 

function ( )xμ . Hence, the credibility measure (Cr), the 

necessity measure (Nec), and the possibility measure (Pos) 

of the fuzzy event { }r can be denoted by 

Cr{ }r
=
1
[Pos{ }+Nec{ }]
2

r r , 
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Nec{ }r
=1- sup ( )

u r

uμ
<

 

and 

Pos{ }r
= sup ( )
u r

uμ , 

respectively 

In several applications, the experts are interested in the 

hyper-networks flow which meet certain chance constraints 

with at least some fixed confidence level . A flow x is 

called the -optimistic maximum flow ( -OMF) from ver-

tices 
1
v  to 

n
v  if (see [25]): 

max{ |Cr{ } }f x
 

max{ '|Cr{ '} }f x  

for any flow 'x  from vertices 
1
v  to 

n
v , and here is 

implied as a predetermined confidence level. 

Chance-constrained programming provides us a useful 

tools for modelling fuzzy decision systems [26-30]. The ba-

sic idea of chance-constrained programming of fuzzy maxi-

mum flow problem in hyper-networks setting is to optimize 

the flow value of hyper-network with some confidence level 

subject to certain chance constraints. For searching the -

OMF in hyper-networks setting, we raise the following 

model. 

1 1

1 1

{ , } { , }

{ , } { , }

{ , } { , }

max

s. t. :

0,    2 1

Cr{ }   for each pair of ( , )

0

j j

i j j i

n j j n

j j

v v e E v v e E

ij ji

v v e E v v e E

nj jn

v v e E v v e E

ij ij i j

f

f

i n

f

v v

f

=

=

=

x x

x x

x x

x

    (1) 

where  is a predetermined confidence level supplied as an 

appropriate margin via the field experts.  

3. ALGORITHM FOR FUZZY MAXIMUM FLOW 
PROBLEM IN HYPER-NETWORKS SETTING 

A popular technology for solving fuzzy chance-

constrained programming model is to convert he chance con-

straint 

Cr{ }x
 

into its crisp equivalent and thus solve the equivalent 

crisp model in deterministic environment. In our hyper-

network setting, we suppose that  are general fuzzy vari-

ables with membership functions ( )xμ . Then, we infer 

that Cr{ }x  if and only if Kx  with 

K
=

1

1

1
sup{ | (2 )},             if <

2

1
inf{ | (2(1 ))},       if 

2

K K

K K

μ

μ

=

=

. 

Suppose that 
ij

=

{ , }i j

e

v v e E

 are general fuzzy vari-

ables with membership functions ( )
ij
xμ = 

{ , }

( )
e

i jv v e E

xμ  

respectively. Thus, the optimization model (1) can be refor-

mulated as follows: 

1 1

1 1

{ , } { , }

{ , } { , }

{ , } { , }

max

s. t. :

0,    2 1

0

j j

i j j i

n j j n

ij

j j

v v e E v v e E

ij ji

v v e E v v e E

nj jn

v v e E v v e E

f

f

i n

f

K

f

=

=

=

x x

x x

x x

x

      (2) 

where 

ij
K

=

1

1

1
sup{ | (2 )},         if <

2

1
inf{ | (2(1 ))},  if 

2

ij ij

ij ij

K K

K K

μ

μ

=

=

. 

The directed hyper-edge capacities of a hyper-network 

are independent trapezoidal fuzzy variables denoted as 

ij
= ( , , , )ij ij ij ija b c d , respectively. Therefore, if > 0.5, the 

model (1) can be further expressed as the following version: 

1 1

1 1

{ , } { , }

{ , } { , }

{ , } { , }

max

s. t. :

0,    2 1

(2 1) 2(1 )

0

j j

i j j i

n j j n

j j

v v e E v v e E

ij ji

v v e E v v e E

nj jn

v v e E v v e E

ij ij ij

f

f

i n

f

a b

f

=

=

=

< +

x x

x x

x x

x

     (3) 
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Next, we focus on the genetic algorithm which was in-
troduced by Holland [31] to optimal the combinatorial prob-
lems. Several results on genetic algorithm can refer to [32-35].  

Here, we use priority-based encoding tricks for our fuzzy 

maximum flow problem in hyper-network setting. We en-

code a chromosome in terms of obtaining each vertex a dis-

tinct priority number from 1 to n. Fig. (1) show an example. 

The hyper-path from 1 to n is determined by continuously 

adding the useful vertex with the highest priority into the 

hyper-path until the hyper-path arrives the terminal vertex in 

hyper-networks. Furthermore, we decode it into a flow in the 

hyper-network by hyper-path algorithm by the below decod-

ing technology. 

Position: vertex  ID   1 2   3  4 5 6 7 8 9 10

value priority             7 3 10  4 2 5 9 6 1  8  

Fig. (1). Encoding operation. 

For searching the flow of hyper-network, we infer the be-

low procedure where l denotes the number of hyper-paths, 

lp  implies the l-th hyper-path from vertex 1 to n, lf  ex-

presses the flow on this hyper-path, 
ij
c =

{ , }i j

e

v v e E

c  de-

notes the capacity sum for each pair of vertices ( , )
i j
v v , 

i
N  represents the set of vertices with all vertices adjacent to 

vertex 
i
v . 

Step 1. Mark the number of hyper-paths l 0. 

Step 2. If 
1
N , then l l +1; otherwise, go to step 8. 

Step 3. The hyper-path lp is constructed by adding the 

useful vertex with the highest priority into the hyper-path 

until the hyper-path arrives the terminal vertex. Choose the 

sink vertex a of hyper-path lp . 

Step 4. If the sink vertex a=n, continue; otherwise, up-

date the set of vertex 
i
N  such that 

i
N = { }

i
N a , then go 

back to step 2. 

Step 5. Determine the flow lf  of the hyper-path lp in 

view of lf 1lf  +min{ |{ } }ij i j lc v v e p . 

Step 6. Implement the flow capacity 
ij
c  of each directed 

hyper-edge update and each pair of vertices ( , )
i j
v v . Take a 

new flow capacity 
_

ij
c  using the formula 

_

ij
c

= ij
c min{ |{ } }ij i j lc v v e p

. 

Step 7. If the flow capacity 
ij
c = 0, implement the set of 

vertex 
i
N  update such that the vertex j adjacent to vertex i, 

i
N =

i
N j , { }i j lv v e p and 

ij
c = 0. 

Step 8. Output the hyper-network flow lf  of this chro-

mosome. 

Here, we need the position-based crossover operator 

which was introduced in the genetic algorithms. An example 

with 10 vertices is presented in Fig. (2).  

parent  1.    3  1  2  4  5  8  9 10  7  6

                                  

child           3  6  2  4  5  7  9  10  1   8

                               

parent  2     6  2  9  5  4  7  3     1 10 8     

Fig. (2). Crossover operation. 

The mutation operation is determined via exchanging the 
priority values of two randomly generalized vertices which 
was expressed in Fig. (3). 

                                      

parent     3  1  2  4  5  8  9 10  7  6

child       3  1  10  4  5  8  9  2  7   6     

Fig. (3). Mutation operator. 

We now present our main genetic algorithm for fuzzy 

maximum flow problem in hyper-network setting. 

Step 1. Set genetic parameters by field experts. 

Step 2. Initialize pop size chromosomes 
k
P , k=1, 2, …, 

pop size. 

Step 3. Search the flow for all chromosomes by above 

procedure, respectively. 

Step 4. Calculate the fitness for each chromosome. The 

evaluation function rely heavily on ranking technology 

which is denoted by 

Eval( )
i
P =

1(1 )ia a , i=1,2,…, pop size. 

where the chromosomes are supposed to have been ranked 

from good to bad based on their objective scores and a (0, 

1) is a parameter in the genetic system. 

Step 5. Choose the chromosomes for a new population. 

Step 6. Update the chromosomes 
k
P , k=1, 2, …, pop size 

by virtue of mutation operation and crossover operation 

technologies presented above. 

Step 7. Repeat the 4-6 steps for a fixed number of hyper-
cycles. 

Step 8. Repeat the maximum flow in this hyper-network. 

CONCLUSION 

In our paper, we consider the fuzzy maximum flow prob-

lem in hyper-networks setting. Our algorithm is designed 

based on genetic technology and coding theory. The result 

achieved in our paper illustrates the promising application 

prospects for algorithms using hypergraph model. 
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