
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 1485-1489 1485

 1874-110X/15 2015 Bentham Open

Open Access

Efficient Metadata Management in Cloud Computing

Yu Shuchun
1,*

 and Huang Bin
2

1
Deptment of Computer Engineering, Huaihua University, Huaihua, Hunan, 418008, P.R. China;

2
School of Mathmatic

and Computer Science, Guizhou Normal University, Guiyang, Guizhou, 550001, P.R. China

Abstract: Existing metadata management methods bring about lower access efficiency in solving the problem of renam-

ing directory. This paper proposes a metadata management method based on directory path redirection (named as DPRD)

which includes the data distribution method based on directory path and the directory renaming method based on directory

path redirection. Experiments show that DPRD effectively solves the lower access efficiency caused by the renaming di-

rectory.

Keywords: Cloud computing, directory path, redirection, metadata.

1. INTRODUCTION

With the prevalence of Internet application and data-
intensive computing, there are many new application sys-
tems in cloud computing environment. These systems are
mainly characterized by [1-3]: (1) The enormous files stored
in the system, some even reach trillions level, and it still in-
crease rapidly; (2) The user number and daily access are
quire enormous, reaching billions level. For example, the
number of pictures currently stored in Facebook [4] is more
than 140 billion, and both the number of users and daily ac-
cess are over one billion. Such massive files and accesses may
result in that the expandability and high performance will be
the bottleneck of the efficient application of cloud comput-
ing, and meanwhile, the efficient management of metadata is
a key technology that can break through this bottleneck.

At present, the metadata management methods mainly
include the look-up table [5], sub-tree partition, Hash and
directory path fixed number. The typical application of look-
up table should be the single metadata server method
adopted by Google, which mainly stores the metadata table
in a server, and it is applicable for the storage system with
few files. However, for the distributed storage system with
numerous files, it will be a bottleneck of the system per-
formance. The sub-tree partition method [6, 7]

separates the

only name space of file system into independent sub-tree
according to the directory levels, and each metadata server in
the metadata server cluster will be responsible for one or
several sub-trees. It has a good expandability, but the direc-
tory is distributed in several metadata servers, and it requires
directory traversal among metadata servers to locate the
metadata, which may result in the low efficiency access.
Hash method [8, 9]

will locate the storage position of this file

according to the file identifier (such as the full path name of
the file). It breaks through the limitations of single metadata
server, but it requires migrating related metadata when

renaming a directory. The directory path fixed numbering
(marked as DPFN) [10, 11] endows the globally unique ID
(DPID) for each directory path, and DPID remains un-
changed in the life cycle of the directory path, and the meta-
data of all files (or sub-directories) in the directory path will
be placed and achieved according to its hash value of DPID.
It can solve the metadata migration issue caused by directory
renaming, but it uses a directory path index server to manage
the mapping relationship between directory path and DPID,
which brings a low efficiency access.

Aiming at the low efficiency access for solving the direc-
tory renaming problem in current metadata management
methods, the metadata management method based on the
redirection of directory path (marked as DPRD) is proposed
in this paper. Firstly, it uses the method of hash directory
path for distributing and achieving the metadata, breaks
through the bottleneck of the directory path index server, and
realizes the concurrent access of multiple users. Secondly, it
only records the redirected directory path space, and the
space is distributed into all metadata servers, which reduces
the searching space of directory path. In the end, adopting
the directory path redirection method, it realizes the correct
access to metadata without migrating metadata during re-
naming directories. It can effectively solve the low efficiency
access caused by the directory renaming.

2. ANALYSIS OF THE DIRECTORY PATH FIXED
NUMBER

he directory path fixed number (DPFN) supports not to
migrate metadata when renaming a directory, which basic
idea is: each directory path is given a globally unique fixed
ID, which remains unchanged in the life cycle of its direc-
tory path; a directory path index server (marked as DPIS) is
used to maintain the mapping between directory path and its
DPID; placing and achieving the metadata of an object has to
get its DPID from the directory path index sever, and then
remaining operations are completed in the MDS correspond-
ing to DPID hash value. The metadata distribution and ac-
cess pattern are shown in Fig. (1).

1486 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Shuchun and Bin

Based on the above mentioned idea, the process of DPFN
achieves the file f is:

(1) User send a request to DPIS for achieving the DPID
of the file f;

(2) Search the DPID of the file f in the entire directory
path space;

 (3) Return the DPID of the file f to user;

(4) An user send access request to the MDS hash (DPID)
according to the hash value of the DPID;

(5) Search the metadata of the file f in the MDS hash
(DPID);

(6) Return the metadata of f to user;

Although DPFN solves the issue of metadata migration
caused by renaming directory, but it brings a low efficiency
access. It is mainly because: (1) all users must firstly access
DPIS for the DPID, resulting in multi-user accesses are se-
rial; (2) the DPIS records the mapping between directory
path and its DPID, resulting in the search space is large.

3. METADATA DISTRIBUTION METHOD BASED
ON DIRECTORY PATH

The directory path of a file refers to the path from the
root directory to its parent directory. The directory path of
file f is marked as DPf. As shown in Fig. (2), the directory
path of file 6 DPfile6=\D2\D3.

The method for DPRD to distribute metadata is that: it
hashes the directory path of a file, and then it will distribute
the metadata of the file to the metadata server corresponding
to the hash value, namely the MDS storing the metadata of
file f is: Hf=hash(DPf).

For instance, for the file system showed in Fig. (2), if the
Hash value of each directory path is shown in Fig. (3), then the
directory and file metadata distribution is shown in Fig. (4).

D1 D2

D3 D4

file8

Fig. (2). A file system.

Fig. (3). DP and hash (DP).

Fig. (4). Metadata distribution.

MDS0

Hash(DPID00)

MDS1 MDS n-1

Hash(DPID01)
Hash(DPID02)

Hash(DPID10)
Hash(DPID11)
Hash(DPID12)

Hash(DPIDn-10)
Hash(DPIDn-11)
Hash(DPIDn-12)

hash(D
PID) Hash(DPID)

Fig. (1). Metadata distribution and access in DPFN.

Efficient Metadata Management in Cloud Computing The Open Cybernetics & Systemics Journal, 2015, Volume 9 1487

4. EFFICIENT METADATA ORGANIZATION
METHOD

As for the file under the same directory, the Hash value
of the directory path name is the same. Therefore, the meta-
data of all files in the same directory is distributed to the
same metadata server. In order to be convenient for search-
ing and directory operation, DPRD employs three-layer
structure to organize the metadata, as shown in Fig. (5). The
bottom layer is physical layer, which stores the metadata in
the form of heap file, and it can realize the efficient utiliza-
tion of storage space. In the physic layer, all metadata are
distributed randomly, while most of the directory operation
requires operating all files in a directory or the sub-tree
which the directory is its root. In order to improve the direc-
tory operation efficiency, DPRD establishes a logic layer
over the physical layer, which can virtualizes the randomly
scattered files into a logic whole through indexed mode. The
top layer is mapping layer, which is a list formed by the di-
rectory path in the same MDS (marked as DT). Each item of
DT is a pair <hash (DP), pointer>, in which hash (DP) is the
hash value of a directory path, and the pointer points to the
logic block of DP.

5. RENAMING DIRECTORY BASED ON REDIREC-
TION OF DIRECTORY PATH

When a directory dir is renamed as dir‘, those directory
path DPdir containing dir will turn to be DPdir’, and the
metadata server storing these file under DPdir will change
from Hash(DPdir) to Hash(DPdir’). In order to maintain cor-
rect location data in the following operations, it should mi-
grate the metadata under DPdir from Hash(DPdir) to
Hash(DPdir’) synchronously, which greatly influence the
system performance. At first, DPRD employs the directory
path redirection method to avoid metadata migration when
renaming, and then it will take advantage of the periodical
fluctuation of the load, which will migrate the metadata
whose directory paths are redirected to correct position when
the system load is relatively light. Thus it improves the effi-
ciency of renaming operation.

The redirection method of directory path is that: each
MDS is placed a redirection directory table (marked as
RDT), which records directory paths whose metadata are not
local. Each item of RDT is a pair <hash (DP), pointer>, in
which hash (DP) is the hash value of a directory path, and
the pointer points to the logic block of DP. The pointer is
composed of A and B of two parts, in which A is the MDS
number which hosts the metadata of a redirected directory
path, and B is its logical block first address. With the redi-
rection of directory path, the metadata distribution and orga-
nizational structure is shown in Fig. (6).

When comparing DPFN and DPRD, it can be seen that:
(1) multiuser accesses are carried out serially in DPFN and
concurrently in DPRD. (2) DPFN records entire directory
path space, while DPRD only records the redirected direc-
tory path space, and the directory space is distributed into N
metadata server by the hash method of directory path, so
each metadata server stores nearly 1/N of the redirected di-
rectory space, which greatly shortens the searching space of
each access. (3) When the directory path remains unchanged,
DPFN still accesses the directory path indexed server to gain
DPID, while DPRD will find metadata in the corresponding
metadata server of directory path directly. In summary,
DPRD is superior to DPFN in access efficiency.

6. EXPERIMENT AND RESULT ANALYSIS

6.1. Experimental Environment

Our testing infrastructure had 126 machines on 4 racks
connected by Gigabit Ethernet switches. Intra-rack bisection
bandwidth was 14Gbps, while inter-rack bisection band-
width was 6.5 Gbps. Each machine had two 2.4GHz Intel
Xeon CPUs, 4GB of main memory, and two 7200RPM SCSI
disks with 200GB each. Machines ran Red Hat Enterprise
Linux AS 4 with kernel version 2.6.9.

In the following experiments, the distribution of nested
directories in each sub-tree by depth and that of the sub-
directories count in per directory are based on the generative,
probabilistic model [12, 13] which closely accords the situa-

Heap file Physical

layer

Hash(DP0)

Hash(DP1)

Hash(DP2)

Fig. (5). Metadata organization.

1488 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Shuchun and Bin

tion of the observed directory depths with metadata snap-
shots from more than ten thousand file systems from 2001 to
2004. Each client machine had 4 parallel threads, each with
one outstanding request issued as soon as the previous com-
pleted. MDS and client respectively run on a separate com-
puter.

6.2. Experiment Result and Analysis

At first, under different directory redirection rate (repre-
sented by r), metadata operation performance of DPRD was
tested. The directory redirection rate is the proportion of re-
directed directory paths and total directory paths. In this test,
a great number of directories should be made first, and then
files would be created under each existing directory. Finally,
the metadata of each file would be read. The test result is
shown in Fig. (7), from which it can be seen that, when r=0,
the system performance is the best, but with the increase of r,
the system performance declines gradually, for when r=0, a
network access can achieve metadata, but when r >0, these
redirected directory may get their metadata needing two
network access. When r is fixed, with the increase of MDS,
the growth rate of throughout will decline gradually. It may
result from the fact that when the increase of MDS brings the
growth of throughout, the probability of hitting the redi-
rected directory increases.

Fig. (7). Access performance under different redirection rates.

Fig. (8). Performance comparison for DPRD and DPFN.

Secondly, DPRD and DPFN in making directories, creat-
ing files and reading metadata was compared, and the test
result was shown in Fig. (8). It can be seen from the picture
that DPRD is superior to DPFN in performance and expand-
ability, it result from the bottleneck, meaning there is direc-
tory path index server in DPFN. As for DPRD, reading
metadata and creating files can be finished at one network
access. Therefore, the two have similar performances, but
when creating files, the directory files of directory path
should be equipped with write lock, while for the reading of
metadata should be equipped with read lock, and its concur-
rent ability is higher than that of file creation. Therefore, it is
superior to the creating of files in performance. However,
making directory requires two network accesses, namely,
one is to modify the directory file of the directory path, and
the other is to create the directory file. Therefore, it is lower
than file creation and metadata reading in performance.

In the end, the performance of renaming directory opera-
tion under such condition in which the directory contains 1,
2, 4, 8 and 16 files was tested, and the result shows that the
response delay of renaming directory operation is only re-
lated to the number of sub-directory under the renamed di-
rectory, which it has nothing to do with the number of files
under the renamed directory. It is mainly because on one
hand, the metadata of files is not moved when the directory
is renamed in DPRD, and it is carried out when the load is

Heap file

Hash (DP10)

Hash (DP11)

Hash (DP12)

Heap file

Hash (DP 20)

Hash (DP 21)

Hash (DP 22)

Hash (MDP 10)

Hash (MDP 11)

Hash (MDP 12)

Hash (MDP 20)

Hash (MDP 21)

Hash (MDP 22)

Heap file

Hash (DP n0)

Hash (DP n1)

Hash (DP n2)

Hash (MDP n0)

Hash (MDP n1)

Hash (MDP n2)

Fig. (6). Metadata organization with directory path redirection.

Efficient Metadata Management in Cloud Computing The Open Cybernetics & Systemics Journal, 2015, Volume 9 1489

light, while on the other hand, directory renaming will lead
to the changes in all the directory paths, which requires redi-
rection. It has also been discovered in the test that the re-
sponse delay of renaming directory has nothing to do with
the number of MDS, for when renaming a directory, the
number of redirection operation has nothing to do with the
directory path.

CONCLUSION

Our distributed metadata management strategy DPRD is
used to eliminate the following questions. Firstly, SUBTREE
PARTITION always needs to traverse the directory hierar-
chy and at the same time metadata partitioning among MDS
cluster is coarse-grained. DPRD adopts hash method for di-
rectory paths to avoid the directories traversal. Secondly,
although a full pathname used to identify a file in HASH can
directly and quickly locate the destination MDS, it cannot
efficiently handle some situations such as renaming a direc-
tory. DPRD adopts directory path redirection to avoid the
renaming overhead of files metadata in a renamed directory.
Thirdly, DPFN avoid also the renaming overhead of files
metadata in a renamed directory by endowing the globally
unique ID (DPID) for each directory path, but it uses a direc-
tory path index server to manage the mapping relationship
between directory path and DPID, which become a bottle-
neck. DPRD adopts the metadata distribution based directory
path to break through the bottleneck. Also, DPFN records
entire directory path space, while DPRD only records the
redirected directory path space, and the redirected directory
space is distributed into N metadata server by the hash
method of directory path, so each MDS stores nearly 1/N of
the redirected directory space, which greatly shortens the
searching space of each access. We have described our dis-
tributed metadata management strategy DPRD and given the
survey of the performance comparisons, and the performance
results are encouraging.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

The authors would like to thank for the support by Na-
tional Basic Research Program of China (973 Program) un-
der Grant No.2011CB302601, National High Technology

Research and Development program of China (863 Program)
under Grant No. 2011AA01A202, Science and technology
program of Hunan Province under Grant 2013FJ4335 and
2013FJ4295, and the constructing program of the key disci-
pline in Huaihua University.

REFERENCES

[1] S. V. Patil, G. Gibson, S. Lang, and M. Polte, “Giga+: scalable

directories for shared file systems”, In: PDSW '07: Proceedings of
the 2nd International Workshop on Petascale Data Storage, New

York, NY, USA, 2007, pp. 26-29.
[2] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Scalable and

adaptive metadata management in ultra large-scale file systems”,
In: ICDCS '08: Proceedings of the 2008 the 28th International Con-

ference on Distributed Computing Systems, Washington, DC, USA,
2008, pp. 403-410.

[3] J. Xing, J. Xiong, N. Sun, and J. Ma, “Adaptive and scalable meta-
data management to support a trillion files”, In: Proceedings of the

Conference on High Performance Computing Networking, Storage
and Analysis, Portland, Oregon, November 14-20, 2009.

[4] Facebook Website, www.facebook.com.
[5] S. Ghemawat, H. Gobioff, and S. -T. Leung, The Google File Sys-

tem. In SOSP, 2003.
[6] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.

Siegel, and D. C. Steere, “Coda: a highly available file system for a
distributed workstation environment”, IEEE Transactions on Com-

puters, vol. 39, no. 4, pp. 447 459, 1990.
[7] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic

metadata management for petabyte-scale file systems”, In: Proceed-
ings of IEEE/ACM SC2004 Conference, Pittsburgh, PA, USA,

2004, pp. 523 534.
[8] O. Rodeh, and A. Teperman, “zFS a scalable distributed file sys-

tem using object disks”, In: Proceedings of the 20th IEEE/11th NASA
Goddard Conference on Mass Storage Systems and Technologies,

San Diego, California, USA, 2003, pp. 207 218.
[9] S. A. Brandt, E. L. Miller, D. D. E. Long, and L. Xue, “Efficient

metadata management in large distributed file systems”, In: IEEE
Symposium on Mass Storage Systems, San Diego, California, USA,

2003, pp. 290 298.
[10] Z. Liu, and X. M. Zhou, “A metadata management method based on

directory path”, Journal of Software, vol. 18, no. 2, pp. 236 245,
2007.

[11] J. Wang, D. Feng, F. Wang, and C. Lu, “MHS: a distributed meta-
data management strategy”, The Journal of Systems and Software,

vol. 82, no. 12, pp. 2004-2011, 2009.
[12] N. Agrawal, W. J. Bolosky, and J. R. Douceur, “A five-year study

of file-system metadata”, In: Proceedings of the 5th USENIX Con-
ference on File and Storage Technologies, Berkeley, CA, USA,

2007, pp. 31-45.
[13] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Generating realistic impressions for file-system benchmarking”,
In: Proceedings of the 7th USENIX Conference on file and Storage

Technologies, San Francisco, California, USA, 2009, pp. 125-138.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Shuchun and Bin; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

