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Abstract: Multi-source image fusion integrates multiple images derived from the same scene or target collected into a 
new image to obtain more accurate and more complete description about the scene or target. The multi-objective optimi-
zation problem of multi-source image fusion is researched in the transform domain. Based on the analysis of multi-
objective optimization theory and algorithms, an adaptive differential evolution algorithm is proposed. With adaptive var-
iance factor, dynamical crossover probability function and optimal elite ordering strategy, the algorithm reflects not only 
good search capability but also good convergence. When applied to multi-objective optimization of multi-source image 
fusion of transform domain, it will be an effective solution to the comprehensive evaluation in the image fusion process.  
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1. INTRODUCTION 

Multi-objective optimization problem (MOPs) is one of 
the theoretical researches and engineering practice prevalent 
form of  multi-objective optimization problem solving, seek-
ing to meet all the objectives and requirements of the optimal 
solution [1]. In the most practical problems, among compet-
ing objectives, this tradeoff, a goal to improve performance, 
often reduces the performance of other more target expenses. 
Unable to competitively find all the targets to achieve a 
unique solution to optimize, the targets must be weighted for 
collection of an optimal solution. 

With the rapid development of sensor and computer 
technology, the need for acquisition, image transmission and 
processing of information is growing and more and more 
types of image fusion technology requirements are also in-
creasing. In digital image processing system, different con-
tents of image processing with different processing models 
and procedures are stored in different storage systems, which 
not only takes up more storage resources, but there is no uni-
fied perception and understanding of the standard [2]. If a 
different image fusion task relatively unified multi-objective 
optimization system is set, it will be able to effectively re-
duce the waste of a variety of software and hardware re-
sources, to achieve the best results. 

From the perspective of control theory, multi-source im-
age fusion is a source of many images for process optimiza-
tion. Due to the effect of image fusion evaluation on diversi-
ty, the relationship between the complex and even contradic-
tory indicators, the current emphasis on fusion method only 
requires some indicators, which have the difficulty to fully 
play a role. In this sense, multi-source image fusion of multi-
objective optimization problem should be explored and 
solved, and also an image processing technology can 
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promote social progress and development of meaningful 
research. 

2. MULTI-OBJECTIVE OPTIMIZATION ALGO-
RITHM 

2.1. Multi-Objective Optimization Problem 

The traditional method for solving multi-objective opti-
mization problem involves converting a multi-objective 
problem into several single objective problems, re-using sin-
gle-objective optimization algorithm to find a solution [3]. 
Single-objective optimization algorithm can solve to some 
extent the multi-objective optimization problem, but the so-
lution is likely a non-optimal solution. Multi-objective 
weighting method requires prior knowledge or set of weights 
for each goal, as there are a lot of subjective preferences be-
ing experience-dependent [4]. In the fusion process, multiple 
evaluation is not a simple linear relationship between the 
weights, so it is necessary to introduce multi-objective opti-
mization algorithm to obtain optimal image fusion results. 

In the single-objective optimization problem, the optimal 
solution is often the only identified, but in a multi-objective 
optimization problem, there is one solution for a goal which 
might be better, or even worse for the other goal which is not 
ideal, as generally, globally optimal solution does not exist 
for each target. Optimal multi-objective optimization problem 
is usually just a "compromise" set of the optimal solution [5], 
the collection is called the Pareto optimal solution set. 

The key for solving multi-objective optimization problem 
is obtained as the approximate Pareto optimal solution set 
frontier, and a set of solutions [6] evenly distributed. To min-
imize the problem, for example, multi-objective optimization 
problem can be expressed as: 

  

min y = f ( X ) ={f1( X ),..., fi ( X ),..., fn ( X )}

X = (x1,..., x j ,..., xm )

x j min ! x j ! x j max , j =1,2,...m

"

#
$$

%
$
$

      (1) 
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wherein:  X  is an m-dimensional decision variable;   f ( X )    

is function-dimensional target vector, 
  
fi X( ) i =1,2,..., n( )  

for the i-th objective function; 
  
x j j =1,2,...m( )  for the j-th 

component of x, i.e. the j-th decision variables, 
  
x j min  and 

  
x j max  its minimum and maximum values, respectively. 

On this basis, multi-objective optimization is listed in 
several important definitions: 

Definition 1 (advantages and disadvantages): If  u  sec-
tion is less than v , that is 

  
!i " 1,2,..., n{ } , ui # vi( )$ %i, u i < vi( ) , it can be claimed 

that the objective function vector 
  
u = u1,..., u j ,..., un( )  has 

gifted 
  
v = v1,..., v i ,..., vn( ) , or  v  is inferior to  u . 

Definition 2 (p disposable): If the decision variables 1X  

and 2X  are in feasible domain, only if 1(X )f is better than 

2(X )f , then it can be said that solution  X1  Pareto domi-

nates  X2 , or  X2  is Pareto dominated by solution  X1 . 

Definition 3 (Pareto optimal): If a feasible decision vari-
able  X3  is not Pareto dominated by any solution in viable 

region, 3X can be called Pareto optimal for multi-objective 
optimization problem. 

Pareto optimal solution set of all Pareto optimal composi-
tions is called multi-objective optimization problem, denoted 
by  PS ; objective function vector corresponding Pareto opti-
mal solution set constitutes a multi-objective problem of 
non-Pareto, denoted by  PF . Multi-objective optimization 
problem by specific objective function is a constant deter-
mined by the collection. In a multi-objective optimization 
problem Pareto optimal set of  PS , there is no better solution 
than the optimal solution Pareto. 

2.2. Adaptive Differential Evolution Algorithm 

As a class of evolutionary algorithms heuristic search al-
gorithm, by maintaining the composition of the population of 
potential solutions between generations to achieve global 
search, which from population to population optimization 
method for multi-objective optimization problem of search-
ing optimal solution p set is very effective. Because of the 
evolutionary algorithm having higher parallelism, in solving 
multi-objective optimization problem, multiple p optimal 
solutions can be obtained, with unparalleled advantages of 
traditional algorithms, which has gained academic attention 
[7, 8]. 

The typical evolutionary algorithms NSGA, NSGA-II, 
SPEA, etc., to solve the multi-objective optimization prob-
lem have currently become a hot topic in the intelligent 
computing industry [9-11]. Differential evolution algorithm 
is a random parallel direct global search algorithm newly 

proposed by Storn and Price [12], which uses real compo-
nent synthesis parameter vector; the evolutionary process is a 
less controlled parameter, which is easy to understand and 
implement. It has shown to be highly efficient, convergent 
and robust, and has been used in many complex optimization 
problems [12, 13]. 

Similar to the GA, PSO, ACA, AI and other evolutionary 
algorithms, differential evolution algorithm is based on the 
population of each individual genetic operations (crossover 
and mutation) to achieve the group's evolution; biological 
evolution is mathematical "micro" level of modeling. It has 
good local optimization ability, but the ability of global 
search is often relatively poor [14]. In order to make the 
front of the group inclined towards the direction of conver-
gence, uniformly distributed in the entire front end and not 
falling into the local front-end, it is necessary and timely to 
adjust the differential evolution algorithm global search ca-
pability and control algorithm convergence speed [15]. 

In evolutionary multi-objective optimization algorithm, 
to generate new individual mechanisms undoubtedly has a 
significant impact on the performance of the algorithm, 
while the majority of evolutionary algorithms are still cur-
rently using the traditional crossover and mutation to gener-
ate new individuals. Based on the above analysis, we have 
proposed a multi-objective optimization problem solving 
adaptive differential evolution algorithm. In the course of 
evolution, mutation and crossover operations were intro-
duced as adaptive concave exponential factor and dynamic 
cross mutation probability function. By controlling the con-
vergence speed, it has been observed that the algorithm has 
strong global convergence capability at the start. 

2.2.1. Variation 

In the differential evolution algorithm,  NP  parameter 
vector 

  
Xi = xi1,..., x in( ) i =1,2,..., NP( )  forms a generation, 

optimizing in the search space. Its composition is the parent 
of the variation of the different vectors, including the parent 
of two different individuals’ each differential vector. Math-
ematical expression of mutation is: 

  Xi
g+1 = Xi

g + F * (Xr1
g ! Xr 2

g )            (2) 

Where,  g  is the current iteration number;   r1 ,   r2 are integers 
different from each other, taken from a random population 
set 

  
1,2,..., NP( ) ; variability factor  F  is usually taken to be a 

constant within the scope of [0,1.2]. 

The value of  F  determines the size of the convergence 
rate and has an important impact on the performance of the 
algorithm. In the early evolution, in order to ensure that the 
solution can be effective for space exploration, a large varia-
tion in the value factor can slow down the convergence 
speed appropriate to strengthen the global search ability of 
the algorithm; in the evolutionary process, if variability fac-
tor is gradually reduced, it can speed up the convergence, 
strengthening the local search capabilities. 

In evolutionary algorithms, mutation operators are not 
only for the decision variables (individual) change, but also 
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for every decision to change the range of variables [16, 17]. 
In order to ensure that the beginning of the algorithm may 
change the coverage of each individual and then become 
non-linear with time to reduce its coverage area, this paper 
has introduced an adaptive concave exponential factor varia-
tion and mutation operations improved mathematical expres-
sion, that is: 

  
F g = 1

e!1
[Fmin e! Fmax + (Fmax! Fmin ) exp(1! g

Gmax

)]     (3) 

Wherein:   Fmax ,   Fmin are the variation factor and the lower 
limit value;   Gmax  is the maximum number of iterations. 

2.2.2. Cross 

In order to increase the diversity of the new population, 
the crossover operation is introduced after the variation op-
eration. For each generation of populations, the i-th individ-
uals  Xi

g  and   Xi
g+1  correspond to the variation of individual 

cross operation and generated cross individual 

  
Ci = ci1,...,cin( )  

  
i =1,2,..., NP( ) .  To ensure individual  Xi

g  

evolution, first random selection is done, such that   Ci  least 

one contribution is from  Xi
g , then 

  
Pc ! 0,1"# $%  crossover 

probability factor f is re-used of other bits which determine 

  Ci  contribution from 1g
iX
+ , g

iX . 

Mathematical expression of crossover operation is: 

  
Cin =

xin
g+1 rand() ! Pc

xin
g rand() > Pc

"
#
$

%$
           (4) 

Where, rand () is a random number uniformly distributed 
between [0,1]. 

Formula (4) shows that if  P  is larger, the  Xi
g 's contribu-

tion to   Ci  is more conducive to local search which may ac-

celerate the convergence rate; if  Pc  is smaller, the   Xi
g+1 's 

contribution to   Ci  is more conducive to maintaining popula-
tions’ diversity and global search. 

To avoid falling into local optimal algorithm, so that the 
optimal solution is evenly distributed in the front as possible, 
we have designed a dynamic crossover probability function; 
improved cross-operating mathematical expression is: 

  
P

c
= P

c min
+ (P

c max
! P

c min
)(1!

g
G

max

)n          (5) 

Wherein:   Pc max ,   Pc min  are for the crossover probability and 

the lower limit value;  n  is a cross index.  Pc  increases with 
the increasing number of iterations while it decreases gradu-
ally when different values of  n  occur.  Pc  of the curve is 
shown in Fig. (1). 

2.2.3. Selection 

After mutation and crossover operations generate   Ci  test 
individual competition with  Xi

g ,  when the fitness is better 
than  Xi

g  then   Ci is selected as the offspring, or directly to 

 Xi
g  as a child. Options mathematical expression is: 

  
Xi

g+1 =
Ci f (Ci ) ! f ( Xi

g )
Xi

g f (Ci ) > f ( Xi
g )

"
#
$

%$
          (6) 

In a multi-objective optimization problem, if there is no 
absolute optimal solution which can only define satisfactory 
Pareto optimal, the collections consisting of Pareto optimal 
solution set are considered the optimal solution. Due to the 
current population of a Pareto optimal solution, which can-
not necessarily be found in the future evolution of the popu-
lation, each generation always maintains optimal use of ex-
ternal memory [7] to save the evolutionary process of fnding 
the optimal solution p. In order to ensure the optimal diversi-
ty into the memory, according to the elite optimal strategy 
[14], objective function value is sorted. 

If the individual after  Xi
g  through mutation, Get the 

crossover operation after the new individual   Ci  better than 

 Xi
g , the individual and the memory already Pareto optimal 

solution set to compare; otherwise, indicating that the indi-
vidual has not been evolutionary, not to be compared. (AU-
THOR: The highlighted is vague and must be re-phrased) If 

  Ci  has dominant   P*  in some individuals, it will be deleted 

from dominant individual in   P* , and will be added to the 
  P* ; if   Ci  and   P*  have the absence of individual dominance 

relationship, it is thought that   Ci  is the optimal solution of 
Pareto. 

Randomly selecting a target function 
  
f j j =1,2,..., k( ) , 

 
fi Ci( )  and   P*  in the objective function value correspond to 

a large ascending sort order to calculate 
  
f j (ci )  sort of back 

and forth corresponding distance between the individual ob-
jective function value. If the minimum distance is smaller 

 
Fig. (1). Curve of crossover probability. 
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than the set threshold, then   Ci  does not join   P*  but if it is 

greater than or equal to threshold, then   Ci  joins   P* , main-
taining the diversity of Pareto optimal solution set. All new 
solutions are not dominant and are related to the memory of 
a new population of individuals; when the memory reaches 
its maximum storage capacity, the objective function value is 
calculated according to the individual degree of congestion. 
If the crowd is small, indicating that the individual is in 
dense area, it will not enter the memory. 

The major steps of differential evolutionary multi-
objective optimization algorithm are as follows: 

(1) For random initial population in the search space,  the 
initialization parameters and differential evolution of the 
maximum number of iterations are set; 

(2) The value of the initial population of each individual 
function optimization goals is calculated according to Pareto 
optimality theory to identify the dominant individual; the 
individual is then set for the initial population of Pareto op-
timal individual; 

(3) In the population, randomly three different individu-
als are selected according to equation (3) of adaptive muta-
tion to generate individual variation; 

(4) According to equation (5), the individual computing 
function values can be obtained corresponding to each of the 
two optimization goals;  

(5) For objective function value for the individual cross-
ordering, if the individual meets the diversity of conditions, 
it is decided whether to add Pareto optimal solution set or 
not to join;  

(6) In the next iteration, steps (3) to (5) are repeated; 

(7) It is determined whether the maximum number of it-
erations is reached at the end of the evolutionary process; if 
not, then the process is returned to step (3); 

2.3. Simulation 

To test the performance of the algorithm proposed in this 
paper, selected four typical benchmark functions ZDT1, 
ZDT2, ZDT3 and ZDT6 are tested [9]. Where, ZDT1 and 
ZDT2 are convex and non-convex continuous functions, 
ZDT3 is for convex discontinuous functions; ZDT6 com-
pared with non-convex function is affected by the sine func-
tion; their expression is as follows: 

(1) ZDT1: 

  

f1( X ) = x1

f2 ( X ) = g( X )! [1" x1 g( X )]

g( X ) =1+ 9 xi
i=2

n

#
$

%
&&

'

(
)) (n "1)

n = 30, xi * [0,1], i =1,2,..., n

+

,

-
-
-

.

-
-
-

         (7) 

(2) ZDT2: 

  

f1( X ) = x1

f2 ( X ) = g( X )! [1" ( x1 g( X ))2 ]

g( X ) =1+ 9 xi
i=2

n

#
$

%
&&

'

(
)) (n "1)

n = 30, xi * [0,1], i =1,2,..., n

+

,

-
-
-

.

-
-
-

        (8) 

(3) ZDT3: 

  

f1( X ) = x1

f2 ( X ) = g( X )! [1" x1 g( X ) "
x1

g( X )
sin(10#x1)]

g( X ) =1+ 9 xi
i=2

n

$
%

&
''

(

)
** (n "1)

n = 30, xi + [0,1], i =1,2,..., n

,

-

.

.

..

/

.

.

.

.

    (9) 

(4) ZDT6: 

  

f1( X ) = x1 ! exp(!4x1) sin6 (6"x1)

f2 ( X ) = g( X )# [1! ( x1 g( X ))2 ]

g( X ) =1+ 9# [ xi
i=2

n

$
%

&
''

(

)
** (n !1)]0.25

n =10, xi + [0,1], i =1,2,..., n

,

-

.

.

.

/

.

.

.

      (10) 

Experimental parameters differential evolution algorithm 
is set to:   NP =100 ,   Gmax = 300 ,   Fmax = 0.8 ,   Fmin = 0.3 , 

  Pc max = 0.6 ,   Pc min = 0.2 ,   n =1.5 . 

These four test functions of the Pareto optimal solution 
set are shown in Fig. (2a-d) below. 

From the figure, it can be found that the algorithm on the 
distribution of the four benchmark functions has better con-
vergence. But susceptible to subjective perception of psycho-
logical factors, the need for quantitative evaluation by means 
of comparison with other optimization methods is difficult to 
judge just from the visual merits of the algorithm level. 

Being different from the single-objective optimization 
problem, multi-objective optimization requires not only con-
vergence to the true Pareto front end, but also to ensure uni-
form distribution of the solution in the Pareto front end. In 
order to objectively evaluate the effect of multi-objective 
optimization, this paper introduced error rate (ER) and pitch 
(SP) [18] results of the two indicators to compare different 
algorithms obtained: 

Pareto optimal solution represents the error rate obtained 
in the number of solutions focused on the non-Pareto propor-
tion reflecting the convergence of the algorithm. If the error 
rate value is smaller, it results in the Pareto optimal solution 
set being closer to the true front. 

Error rate expression is given by: 
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ER = 1

N
ei

i=1

N

!              (11) 

Where, N is the number of Pareto optimal centralized solu-
tion. When Pareto approximate solution is a Pareto optimal 
solution,   ei = 0 , otherwise   ei =1 . 

Spacing is mainly used to measure income distribution 
Pareto optimal solution set of the Pareto front end, and its 
expression is: 

  
SP = 1

i !1
(d ! d i )

2

i=1

N

"           (12) 

In the formula, d  is the average value of all id , 

  
di = min j{ fm

i (x) ! fm
j (x)

i=1

k

" } i, j =1,2,..., N    (13) 

If   SP = 0 , it shows that the resulting Pareto optimal solu-
tion in the Pareto front end is equally spaced; the smaller the 
spacing values of the resulting optimal solution set, the more 
evenly distributed these are on the Pareto front end. 

Table 1 shows the NSGA-II, DE and algorithm for 
ZDT1, ZDT2, ZDT3 and ZDT6 independent operation and 
the mean distance between the mean error rates as 30 times 
respectively. In the NSGA-II, the distribution parameters are 

  !c = 20 ,   !m = 20 , run algebra 500; differential evolution 

mutation factor F = 0.35, crossover probability  Pc = 0.30, 
500 iterations. 

Table 1 shows that in the proposed adaptive differential 
evolution algorithm after 30 operations, the error rate is sig-
nificantly less than the average that reached NSGA-II and 
differential evolution algorithm calculated value. This shows 
that the non-inferiority of the algorithm obtained Pareto solu-
tion proportion of true Pareto optimal solution is much high-

  
 (a)            (b) 

  
 (c)            (d) 

Fig. (2). Pareto optimal sets: (a) ZDT1; (b) ZDT2; (c) ZDT3; (d) ZDT6. 

Table 1. Means of ER and SP. 

Optimization 

ZDT1 ZDT2 ZDT3 ZDT4 

Error Rate Spacing Error Rate Spacing Error Rate Spacing 
Error  
Rate 

Spacing 

NSGA-II 0.03101 0.39290 0.07050 0.33293 0.10468 0.01714 0.30346 0.60610 

DE 0.00472 0.00585 0.00867 0.00994 0.01214 0.00450 0.01577 0.00249 

ALGORITHM 0.00039 0.00065 0.00014 0.00099 0.00101 0.00082 0.00113 0.00040 



Study on Multi-objective Optimization Problem of Multi-source Image Fusion The Open Cybernetics & Systemics Journal, 2015, Volume 9     175 

er than the other two algorithms, so the Pareto set gets closer 
to the true Pareto front end. At the same time, the average 
value of the new algorithm obtained spacing than the other 
two algorithms calculated value is several times lower, even 
more than 100 times, proving that the Pareto optimal solu-
tion obtained solution has better uniform distribution charac-
teristics than the other two algorithms on the Pareto front 
end. (AUTHOR: Please review the highlighted corrections 
for confirmation) 

Simulation results show that compared with other multi-
objective evolutionary algorithms, this algorithm converges 
faster and there is a uniform distribution of non-dominated 
solutions obtained, reflecting the good global and local 
search capability of the adaptive differential evolution algo-
rithm, and verifying the algorithm’s superiority in solving 
multi-objective optimization problem. 

 
(a)         (b) 

Fig. (3). Multi-focus images: (a) Focus on the left; (b) Focus on the 
right.  

3. EXPERIMENTS AND RESULTS ANALYSIS 

3.1. Multi-Focus Image Fusion 

In order to verify the effectiveness of the proposed algo-
rithm, a set of multi-focus image fusion experiments is first 
used. Fig. (3a) is a left side focus of Lab images, Fig. (3b) is 
Lab focused image on the right, the size of the source images 
A and B is 620 × 460, and has registration before fusion. 

According to the characteristics of multi-focus image fu-
sion, the paper selected four kinds of evaluation, according 
to the priority order: mutual information> Entropy> average 
gradient> MSE. Multi-objective optimization process and 
conditions set initialization parameters are: population size 
  NP =100 , maximum number of iterations   Gmax = 200 . 

In NSCT domain generally, the pixel-level fusion meth-
od, NSGA-II, multi-objective optimization differential evo-
lution (DEMO) and the Adaptive Differential evolutionary 

multi-objective optimization (ADEMO) method are used for 
multi-focus image fusion. For comparison, in the non-
subsampled Contourlet transform domain, respectively, 
Chapter III is used of the general pixel-level fusion method 
and NSGA-II, DEMO and RDEMO fusion method. NSCT 
nonsubsampled filter banks are used as Maxflat and 
Dmaxflat7 pyramid filters and directional filter, and the low-
frequency coefficients are used in the weighted average, 
high-frequency coefficients neighborhood whichever is 
greater contrast fusion rules. (AUTHOR: Te highlighted is 
vague and must be re-phrased) 

Fused image obtained by the method is shown in Fig. 
(4a-d); the corresponding objective evaluation is shown in  
Table 2. 

The fusion results of data can be seen in Table 2: 

 
(a)         (b) 

 
(c)        (d) 

Fig. (4). Multi-focus image fusion results: (a) NSCT+Pixel; (b) 
NSGA-II; (c) DEMO; (d) RDEMO. 

(1) In this paper, the fusion method was used to obtain 
relatively best fusion results; the overall visual image fusion 
desired effect can better retain the multi-focus image edge 
information and details, and verify the effectiveness of adap-
tive differential evolution algorithm. 

(2) In the objective evaluation of the results, reflecting 
the fusion process to optimize the overall cross-entropy pri-
mary objective characteristics reflects the evaluation of pri-
oritized superiority. 

Table 2. Objective evaluation of fusion results 

Fusion 
Evaluation 

Overall Cross-entropy Entrop Average Gradient Standard Deviation 

NSCT+Pixel 0.3072 7.0722 4.0832 9.3367 

NSGA-II 0.2672 7.1015 4.0964 9.3592 

DEMO 0.2231 7.1646 4.1031 9.3523 

RDEMO 0.1983 7.1765 4.1030 9.3609 
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(a)           (b) 

Fig. (5). Infrared and visible light images: (a) Infrared image; (b) Visible light image. 

 
(a)           (b) 

 
(c)           (d) 

Fig. (6). Infrared and visible light image fusion results: (a) NSCT+Pixel; (b) NSGA-II; (c) DEMO; (d) RDEMO. 

Table 3. Objective evaluation of fusion results. 

Fusion 
Evaluation 

Edge Information Retention Entrop Average Gradient Standard Deviation 

NSCT+Pixel 0.6645 7.2671 13.6971 1.2354 

NSGA-II 0.6910 7.2937 13.8156 1.1776 

DEMO 0.6963 7.3265 13.8225 1.1087 

RDEMO 0.6963 7.3290 13.7461 1.0577 

 
3.2. Infrared and Visible Image Fusion 

Using infrared and visible image fusion experiments, Fig. 
(5a) shows infrared camera collecting images of Bird. Fig. 
(5b) is visible light camera captured Bird image. 

Infrared and visible image fusion based on the character-
istics of the selected evaluation and prioritization is repre-
sented by: edge information retention> Entropy> average 
gradient> overall cross-entropy. Fusion results of generally 
pixel level fusion method and NSGA-II, DEMO, RDEMO 
method are shown in Fig. (6a-d); the corresponding evalua-
tion is shown in Table 3. 

From Fig. (6) and Table 3, it can be seen: Compared to 
Fig. (6a-c), Fig. (6d) not only showed a clear goal, a com-
plete outline of the characteristics of the target but back-
ground surrounding the plant was more vivid, having dis-
tinct levels. Meanwhile, objective assessment of Fig. (6d) is 
also superior to other fused image. 

Taking these two sets of results, the following has been 
found: In this paper, whether visual or objective evaluation, 
image fusion result showed that multi-objective optimization 
method is much better than several other fusion algorithms. 
This is mainly due to the optimization method discussed in 
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this paper, narrowing the gap between the initial state of the 
population and the corresponding group of Pareto optimal 
solution, in a limited number of iterations, quickly obtaining 
the optimal solution set. If the other two optimization meth-
ods are used, the performance of the integration process will 
be greatly reduced, or even can not be satisfied with the op-
timal solution set in a limited number of iterations. Subjec-
tive and objective evaluation results are reflected in the fused 
image adaptive differential evolution method which is ap-
plied to image fusion multi-objective optimization, obtaining 
good results. 

4. CONCLUSION 

For multi-source image fusion in multi-objective optimi-
zation problem, this paper introduced an adaptive differential 
image fusion of multi-objective optimization evolutionary 
algorithm optimization process. This algorithm allows to 
keep the diversity of the population, and to avoid premature 
convergence. In the multi-objective image fusion model non-
subsampled Contourlet transform domain, respectively, us-
ing multi-focus image, infrared and visible images fusion 
with the proposed optimization method is validated. 

Simulation and image fusion experiments show that 
Adaptive Differential Evolution Pareto optimal solution to 
maintain multi-objective optimization algorithm for image 
fusion provides better integration of the results of optimiza-
tion than conventional frequency domain weighting and is 
generally multi-objective, so as to effectively solve the mul-
ti-source image fusion process of comprehensive evaluation. 
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