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Abstract: Advances in the understanding of physical, chemical, and biological processes influencing water quality, cou-

pled with improvements in the collection and analysis of hydrologic data, provide opportunities for significant innovations 

in the manner and level with which watershed-scale processes may be explored and modeled. This paper provides a re-

view of current trends in watershed modeling, including use of stochastic-based methods, distributed versus lumped pa-

rameter techniques, influence of data resolution and scalar issues, and the utilization of artificial intelligence (AI) as part 

of a data-driven approach to assist in watershed modeling efforts. Important findings and observed trends from this work 

include (i) use of AI techniques artificial neural networks (ANN), fuzzy logic (FL), and genetic algorithms (GA) to im-

prove upon or replace traditional physically-based techniques which tend to be computationally expensive; (ii) limitations 

in scale-up of hydrological processes for watershed modeling; and (iii) the impacts of data resolution on watershed model-

ing capabilities. In addition, detailed discussions of individual watershed models and modeling systems with their fea-

tures, limitations, and example applications are presented to demonstrate the wide variety of systems currently available 

for watershed management at multiple scales. A summary of these discussions is presented in tabular format for use by 

water resource managers and decision makers as a screening tool for selecting a watershed model for a specific purpose.  
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INTRODUCTION 

Global advances in economies and standards of living 
have resulted in a growing dependency on water resources. 
Many societies have experienced water scarcity as a result of 
current patterns with societal advances; these are associated 
with factors such as population growth, increased urbaniza-
tion and industrialization, increased energy use, increased 
irrigation associated with advances in agriculture productiv-
ity, desertification, global warming, and poor water quality 
[1-4]. Improved understanding of how each of these factors 
influences water supply, demand, and quality require im-
proved abilities to understand underlying processes and their 
impact on water availability and use. This entails employing 
a holistic approach which integrates hydrologic processes at 
the watershed scale to determine an overall watershed re-
sponse to both user demands and changing climates [1]. Cen-
tral to this effort, watershed modeling is being utilized as a 
tool to better understand surface and subsurface water 
movement and the interactions between these water bodies. 
More importantly, they offer tools to guide decision making 
on water resources, water quality, and related hazard issues 
[2]. 

This paper begins with a brief overview of the regulatory 
context for the use of a watershed-based approach. An ex-
amination of various watershed modeling methods, key 
processes involved, and new modeling techniques are then  
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used in an in-depth review of commonly used and state-of-
the-art watershed-scale models and modeling systems. Items 
of interest include the use of artificial intelligence (AI) for 
processing of information to improve modeling speed and 
accuracy and the impact of data resolution and watershed 
scale on the modeling process. Finally, a sampling of cur-
rently available watershed models is presented with example 
applications and discussion on each model’s respective at-
tributes, limitations, and example applications. 

REGULATORY BASIS FOR WATERSHED AP-
PROACH 

Understanding and managing water resource problems 
involve complex processes and interactions at the surface, 
subsurface, and their interface. In an effort to account for 
many of these interactions and the impacts on drinking water 
sources, water quality regulations are focusing on more ho-
listic approaches for analysis and maintenance of water re-
sources. The U.S. Environmental Protection Agency (EPA) 
2006 – 2011 Strategic Planmaintains the five goals that were 
described in the 2003 - 2008 Strategic Plan: (i) clean air and 
global climate change; (ii) clean and safe water; (iii) land 
preservation and restoration; (iv) healthy communities and 
ecosystems; and (v) compliance and environmental 
stewardship [3]. The Strategic Plan calls for improved stan-
dards, protection of source waters, security of water infra-
structure, and improved quality of rivers, lakes, and streams. 
The new plan provides increased focus on achieving more 
measurable, environmentally-relevant results, including use 
of a watershed-based perspective. Sub-Objective 2.2.1: 
Improve Water Quality on a Watershed Basis, outlines 
USEPA’s plan to “work with states, interstate agencies, 
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tribes, local governments, and others in three key areas: 
maintaining strong core programs that emphasize watershed 
protection...” [3]. In addition, at both federal and state levels, 
increased regulations of Total Maximum Daily Loads 
(TMDLs) of the watershed-wide pollutant influx to a water 
body, typically referenced as non-point source pollution, has 
created strong demand for new assessment tools that take 
into consideration multiple sources of flow (e.g., overland 
flow) [4]. Several watershed-scale models have been devel-
oped that provide assistance in predicting non-point source 
pollution. Borah and Bera [5] provide a detailed summary of 
many of these including the Agricultural Non-Point Source 
Pollution Model (AGNPS), Areal Non-Point Source Water-
shed Environment Simulation (ANSWERS), Kinematic 
Runoff and Erosion Model (KINEROS), Hydrological 
Simulation Program-FORTRAN (HSPF), MIKE SHE, Soil 
and Water Assessment Tool (SWAT), and others; therefore, 
they are only briefly considered in this review.  

WATERSHED MODELING  

A watershed model simulates hydrologic processes in a 
more holistic approach compared to many other models 
which primarily focus on individual processes or multiple 
processes at relatively small-or field-scale without full incor-
poration of a watershed area [6]. Watershed-scale modeling 
has emerged as an important scientific research and man-
agement tool, particularly in efforts to understand and con-
trol water pollution [7-11]. In the subsequent section, differ-
ent types of watershed models are discussed along with sug-
gested applications. In addition, the role of artificial intelli-
gence in assisting in watershed modeling is discussed in 
some detail. Genetic algorithms (GAs), artificial neural net-
works (ANN), and fuzzy logic (FL) are currently being em-
ployed to assist in processing data, develop improved rela-
tionships between hydrologic processes, and in some cases, 
assist in filling voids in measured data. While much work 
has been done to model individual hydrological processes, 
combining these processes at a much larger, watershed-scale 
requires additional expertise and data resources. A short dis-
cussion on the difficulties encountered and some solutions 
used in scaling-up to the watershed level is provided, includ-
ing discussions on data resolution, over parameterization, 
and the impacts of digital elevation model (DEM) mesh size 
on model accuracy.  

Model Types 

Watershed models can be grouped into various categories 
based upon the modelling approaches used. Melone et al. [7] 
note the primary features for distinguishing watershed-scale 
modelling approaches include the nature of the employed 
algorithms (empirical, conceptual, or physically-based), 
whether a stochastic or deterministic approach is used for 
model input or parameter specification, and whether the spa-
tial representation is lumped or distributed. Each of these 
features is briefly outlined below in order to provide context 
to subsequent watershed-scale modelling approaches. 

Empirical models consist of functions used to approxi-
mate or fit available data. Such models span arange of com-
plexity, from simple regression models [8-10] to hydroin-
formatics-based models which utilize Artificial Neural Net-
works (ANNs), Fuzzy Logic, Genetic, and other algorithms 
[11-19]. Additional discussion on use of artificial intelli-

gence in empirical watershed modelling is provided in sub-
sequent sections of this work. 

Watershed models can be categorized as deterministic or 
stochastic depending on the techniques involved in the mod-
elling process. Deterministic models are mathematical mod-
els in which outcomes are obtained through known relation-
ships among states and events. Stochastic models will have 
most, if not all, of their inputs or parameters represented by 
statistical distributions which determine a range of outputs 
[7]. Even though most models are deterministic in nature, 
stochastic models provide two important advantages. First, 
their conceptually simple framework makes it possible to 
describe heterogeneity when there are limited spatial or tem-
poral details. Second, they provide decision makers with the 
ability to determine uncertainty associated with predictions 
[7, 20-26].  

Watershed-scale models can further be categorized on a 
spatial basis as lumped, semi-distributed, or distributed mod-
els. The lumped modeling approach considers a watershed as 
a single unit for computations where the watershed parame-
ters and variables are averaged over this unit. Compared to 
lumped models, semi-distributed and distributed models ac-
count for the spatial variability of hydrologic processes, in-
put, boundary conditions, and watershed characteristics [4, 
27]. For semi-distributed models, the aforementioned quanti-
ties are partially allowed to vary in space by dividing the 
basin into a number of smaller sub-basins which in turn are 
treated as a single unit [7, 28, 29]. Spatial heterogeneity in 
distributed models is represented with a resolution typically 
defined by the modeller [7]. Physically-based models are 
based on the understanding of the physics associated with the 
hydrological processes which control catchment response 
and utilize physically based equations to describe these proc-
esses [30]. Examples of widely accepted physically based 
models on the market include GSSHA [31, 32], HSPF, 
KINEROS2 [33], MIKE SHE [34], and SWAT [35, 36]. 
Discussion on the impacts of spatial data resolution and scal-
ing issues in watershed modelling is provided later in this 
document. 

Watershed-scale models can be further subdivided into 
event-based or continuous-process models. Event-based 
models simulate individual precipitation-runoff events with a 
focus on infiltration and surface runoff, while continuous-
process models explicitly account for all runoff components 
while considering soil moisture redistribution between storm 
events [7]. Further discussions of the aforementioned classi-
fication and watershed modeling approaches are presented in 
Borah and Bera [5], Kalin and Hantush [37], Refsgaard [27], 
Singh and Frevert [38], and Singh and Woolhiser [39]. 

Advances inPhysically-based Models 

In physically-based models, mass transfer, momentum, 
and energy are simulated using partial differential equations 
which are solved by various numerical methods such as the 
St. Venant equations [40] for surface flow, Richards [41] 
equation for unsaturated zone flow, Penman-Monteith [42] 
equation for evapotranspiration and Boussinesq equation for 
ground water flow. Typically, the data and computation re-
quirements for these equations are enormous and demanding. 
For example, the traditional inversion methods using re-
peated model runs are computationally intensive and are not 
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appropriate for operational application for regional and 
global data [43]. Significant effort has gone into addressing 
these data and computational issues.  

In a review of current projects in the United States, Re-
strepo and Schaake [44] note that emphasis is being placed 
on models with parameters that can be derived from physical 
watershed characteristics. However, it was also noted that 
purely physically-based models may be unattainable or im-
practical, and, therefore, models resulting from a combina-
tion of physically and conceptually approached processes 
may be required. Restrepo and Schaake [44] further suggest 
that the future needs and directions of research for hydro-
logic modeling include: 

(1) Reliable modeling of the different sources of uncer-
tainty; 

(2) A more expeditious and cost-effective approach by 
reducing the effort required in model calibration;  

(3) Improvements in forecast lead-time and accuracy;  

(4) An approach for rapid adjustment of model parame-
ters to account for changes in the watershed, both 
rapid as the result from forest fires or levee 
breaches, and slow, as the result of watershed refor-
estation, reforestation or urban development; and  

(5) An expanded suite of products, including soil mois-
ture and temperature forecasts, and water quality 
constituents. 

Restrepo and Schaake [44] also emphasize the develop-
ment of improved precipitation estimation techniques such as 
statistical merging of remote-sensor observations and fore-
casts from high-resolution numerical prediction models. 
Beckers et al. [45] reviewed many of the widely used hydro-
logic models and suggest one key area for computational 
improvement is the need to better quantify climate change 
which include possible future shifts in temperature and pre-
cipitation, the occurrence of extreme events, and the changes 
in glacier mass balances. Central to this research is under-
standing how best to link hydrologic models to climate 
change predictions which present downscaling issues which 
are well documented by Wood et al., [46], Merritt et al., [47] 
and Stahl et al., [48]. Climate change projections are gener-
ated from global-scale, general circulation models which are 
too coarse for hydrologic models and some level of statistical 
downscaling will be required [49]. Four recent statistical 
downscaling techniques that have been applied with some 
success in western North America include the delta method 
[50], ClimateBC [51], Bias-correction statistical downscaling 
[52-54] and the Tree-GEN method [48].  

An essential component of each physically-based model 
is the availability of sufficient data to represent each of the 
modeled processes. Significant advances to improve data 
generation, preparation, and management are being realized 
through the utilization of geospatial technologies such as 
geographic information system (GIS), global positioning 
systems (GPS), and remote sensing. Typical model prepara-
tion tasks include the use of remotely sensed images for ex-
traction of the terrain canopy data or the use of a digital ter-
rain model (DTM), or digital elevation model (DEM) data 
for extraction of hydrologic catchment properties, such as 
elevation matrix, flow direction matrix, ranked elevation 

matrix, and flow accumulation matrix. Notable GIS-based 
extraction tools include MapWindowsTauDEM (Terrain 
Analysis Using Digital Elevation Models) [55], GIS Weasel 
(An Interface for the Development of Spatial Parameters for 
Physical Process Modeling) [56], and ArcHydro [57]. Recent 
work by Prodanovi  et al. [58] utilized DEM-based GIS al-
gorithms to improve DEM data accuracy and usability. 
When digital data is employed for hydrological modeling, 
they offer the following data evaluation procedures to im-
prove accuracy and usability: (i) check the fraction of the 
area that has the slope of 0%; (ii) use of the surface flow 
routing tool (can be found in most GIS packages) in order to 
check whether water will flow across the whole study area if 
arbitrary source point is selected; (iii) check of the orienta-
tion and interconnection of the stream network; and (iv) use 
of streams as “cut-outs” across the DEM and check whether 
the slope of a longitudinal section toward the lowest, exit 
node, is continuous. 

In many instances, limited or no data is available for 
studied watersheds. GIS automated tools based on geostatis-
tics interpolation techniques (e.g., inverse distance weight-
ing, splines, and kriging) offer improved options for generat-
ing new DEMs datasets from point and contour datasets. 
Recent studies (e.g., Flipo et al., [59]; Frei, et al., [60], San-
tini, et al., [61]) continue to improve these techniques. Flipo 
et al., [59] demonstrated kriging provides a satisfactory rep-
resentation of aquifer nitrate contamination from local ob-
servations to set initial conditions for the physically-based 
model. It was further noted that the use of geostatistics and 
physically-based modeling allows assessment of nitrate con-
centrations in aquifer systems. Frei et al., [60] also utilized 
the same method in a parallel physically-based surface–
subsurface model to investigate the spatial patterns and tem-
poral dynamics of river–aquifer exchange in a heterogeneous 
alluvial river–aquifer system with deep water table. Tague 
and Pohl-Costello [62] also examined how flow data from a 
similar watershed can serve to compensate for this data limi-
tation in the context of understanding impacts on hydrologic 
behavior. 

Model Parameter Estimation and Calibration 

Parameter estimation and calibration of hydrologic mod-
els inherently possess significant challenges associated with 
the nature of most hydrologic models; namely (i) nonlinear-
ity; (ii) data errors; (iii) data insufficiency; (iv) correlation 
among parameters; (v) irregular response surfaces that may 
be insensitive to select model parameters; and (vi) single or 
multi-objective nature of the models [63]. Parameter estima-
tion techniques often further attempt to quantify uncertainty 
of these estimates and may be divided into two primary ap-
proaches: (i) Bayesian; and (ii) frequentist [64]. Bayesian 
methods treat model parameters as random variables that 
possesses probability distributions that are iteratively refined 
by comparing measured data with model outputs based on 
selection of different model parameters derived from an ini-
tial, best estimate, distribution [64]. In contrast, frequentist 
approaches model parameters as fixed entities that are then 
adjusted through comparison with a calibration data set 
through various means [64], including (i) a priori estima-
tions; (ii) curve fitting (including trial and error calibration, 
method of moments, least squares, maximum likelihood, and 
linear and nonlinear regression); and (iii) combination meth-
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ods [63, 65]. Numerous earlier and more recent reviews out-
line parameter estimation, calibration, and uncertainty analy-
sis as applied to hydrologic models (e.g., [65-87]). As noted 
by McDonnell et al. [88], improved predictions for ungauged 
basins is critical for overall advancement in watershed hy-
drologic modeling. So here we focus briefly on select recent 
advances employed where data is especially sparse, such as 
in ungauged basins.  

Model parameter estimation and calibration processes are 
especially challenging for ungauged basins, where sparse or 
poor data quality often favor the use of empirical versus 
physically-based models [89]. Recent advances include use 
of a hydrological distributed model, linking GIS with system 
dynamics, employing linear, nonlinear, and Markov Chain 
Monte Carlo (MCMC) uncertainly analyses, and use of areal 
evapotranspiration in lieu of stream flow. Velez et al. [90] 
employed the conceptual, distributed runoff model, TETIS, 
with a parameter estimation methodology, generating a cor-
rection function that compared model parameter values at 
individual model section scale to overall watershed charac-
teristics derived from available data, taking into account spa-
tial and temporal scale effects enabling reduction in the 
number of parameters requiring calibration. Aragon et al. 
[91] explored the modeling of ungauged tributaries through 
use of GIS to model hydrological response units and a sys-
tem dynamics model to represent physical processes. Here, 
GIS was used to convert time series outputs from the process 
models to spatial representations, which then formed the 
basis for estimating parameter inputs to subsequent model 
runs. Although the system reflected reasonable behaviors, 
the model was not calibrated [91]. Gallagher and Doherty 
[64] examined the performance of three separate parameter 
estimation and uncertainly analysis methods employed in a 
lumped parameter surface flow model Hydrological Simula-
tion Program-FORTRAN (HSPF) [64]. Both linear and non-
linear uncertainly methods provided relative parameter un-
certainty assessment and understanding degree of correlation 
between model parameters, but both were limited in predic-
tive uncertainty. MCMC proved especially useful in provid-
ing qualitative information on parameter probability distribu-
tions, but required significantly greater number of model 
runs to generate the probability distributions [64]. Employ-
ing a much different approach, Nandagiri [89] compared 
calibration of a regional surface runoff model in India using 
streamflow records to areal evapotranspiration estimations 
derived from meteorological data and evapotranspiration 
model. Results suggest that areal evapotranspiration may 
successfully be used to calibrate hydrological models in un-
gauged basins [89]. 

Use of Artificial Intelligence in Watershed Modeling 

The watershed models discussed earlier adopt the physi-
cally-based approach to modeling complex watershed proc-
esses on different spatial and temporal scales. Typically, this 
requires describing the watershed system’s inputs, the physi-
cal laws which govern its behavior, and boundary and initial 
conditions [19]. However, the traditional techniques adopted 
in this approach tend be computationally intensive, requiring 
significant data and calibration. To address some of these 
issues, researchers [e.g., 19, 92-96] have pursued a more 
data-driven approach which utilize soft computing or artifi-
cial intelligence (AI), namely, artificial neural network 

(ANN), fuzzy logic (FL), and Genetic Algorithms (GA). 
Over the past decade the literature has recorded numerous 
examples where researchers have successfully demonstrated 
how AI can be utilized for watershed hydrology applications 
such as real time flood forecasting, rainfall–runoff modeling, 
and water quality prediction models. The following 
discussion highlights selected past and more recent water-
shed hydrology applications using ANN, FL, and GA. 

Artificial Neural Networks (ANN) 

ANNs are considered computer programs capable of 
learning from examples through iteration without requiring 
prior knowledge of the relationships between process pa-
rameters [97, 98]. ANNs were inspired from biological nerv-
ous systems and are an attempt to emulate the human brain 
[98, 99]. Fig. (1) illustrates the general ANN structure which 
is developed based on:  

(1) Many single elements called nodes (also known as 
units, cells, or neurons), shown as oval shapes and or-
ganized as layers. Each node typically applies a non-
linear transformation called an activation function to 
its net input signal to determine its output signal. 
These functions enable ANN to map nonlinear proc-
esses.  

(2) Signals pass between nodes through connection links. 
Each connection link has an associated weight that 
represents its connection strength. 

(3) Most ANN possess a transparent first or input layer 
(X) that receives input variables or quantities that can 
influence the output or last layer (Y) which consists 
of values needed to be predicted as part of a problem 
or system. These networks also often possess middle 
or hidden layers which are usually determined by a 
trial-and-error procedure [100]. 

The American Society of Civil Engineers (ASCE) Task 

Committee [100] notes that in order for ANN to generate an 

output, a training process, also called learning (similar to the 

concept of calibration in traditional physically-based mod-

els), is employed to iteratively adjust and optimize connec-

tion weights and threshold values for each node. The primary 

goal of training is to minimize the error function by search-

ing for a set of connection strengths and threshold values that 

cause ANN to produce outputs that are equal or close to tar-

gets. After completing the training process, the next step is to 

utilize ANN to predict results based on new inputs. See 

ASCE-Task-Committee [100] for further details on ANN 
features and functionality. 

Noted strengths of ANNs which make their use attractive 
for water resources and hydrology applications include the 
ability to (i) recognize the relation between the input and 
output variables without explicit physical consideration; (ii) 
work well even when the training sets contain noise and 
measurement errors; (iii) adapt to solutions over time to 
compensate for changing circumstances; and (iv) possess 
other inherent information-processing characteristics and 
once trained are easy to use [100]. ANN hydrologic applica-
tions range from the predictions of peak discharge or time to 
peak for a single rainfall event, to the forecast of hourly or 
daily river stages or discharges. The complexities in physical 
processes and nonlinear relationships of processes such as 



30    The Open Hydrology Journal, 2011, Volume 5 Daniel et al. 

rainfall-runoff and evapotransporation were found to lend 
themselves to ANN modeling [11, 101-103]. These ANN-
based models have been considered an alternate to physically 
based models due to their simplicity relative to minimizing 
the need for collecting detailed watershed data [102]. The 
major advantage of ANN over conventional methods is the 
ability to model physical processes without the need for de-
tailed information [104]. 

In the 1990s and early 2000s, several research efforts 
[e.g., 11, 103, 105-108] have shown ANN can be applied 
effectively across different aspects of water resources and 
hydrology. Hjelmfelt and Wang [105, 106] were among the 
first researchers to demonstrate the utility of ANNs in mod-
eling these water resources processes. Here, they were able 
to use rainfall and runoff data from 24 large storm events 
chosen from the Goodwater Creek watershed (12.2 km

2
) in 

central Missouri to trainand test the ANNs. Results revealed 
that ANNs were able to generate a unit hydrograph better 
than those obtained through a standard gamma function rep-
resentation. Smith and Eli [107] were able to incorporate the 
spatial and temporal distribution information of rainfall into 
a ANN model that predicted peak discharge and time to peak 
over a hypothetical watershed which was represented as a 
grid of cells. Using this method, they found the prediction of 
the entire hydrograph to be very accurate for multiple storm 
events. Riad et al. [109] showed that ANN-based models 
were better than classical regression models for simulating 
rainfall-runoff relations for a semiarid climate catchment 
area in Morocco. Recent work by Wang et al. [110] con-
cluded that ANN models not only out performed other 
evapotransporation approximations developed in the semi-
arid region of Burikan Faso, but they can also be utilized in 
developing countries with adverse climatic conditions [110]. 
Other studies [104, 111, 112] found that ANN models can 
predict evapotranspiration and perform better than the Pen-
man-Monteith technique and other conventional methods. 

Despite the demonstrated benefits of ANN, there are two 
key challenges that should be mentioned. First, ANN are 
usually implemented with a trial and error approach which 
tend to be extremely time consuming [113]. May and Siva-
kumar [114, 115] highlighted this issue while investigating 
the application of ANN and multi-linear regression models 

for predicting urban stormwater quality at unmonitored 
catchments. They concluded that both models generated 
similar prediction results but the regression model appeared 
to represent a more applicable approach since it was (i) faster 
to construct and apply; (ii) more transparent; and (iii) less 
likely to fit the limited data. The second limitation of ANNs 
identified by Moghaddamnia et al. [112] referenced the 
complicated input selection process. They gained some suc-
cess by using a gamma test to address this problem, explor-
ing different combinations of input data to assess their influ-
ence on evaporation estimation modeling, showing that the 
gamma test greatly reduced model development require-
ments, enabling provision of input data guidance prior to 
model development. Despite these promising results, they 
suggest that further evaluation is needed, especially with 
respect to its ability to assess validated data.  

Genetic Algorithms (GA) 

Genetic Algorithms (GA) are nonlinear optimization 
search techniques that imitate biological evolution processes 
of natural selection and survival of the fittest [116, 117]. The 
major difference between GAs and the other classical opti-
mization techniques is that GAs work with a population of 
possible solution while classical optimization techniques 
work with a single solution [118]. Soman et al. [119] sum-
marize the process of creating GAs in the following steps:  

(1) Generate a random number of solution samples, 

collectively called the population, within the feasi-

ble search space. Each of these samples, called a 

chromosome, is defined by a sequence of decision 

variables known as genes (can be in binary strings 

of ones and zeros of user specifiedlength, or real 

value numbers or integers). 

(2) Each chromosome is assigned a measure of fit-

ness, based on the objective function value. These 

chromosomesare referred to as species of the first 

generation. For a maximization problem, the higher 

the fitness values, the higher the chance for sur-

vival.  

(3) Create the next generation of chromosomes. 

This is accomplished by ranking the first genera-

tion chromosomes in ascending order of their fit-

Fig. (1). Configuration of feed forward three-layer ANN (adapted after: ASCE Task Committee [100]). 
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ness value for a minimization problem, and in de-

scending order of their fitness for a maximization 

problem. Chromosomes with the highest fitness 

value will be given a higher probability to obtain a 

mate, so as to produce offspring that may better fit 

the environment. This process of selecting mates is 

called selection. Once mates are selected, genes of 

corresponding mates, or parents, are systematically 

exchanged with the conception that the resulting 

solutions or offsprings will have higher fitness val-

ues. The process of creating new individuals by 

systematically assigning genes of chosen mates to 

the new individuals is known as crossover. The 

new chromosomes replace the old chromosomes, 

which have low fitness values. 

The process of selection and crossover is repeated for 

many generations with the objective of reaching the global 

optimal solution after a sufficient number of generations. 

Other general forms of the GA include Genetic Program-

ming (GP) and Gene Expression Programming (GEP) which 

are explained in more detail by Koza [120] and Ferreira 
[121].  

Several early research efforts demonstrated the useful-

ness of GA in water resources applications. Ritzel et al. 

[118] adopted GA to solve groundwater pollution problems. 

Wang and Zheng [95] and Wu et al. [96] used GA-based 

functions to solve a groundwater management model. Other 

researchers [e.g., 122-128] made additional achievements in 

developing or improving rainfall-runoff models using GA. 

Wang [127] was successful in using GA with a local search 

method to calibrate the Xinanjiang rainfall-runoff model. 

Drecourt [126] investigated the GP approach for flow predic-

tion on the Kirkton catchment in Scotland (United Kingdom) 

and found that the results compared favorably with two op-

timally calibrated conceptual models. Whigham and Crapper 

[128] compared a GP-based rainfall-runoff model with a 

deterministic lumped parameter model, based on the unit 

hydrograph and found the results to be favorable as well. 

Efforts by Liong et al. [124] were instrumental in demon-

strating GP as a new paradigm in rainfall-runoff modeling. 

They showed GP-based rainfall runoff relationships can 

serve as alternatives to conventional (physically based and 

conceptual) rainfall runoff models. In Singapore, Muttil and 

Liong [125] were able to apply GA programming to generate 

empirically the underlying equations which connect input to 
output for the Upper Bukit Timah watershed. 

More recent research efforts [e.g., 19, 129-132] continue 

to demonstrate the utility of GA in support of water re-

sources applications. Guven et al. [131] developed a new 

GP-based model for estimating reference evapotranspiration 

in northern California by using five daily atmospheric vari-

ables (daily solar radiation, daily mean temperature, average 

daily relative humidity and wind speed). They concluded that 

the new model results were in good agreement with conven-

tional evapotranspiration models (here, the Penman-

Monteith equation, Hargreaves-Samani equation, solar radia-

tion-based ET equation, Jensen-Haise equation, Jones-

Ritchie equation, and Turc method) and can be used as an 

alternative approach. It was also concluded that the GP-

based model offered a fast and practical method for accu-

rately estimating evapotransporation [131].  

Yao and Yang [132] note that the complexity of parame-
ter optimization for a distributed watershed model goes far 
beyond the capability of traditional optimization methods. 
To address this problem, a new GA-based optimization 
method was developed and tested using the Distributed-
Hydrology-Soil-Vegetation model (DHSVM). Results of this 
effort demonstrate the feasibility of GA in optimizing pa-
rameters of the DHSVM model. Hejaziet al. [129] and Preis 
and Ostfeld [19] demonstrated that GA can be coupled with 
other flow or water quality models to develop and augment 
calibration schemes.  

Guven [130] investigated the use of linear genetic pro-
gramming (a variant of GP) for predicting time-series of 
daily flow rates the Schuylkill River at Berne, PA, USA and 
found that the results showed good agreement with observed 
data. Results also showed that the GP-based model out per-
formed an ANN-based model. These findings demonstrate 
GP’s promise for predicting the nonlinear and dynamic river 
flow parameters [130]. 

Although GAs have proven to be an effective and power-
ful problem-solving strategy, they possess several limita-
tions. The common thread in many of the difficulties with 
GAs has to do with their significant dependence on control 
parameters such as population size, crossover probability, 
and choice of crossover operator [133]. Jackson and Norgard 
[133] summarize these issues as follows: 

(1) A GA may not know when it is done or lack 
proof of convergence. One possible way to deal 
with this problem is to examine a series of consecu-
tive generations for solution improvement.  

(2) GAs need to maintain a large population of solu-
tions which provides the genetic diversity needed to 
adequately explore the solution space. Too small a 
population will result in premature convergence on 
a local minimum. While large populations enable 
superior performance, they also require more mem-
ory and more execution time. 

(3) Excessive reliance on crossover to introduce 
new genetic material can also result in premature 
convergence. The dominance of crossover as the 
principal stochastic process may cause the popula-
tion to become more homogeneous, and thus stag-
nating the evolutionary process.  

(4) GAs are also known to have poor performance 
in climbing local hills in the solution space which 
results in reducing accuracy for many real-valued 
problems. This difficulty is a byproduct of the sole 
dependence of the algorithm on stochastic processes 
to improve solutions rather than on an analytical 
approach. 

Jackson and Norgard [133] suggest that these limitations 
of GAs can be addressed effectively by combining GAs with 
other algorithms and techniques. 

Fuzzy Logic (FL) 

The FL approach to modeling is based on the theory of 
fuzzy sets [134], where relationships are defined verbally 
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instead of using known governing physical relationships. 
Classic set theory assigns an item as a member of a set (1) or 
a non-member of a set (0), while a fuzzy set allows for gra-
dations between full membership and full non-membership. 
The main idea is to define the fuzzy membership functions 
which define relationships between input variables and out-
puts of a system [135]. Mahabir et al. [135] identify the main 
steps for creating a FL-based modeling system as follows:  

(1) A membership function must be defined for each 
variable (input and output). The membership function de-
fines the degree to which the value of a variable belongs to 
the group and is usually a linguistic term, such as high, me-
dium, or low. 

(2) The membership functions are related by statements 
or rules, typically a series of IF–THEN statements. For ex-
ample, one rule would be: IF the rainfall is low (linguistic 
term represented by a membership function) THEN the run-
off (output) is low (linguistic term represented by a member-
ship function). 

(3) Each rule is evaluated through a process called impli-
cation, and the results of all of the rules are combined in a 
process called aggregation. 

(4) The resulting function is evaluated for a resulting 
value or score for the output variable (e.g., runoff) through a 
process called defuzzification. 

The two main FL-based modeling systems included are: 

(i) fuzzy inference systems, which work on already con-

structed rule-base mainly on the basis of expert knowledge, 

and (ii) fuzzy adaptive systems, which can also build and 

adjust rule-base automatically based on sample or training 

data. Two significant advantages of FL–based models are 
their ability to be error tolerant and integrate expert knowl-

edge from water resource specialists [94]. Guertin et al. 

[136] also point out that the FL approach is well suited to 

watersheds studies as many environmental factors are best 

expressed as gradients.  

Like ANN and GA, the FL technique does have its limi-

tations. Three key disadvantages were identified in the litera-
ture and presented here. Casper et al. [94] note that the larg-

est disadvantage of the fuzzy adaptive systems is its inability 

to extrapolate without detailed expert knowledge about the 

watershed system or process being simulated. The second 

disadvantage of fuzzy inference and fuzzy adaptive (aug-

mented with expert knowledge) systems is their strong reli-

ance on subjective inputs from experts which might provide 

more opportunity for their abuse [137]. Ferson and Tucker 
[138] also note that FL-based systems may also fail to cap-

ture the value range of complex data sets and the correlations 

among parameters. Further details on FL theory and applica-

tions are provided in Zimmermann [139] and Dubois and 

Prade [140].  

According to Yu and Yang [76], FL can be applied to 

hydrologic modeling where a hydrologist defines the accept-
able degree of a simulation in the form of linguistic expres-

sions such as ‘bad’ and ‘good’ based on their knowledge or 

expert judgment. Researchers have been successful in their 

early attempts at applying FL for solving water resource 

problems or modeling hydrologic processes including infil-

tration [141], contaminant fate and transport [142], recon-

struction of missing precipitation events [143] river level and 

flood forecasting [144, 145], rainfall-runoff modeling [76, 

146, 147], daily future water demand modeling [148], 

drought classification [149], and regional drought prediction 

[150]. 

More recent research trends in the utilization of the FL 
modeling approach highlight additional efforts targeted at 
combining other AI methods in hybrid systems. Chang et al. 
[151] developed a FL based method that was applied to pre-
cipitation interpolation and utilized GA to determine parame-
ters for the FL functions which represent locations without 
rainfall records and their surrounding rainfall gauges. Cheng 
et al. [80] combined FL-GA methods to develop a rainfall-
run model while Chidthong et al. [152] and Chen et al. [93] 
utilized similar methods to forecast flooding. Combining FL 
and ANN also offer options for improving modeling tech-
niques and managing water resource problems. For example, 
Tayfur and Singh [153] demonstrated that FL-ANN based 
models can be useful in simulating event based rainfall run-
off on a watershed scale and are much easier to construct 
than the models based on the well-know kinematic wave 
approximation method. Chang and Chang [154] utilized an 
adaptive neuro-fuzzy (FL and ANN) inference system for 
predicting water levels in reservoirs. Firat and Gungor [155] 
also investigated the use of similar systems for estimating 
river flows. Chidthong et al. [152] were successful in devel-
oping a hybrid system using FL, ANN, and GA for predict-
ing peak flooding.  

Spatial Considerations in Watershed Modeling 

As previously mentioned, watershed modeling involves a 

holistic approach that involves not only examining surface 

hydrology, groundwater hydrology, or their interface as 

whole systems, but attempting to imitate the three regions as 

one system. Scale-up of each of these regions from the water 

body (lake, river, stream, etc.) or aquifer to an entire catch-

ment or watershed presents obvious problems. One limita-

tion is the availability of precipitation, flow, land cover, etc. 

data for the entire region. Another consideration is the lim-

ited understanding of the interactions between smaller hydro-

logic entities. Several studies have examined the effects of 

scaling in watershed modeling [156-161]. Furthermore, the 

scale or resolution of data used can impact the accuracy of 

the model results [161-163]. The following sections high-

light the more prominent issues relating to scale and data 

resolution in watershed modeling.  

Scale-up from Hydrologic Models to Watershed Models 

Much work has been done to conceptualize watershed in-
teractions at the hillslope (sub-catchment) level resulting in 

highly complex relationships from field experimentation. 

Some suggest that watershed models should maintain this 
complexity and efforts should be made to ensure that the 

smaller scale relationships are somehow incorporated into 

the mesoscale watershed models [164]. Unfortunately, data 
limitations, computational complexity, and financial con-

straints limit the amount of information that may be gathered 

from the field to represent entire watersheds. Bloschl and 
Sivapalan [158] published a review of scale issues in hydro-

logical modelling at the catchment level in 1995. In this, 

discussions on simplification versus aggregation of hydro-
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logic parameters, scale up versus scale down, and the linkage 

across various modelling scales are presented.  

Problems associated with scale-up of hydrologic proc-
esses to the watershed-scale include generalization and over 
parameterization. Through generalization or simplification, 
processes and variables that are applicable to a small portion 
of the watershed may be applied to the entire region. In this, 
the true representation of processes taking place may be lost. 
Over parameterization occurs when the watershed is repre-
sented by multiple (possibly many) parameters/variables to 
the point that a holistic representation of the region is no 
longer present [158]. While Jakeman and Hornberger [165] 
suggest only a few parameters are identifiable/necessary for 
hydrologic models, van Werkhoven et al. [166] argue that 
the number of parameters necessary for watershed modeling 
is dependent on the focus of the model and experimental 
design. They suggest use of sensitivity analysis and thorough 
investigation on the model behaviour to determine the ap-
propriate level of parameters involved to represent the water-
shed. 

Sivapalan [164] suggests that identification of common 
patterns, or features found at the hillslope scale within a 
watershed can be applied to larger regions to assist in scale-
up to the watershed level. In addition, Wong [167] 
recommends use of physically-based models to replace 
empirical models noting that during scale-up from empirical 
hydrologic models to watershed-scale models physically-
based relationships can be used to bridge the gaps. Kalin et 
al. [168] state that the spatial scale of the catchment is 
directly proportional to the complexity involved in modelling 
hydrologic processes of rainfall-runoff and surface erosion. 
Whether a lumped or semi-distributed model is used is 
dependent on the level of detail desired in the output and 
data available for representing the watershed.  

Impacts of Data Resolution 

Modeling the hydrologic responses over a watershed re-

quires use of soil maps and/or soil surveys to provide infor-

mation on the distribution of soil types and thus soil hydro-

logic properties. Previously, soil maps produced from sur-

veys of the region were the only source of this information. 

Now, remote sensing (RS) and digital terrain analysis can be 

utilized through geographic information system (GIS) tech-

niques [169] which are more accurate with higher resolution 

data than previous methods. In addition, the availability of 

precipitation data may be sparse and limiting. Gathering 

measurements over a large area may not be economically 

feasible, so modelers use genetic algorithms or other tech-

niques discussed previously to fill gaps and provide better 
representation of data over the entire watershed area. 

Often, digital elevation models (DEMs) are used to iden-

tify stream networks/rivers and the land slopes that contrib-

ute flow to these waterbodies. DEMs can be publicly ob-

tained at various resolutions (e.g., 250 m, 500 m, 1000 m), 

which can impact the accuracy of hydrograph generation and 

identification of tributaries/river networks [163]. DEMs are 

digital surfaces representing the area of interest with a grid 

of given resolution placed over the surface and elevation data 

assigned to each cell. Each DEM grid cell drains a specific 

direction based upon its slope and the slope of the cells 

around it. Streams or channel networks are identified by us-

ing the slope information of DEM grid cells and assigning a 

threshold area (the minimum area that would drain to a point 

for a stream channel to form). The stream network is com-

prised of a set of points that have summed areas of cells 

above the threshold value draining toward them. The resolu-

tion of the DEM can impact the slope of grid cells due to the 

area covered and averaging of elevations, and thus, the iden-

tification of stream networks [168, 170]. DEM resolution 

also impacts the delineation of the watersheds. Ridge lines 

are commonly used to define watersheds because these rep-

resent the divide for which portion of precipitation flows in 
which direction.  

In a study by Zhu and Mackay [169], the impacts of us-
ing traditional soil maps versus soil information derived 
from both fuzzy logic and digital elevation models (DEMs) 
were evaluated for the Lubrecht area in Montana. Using the 
newer technology, they found that peak runoff was reduced 
thus producing more realistic hydrographs. Yang et al. [163], 
evaluated the effects of DEM resolution on geomorphic 
properties (i.e., identification of river networks and hydro-
logical response). In their study, fifteen catchments in Japan 
were analyzed using differing DEM resolutions. An increase 
in DEM mesh size (less resolution) led to loss in the amount 
of tributaries identified, flatter topography due to averaging 
of elevations for individual DEM grid cells and less accurate 
representation of the hydrological response of the catchment 
[163].  

The required resolution of data used in the modeling ef-
fort may be dependent on the output desired. Kalin et al. 
[168] evaluated the resolution required for different outputs 
for two U.S. Department of Agriculture (USDA) experimen-
tal watersheds. When the peak runoff is the primary concern, 
the highest resolution is optimal. Meanwhile, if modelers are 
only interested in sediment load at the outlet, lower resolu-
tion of model input data may be used.  

Hydrologic and Hydrodynamic Models for Watershed 
Modeling 

This section provides a review of current state-of-the-art 
of watershed-scale models, including discussion of their 
strengths and weaknesses when applied to various watershed 
and related problems. Recent reviews by Singh and Wool-
hiser [39], Borah and Bera [171], Kalin and Hantush [37], 
Singh and Frevert [172], and Oogathoo [6] identify the more 
commonly used watershed-scale models: AGNPS (Agricul-
tural Non-point Source)/AnnAGNPS (Annualized Agricul-
tural Non-point Source), ANSWERS/ANSWERS-2000 
(Area Non-point Source Watershed Environment Response 
Simulation), GSSHA (Gridded Surface Hydrologic Analy-
sis)/CASC2D (CASCade of Planes in 2-Dimensions), HEC-
1/HEC-HMS (Hydrologic Engineering Center’s Hydrologic 
Modeling System), HSPF (Hydrological Simulation Program 
– FORTRAN), KINEROS2 (KINematic Runoff and ERO-
Sion), MIKE SHE (originally named SHE – Systéme Hy-
drologique Européen), PRMS (Precipitation-Runoff Model-
ing System), SWAT (Soil and Water Assessment Tool), and 
WEPP (Water Erosion Prediction Project). Each model’s 
attributes and example applications are discussed in detail in 
the following text, while Table 1 provides a summary of 
primary model characteristics and features.  
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Table 1. Watershed Models - Main Characteristics and Features 

Model 
Suited  

Applications 

Main 

Components 

Runoff on 

Overland 

Subsur-

face 

Flow 

Chemical 

Simulation 

Spatial 

Scale 

Temporal 

Scale 

Watershed 

Representation 
Availability 

ANSWERS 

Suited for agriculture water-

sheds ; designed for ungaged 

watershed 

Runoff, infiltration, subsur-

face drainage, soil erosion, 

interception & overland 

sediment transport 

Manning & 

continuity 

Equations 

No compo-

nent 

No compo-

nent 
D E 

Square grids;  

1-D Simulations 
Pu 

ANSWERS-

2000 

Suited for medium size 

agriculture watersheds ; 

designed for ungaged water-

shed; useful in evaluating 

the effectiveness of BMPs; 

capable of simulating trans-

formation and interactions 

between four nitrogen pools 

Runoff; infiltration, wa-

ter/river routing, drainage, 

river routing, chemi-

cal/nutrient transport 

Manning 

equation 

Darcy’s 

equation 

 

N,P, sedi-

ment trans-

port 

D C Grid/cells Pu 

AGNPS 
Suited for agriculture water-

sheds 

Runoff, infiltration &  

soil erosion/sediment  

transport 

CN, TR-55 

for peak flow 

No compo-

nent 

No compo-

nent 
D E 

Homogeneous 

land areas 
Pu 

AnnAGNPS 

Suited for agriculture water-

sheds; widely used for 

evaluating a wide variety of 

conservation practices and 

other BMPs 

Hydrology, sediment, nutri-

ents and pesticide transport, 

DEM used to generate grid 

and stream network 

CN, TR-55 

for peak flow 

Darcy’s 

equation 

N, P, pesti-

cides, orga-

niccar-

bon&nutrien

ts 

D 

C- daily 

or 

sub-daily 

steps 

Homogeneous 

land areas, 

reaches, & im-

poundments 

Pu 

GSSHA/CAS

C2D 

Suited for both agriculture 

or urban watersheds; diverse 

modeling capabilities in a 

variety of climates and 

watersheds with complex 

spatial datasets 

Spatially varying rainfall; 

rainfall excess and 2-D flow 

routing; soil moisture, chan-

nel routing, upland erosion, & 

sediment transport 

2-D diffusive 

wave equa-

tions 

No compo-

nent 

No compo-

nent 
D E; C 

2-D square over-

land grids; 1-D 

channels 

Pr 

HEC-1/HEC-

HMS 

Suited for urban watersheds; 

widely used for modeling 

floods and impacts on land 

use changes 

Precipitation, losses,  

baseflow, runoff transforma-

tion & routing 

CN, kine-

matic wave 

equations 

No compo-

nent 

No compo-

nent 
SD E 

Dendritic network 

 or grid 
Pu 

HSPF 

Suited for both agriculture 

or urban watersheds; diverse 

water quality and sediment 

transport at any point on the 

watershed 

Runoff /water quality con-

stituents, simulation of pervi-

ous/impervious areas, stream 

channels & mixed reservoirs 

Empirical 

outflow 

 

Interflow 

outflow, 

percolation; 

groundwater

outflow 

Soil/water 

temp., DO, 

CO2, N, 

NH3, or-

ganic N/P, 

N/P, pesti-

cides 

SD C. 

Pervious 

/impervious land 

areas, stream 

channels, & 

mixed reservoirs; 

1-D simulations 

Pu 

KINEROS2 

Suited for urban environ-

ments and studying impacts 

of single sever or design 

storm even; Also can be 

applied to agriculture water-

sheds. 

Distributed rainfall inputs, 

rainfall excess, overland flow, 

channel routing, sediment 

transport, interception, infil-

tration, surface runoff & 

erosion 

Kinematic 

wave equa-

tions 

No compo-

nent 

No compo-

nent 
D E 

Cascade of planes 

& channels; 1-D 

simulations 

Pu 

MIKE SHE 

Wide range of spatial and 

temporal scales; modular 

design facilitates integration 

of other models; advanced 

capabilities for water qual-

ity, parameter estimation 

and water budget analysis 

Interception, over-

land/channel flow, unsatu-

rated/saturated zone, snow-

melt; aquifer/ rivers ex-

change, advection/dispersion 

of solutes, geochemical 

processes, plant growth, soil 

erosion & irrigation 

2-D diffusive 

wave equa-

tions 

3-D 

groundwa-

ter flow 

Dissolved 

conservative 

solutes 

in surface, 

soil, & 

ground 

waters 

D 

E; C; 

variable 

steps 

2-D rectangular 

/square overland 

grids; 1-D chan-

nels; 

1-D unsaturated/ 

3-D saturated 

flow 

Pr 
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Table 1. contd… 

Model 
Suited  

Applications 

Main 

Components 

Runoff on 

Overland 

Subsur-

face 

Flow 

Chemical 

Simulation 

Spatial 

Scale 

Temporal 

Scale 

Watershed 

Representation 
Availability 

SWAT 

Best suited for agriculture 

watersheds; excellent for 

calculating TMDLs and 

simulating a wide variety of 

conservation practices and 

other BMPs; successfully 

applied across watersheds in 

several countries 

Hydrology, weather, sedimen-

tation, soil temperature and 

properties, crop growth, 

nutrients, pesticides, agricul-

tural management and channel 

& reservoir routing 

CN for 

runoff ; SCS 

TR-55 for 

peak flow 

Lateral 

subsurface 

flow/ 

ground 

flow 

N, P,  

pesticides, 

C 

SD 
C; daily 

steps 

Sub-basins based 

on climate, HRU, 

ponds, groundwa-

ter, & main chan-

nel 

Pu 

PRMS/MMS 

Suited for agriculture water-

shed; modular design facili-

tates integration of other 

models (e.g., climate mod-

els) 

Hydrology and surface runoff, 

channel flow, channel reser-

voir flow, soil erosion, over-

land & sediment transport 

Kinematic 

wave equa-

tions 

No compo-

nent 

No compo-

nent 
D E 

Flow planes, 

channel segments, 

& channel reser-

voirs; 1-D simula-

tions 

Pu 

WEPP 

Best suited for agriculture 

watershed and analyzing 

hydrologic and soil erosion 

on small watersheds 

Weather generation, frozen 

soils, snow accumulation and 

melt, irrigation, infiltration, 

overland flow hydraulics, 

water balance, plant growth, 

erosion, deposition & residue 

decomposition 

Kinematic 

wave equa-

tions 

Green-

Ampt 

equation 

No compo-

nent 
D C 

Channel segments 

& impoundments 
Pu 

Type: F; Agriculture Watershed - A; Urban Watershed - U Spatial Scale: Semi-Distributed - SD; Distributed - D 

Temporal Scale: Continuous - C; Event-base - E   Availability: Public - Pu; Proprietary - Pr 

 
Agricultural Non-Point Source Pollution Model (AGN-

PS/AnnAGNPS) 

The current version of AGNPS is the AnnAGNPS model 

[173, 174] which was developed to simulate, on a daily time 

step, the sediment and nutrient transport from an agricultural 

watershed, ranging in size from a few hectares up to 300,000 

hectares (3x10
9
 m

2
). AnnAGNPS is a semi-empirical, dis-

tributed, continuous simulation watershed-scale model with 

output options for an event, monthly, or annual basis [173, 

174]. The AnnAGNPS model can assist with the manage-

ment of runoff, erosion, and nutrient movement by perform-

ing cost-benefit analysis. The model can simulate several 

best management practices (BMPs) including ponds, vegeta-

tive filters strips, riparian buffers, and others [37]. Borah and 

Bera [5] also note that the model is useful for analyzing 

long-term effects of hydrological changes and watershed 

management practices, especially agricultural practices. The 

model has been utilized in several studies with mixed results 

[175-178]. In Australia, Baginska et al. [179] showed the 

event flow predictions to be satisfactory, Das et al. [180] 

were able to produce runoff results for the Canagagigue 

Creek watershed of southwestern Ontario with acceptable 

accuracy, while Suttles et al. [177] and Yuan et al. [175] 

highlighted that the model can produce adequate results for 
predicting long-term monthly and annual runoff.  

Key limitations of the AnnAGNPS model include: (i) an 

inability to simulate base flow or frozen soil conditions; (ii) 

the mass balance calculation for water inflow and outflow is 

not provided as the model does not account for spatially 

varying rainfall over the watershed; and (iii) the runoff simu-

lation is not entirely based on physical laws [6]. Model re-

sults from Suttles et al. [177] and Yuan et al. [175] show that 

the overland flow inadequately represented the riparian ar-

eas, and predictions on nutrients and sediment loads are 

overestimated. Proper cell discretization was suggested as an 

option for improving runoff estimates. In Nepal, Shrestha et 

al. [181] showed that model event-based peak flow results 

were over predicted. AnnAGNPS is also not adequately for-

mulated to simulate intense single-event storms [171]. Borah 

et al. [182] concluded that the AGNPS model is not suitable 

for analyzing a storm when the flow and constituent concen-

trations and loads drastically vary. They also noted that the 

use of AGNPS in studying impacts of BMPs is qualitative 

since AGNPS does consider subsurface and groundwater 

processes [183]. 

Both AGNPS and AnnAGNPS use the Curve Number 

(CN) method, which does not reproduce measured runoff 

from specific storm rainfall events because the time distribu-

tion is not considered [183-187]. Additional limitations in-

clude: (i) no explicit account of the effect of the antecedent 

moisture conditions in runoff computation; (ii) difficulties in 

separating storm runoff from the total discharge hydrograph; 

and (iii) runoff processes not considered by the empirical 

formula [183, 186, 187]. Croley and He [188] suggest that 

these limitations will result in CN estimates of runoff and 

infiltration which are not reflective of actual values. In addi-

tion, they note that sediment, nutrient, and pesticide load-

ings, which are directly related to infiltration and runoff, may 

generate inaccurate estimates for non-point source pollution 

rates. 
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Areal Non-PointSource Watershed Environment Simula-

tion (ANSWERS) 

ANSWERS is comprised of two major response compo-
nents: hydrology [189] and upland erosion [190]. The water-

shed area is divided into grids (less than 10,000 m) where all 

properties (e.g., soil properties, land use, slopes, crops, nutri-
ents, and management practices) are considered homoge-

nous. ANSWERS-2000, an expanded version of ANSWERS 

[191], utilizes breakpoint rainfall data and performs simula-
tion on 30-second time steps for runoff events and a daily 

time step between runoff events. Simulation is limited to 

medium-size watersheds (5x10
6
 to 3x10

7
 m) where surface 

hydrologic processes dominate. In addition, the model also 

has the capability of simulating transformations and interac-

tions between four nitrogen pools including stable organic N, 
active organic N, nitrate, and ammonium. A surface runoff 

hydrograph is provided at both the watershed outlet and any 

other user-selected point within the watershed [192]. 

ANSWERS and ANSWERS-2000 models were designed 

for ungauged watersheds, as well as for evaluating the effec-

tiveness of agricultural and urban watershed best manage-

ment practices (BMPs) in decreasing sediment and nutrient 

transport to streams during surface runoff events [37, 193]. 

Available literature [6, 171, 193-195] provides some of the 

achievements and issues related to the application of these 

models. For example, Connolly et al. [194] showed that 

ANSWERS could be used to predict runoff at a catchment 

outlet and generate fairly accurate simulations for different 

surface cover conditions; however, runoff predictions were 

less accurate at low rainfall intensity events when compared 

to higher intensity events. They also pointed out that com-

plex watersheds could be modeled without calibration; al-

though promoting confidence in the model, one would be ill-
advised to follow such advice. 

Dillaha et al. [193] evaluated ANSWERS-2000 on two 
watersheds in Watkinsville, Georgia; it performed well in 
predicting runoff, sediment, nitrate, dissolved ammonium, 
sediment-bound total Kjeldahlnitrogen (TKN), and dissolved 
phosphorus losses from both watersheds. They also tested 
the model on the 1,153 hectare (1.15x10

7
 m

2
) Owl Run wa-

tershed in Virginia, where it also performed well for the 

largest storms, and cumulative predictions of runoff volume, 
sediment yield, nitrate, ammonium, sediment-bound TKN, 
and orthophosphorus were within 40 percent of the measured 
values. Other research by Bai et al. [195] showed that the 
model adequately simulated runoff during non-snow seasons.  

Oogathoo [6] notes that a key weakness of ANSWERS is 
its inability to simulate interflow and groundwater contribu-
tions to base flow, snow pack, and snowmelt. This suggests 
the model is less suitable for locations where base flow con-
tribution, winter snow accumulation, and snow melt are high. 
Borah and Bera [5] also noted ANSWERS is not adequately 
formulated to simulate intense single-event storms and has 
potential numerical problems inherent in its solutions. They 
also mentioned that ANSWERS-2000 does not have channel 
erosion and sediment transport routines; therefore, the sedi-
ment and chemical components are not applicable to water-
sheds. Like AGNPS and AnnAGNPS, ANSWERS and AN-
SWERS-2000 utilize the CN method and face the same limi-
tations identified earlier by Beven [186], Croley and He 
[188], and Garen and Moore [187].  

Gridded Surface Subsurface Hydrologic Analysis 

(GSSHA)/CASC2D 

CASC2D [196] is a physically-based model that was de-
veloped to predict surface runoff in arid to semi-arid basins. 
Water and sediment are simulated in two-dimensional over-
land grids and one-dimensional channels. Both single-event 
and long-term continuous simulations are possible. The wa-
tershed is divided into cells, and water and sediment are 
routed from one to another. GSSHA [31, 32], an enhance-
ment of CASC2D, adds the ability to simulate saturated and 
unsaturated groundwater, allowing use of the model in a va-
riety of climates and watersheds. While increasing the capa-
bility of the CASC2D model, all functionality of the 
CASC2D model has been retained, with significant im-
provements in model stability and efficiency.  

GSSHA, a component within the U.S. Department of De-
fense’s (DOD) Watershed Modeling System (WMS) [197], 
was developed to provide hydrologic predictions in the wid-
est variety of places and conditions including the complex 
spatial organization in an urban environment. This may have 
important implications for the development of techniques for 

Table 2. Watershed Modeling Systems Summary 

System GIS Interface Hydrology Hydraulics Surface Subsurface Sub-Models 

AGWA ArcView 3x yes yes yes yes KINEROS, SWAT 

BASINS MapWindow yes yes yes no 
PLOAD, AQUATOX, WinHSPF, 

AGWA 

MODFLOW-What  no yes yes yes DAFLOW, RT3D, BLTM 

SAC  no no no no  

WEPP ArcView no yes yes yes MASS2 

WISE yes, unknown yes yes yes no 
HEC-1, HEC-2, HEC-RAS, FLO-2D, 

CHAMPS, WHAFIS, SWMM, NPSM 

WMS ArcView yes yes yes yes 

HEC-1, TR-20, TR-55, NFF, MODRAT, 

OC Rational, HSPF, HEC-RAS, 

SMPDBK, CE-QUAL-W2, GSSHA 
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runoff modeling, flood prediction, and planning in urbanized 
areas [31]. GSSHA has new or improved CASC2D features 
such as the ability to simulate major hydrologic storage units 
(e.g., lakes, wetlands, and reservoirs) and an improvement in 
the predictions of in-stream sediment transport, especially 
during large rainfall events [31]. Both models were tested on 
the Goodwin Creek Experimental Watershed in Mississippi 
where it was shown that the accuracy of sediment discharge 
for selected storms was superior when using GSSHA [31, 
198]. Despite these results, other studies [e.g., 37] indicate 
that the model may have major limitations such as the poten-
tial to generate very poor sediment results. Kalin and Han-
tush [37] suggest erosion in channels is not transport limited, 
which means the model generates sediment that has a vol-
ume greater than what the flow can carry. Another limitation 
for the model is its numerical schemes, which are computa-
tionally intensive and demand large amounts of data [171]. 
According to Ogden and Julien [199], simulation times can 
become prohibitive when the number of model grid cells 
exceeds 100,000; therefore, the model may become prohibi-
tive for medium to large-sized watersheds [171]. 

HEC-1/HEC-HMS  

HEC-1, developed to simulate hydrologic processes (pre-
cipitation, losses, baseflow, runoff transformation, and rout-
ing) on watersheds ranging in size from 1 km

2
 to 100,000 

km
2
, produces runoff hydrographs at single or multiple loca-

tions on complex watershed networks for gauged and hypo-
thetical rainfall events [200]. HEC-HMS (Hydrologic Engi-
neering Center's Hydrologic Modeling System) [201, 202] is 
the “next generation" and state-of-the-art Windows-based 
model for precipitation-runoff simulation that will supersede 
the HEC-1 model. HEC-HMS provides a variety of options 
for simulating precipitation-runoff and routing processes, 
and is comprised of a Graphical User Interface (GUI) [203], 
integrated hydrologic analysis components, data storage and 
management capabilities, and graphics and reporting facili-
ties [201, 202]. Both HEC-1 [200] and HEC-HMS [201] 
have been widely used for modeling floods and impacts on 
land use changes [6]. Duru and Hjelmfelt [204], using the 
model's kinematic wave method, found that even with lim-
ited calibration, runoff prediction for ungauged catchments 
was good and impacts of land use on the hydrologic cycle 
could be evaluated accurately. Additionally, a study con-
ducted in northern Ontario, Canada showed that HEC-1 
model could be used for runoff simulation in an ungauged 
watershed [205].  

Even though HEC-1/HEC-HMS has been widely used, 
Oogathoo [6] notes that it excludes certain important fea-
tures. The model is constrained to a constant time step, 
which may not be suitable for components requiring detailed 
analysis. Since it is semi-distributed, the model assumes hy-
drologic processes to occur uniformly within each sub-basin. 
Also, as the primary purpose of the model is to determine 
flood hydrographs, a simple method is used for the baseflow 
simulation; therefore, the loss component of the model is not 
tracked down in absence of precipitation, that is, the soil 
does not dry out and recover its loss potential. Other limita-
tions identified by Scharffenberg [201] include uncoupled 
models for evapotranspiration-infiltration and infiltration-
base flow processes, no aquifer interactions, the allowance, 
but limited capability, of flow splits within the dendritic 

stream systems, and the lack of downstream flow influence 
or reversal which makes backwater possible but only if con-
tained within a reach.  

Hydrological Simulation Program-Fortran (HSPF) 

HSPF [206, 207] is a semi-distributed, continuous model 
that simulates hydrologic and associated water quality proc-
esses on pervious and impervious land surfaces, in streams, 
and in well-mixed impoundments where water movement is 
simulated as overland flow, interflow, and groundwater flow. 
Also simulated are snowpack depth and water content, 
snowmelt, evapotranspiration, ground-water recharge, dis-
solved oxygen, biochemical oxygen demand, temperature, 
pesticides, conservatives, fecal coliforms, sediment detach-
ment and transport, sediment routing by particle, size, chan-
nel routing, reservoir routing, constituent routing, pH, am-
monia, nitrate-nitrite, organic nitrogen, orthophosphate, or-
ganic phosphorous, phytoplankton, and zooplankton. The 
model utilizes hydrological response units (HRUs) based on 
uniform climate and storage capacity factors. Periods from a 
few minutes to hundreds of years can be simulated. 
Simulation results include a time history of the runoff flow 
rate, sediment load, and nutrient and pesticide 
concentrations, along with a time history of water quantity 
and quality at any point in a watershed. HSPF simulates 
three sediment types (sand, silt, and clay) in addition to a 
single organic chemical and transformation products of that 
chemical [206, 207]. 

Generally used to assess the effects of land use change, 
reservoir operations, point or non-point source treatment 
alternatives, and flow diversions [37], HSPF is also suitable 
for mixed agricultural and urban watersheds [171]. Some of 
the key strengths of the model identified by Aqua Terra 
[208] include: (i) a comprehensive representation of water-
shed land, stream processes, and watershed pollutant 
sources, including non-point (by multiple land uses), point, 
and atmospheric sources; (ii) flexibility and adaptability to a 
wide range of watershed conditions; and (iii) well-designed 
code modularity and structure. Oogathoo [6] and AquaTerra 
[208] note that HSPF’s key limitations derive from it not 
being fully distributed or physically-based. As a result, wa-
tershed characteristics and climatic parameters are lumped 
into several units, and both empirical and physical equations 
are used to simulate the water flow [6]. In addition, due to its 
conceptualization of the overland (sub-basin) areas as lev-
eled detention storage and use of the storage-based or non-
linear flow equations in routings, HSPF is not adequate for 
simulating intense single-event storms, especially for large 
sub-basins and long channels [6, 171]. The model requires 
extensive data requirements (e.g., hourly rainfall) and avail-
able documentation provides no comprehensive parameter 
estimation guidance. As a result, user training is normally 
required [208]. In their effort to evaluate the model, Saleh 
and Du [209] highlighted these issues as they found the cali-
bration process tends to be strenuous and long. 

Kinematic Runoff and Erosion Model (KINEROS2) 

Represented by a cascade of planes and channels, 
KINEROS2 may be used to determine the effects of various 
artificial features such as urban developments, small deten-
tion reservoirs, or lined channels on flood hydrographs and 
sediment yield [33]. The model is also adopted as part of the 
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Automated Geospatial Watershed Assessment Tool 
(AGWA) software system [210, 211]. Limited to Hortonian 
flow and not designed for long-term simulations, 
KINEROS2 lacks an evapotranspiration component impor-
tant for the mass balance of the water cycle [37]; however, 
with its complete set of hydrology and sediment components, 
the model serves as a useful tool for studying single severe 
or design storms and evaluating watershed management 
practices, especially structural practices [171]. Using a small 
U.S. Department of Agriculture (USDA) experimental wa-
tershed located near Treynor, Iowa, Kalin and Hantush[37] 
tested the model and showed that it was also extremely ro-
bust in simulating erosion and sediment transport. The model 
was designed for arid and semi-arid areas [212]; however, 
several studies [210, 213-215] highlight the ability of the 
model to successfully simulate erosion, sediment transport, 
and characterize the runoff response of the watershed due to 
changes of land cover in arid and semi-arid watersheds. La-
jili-Ghezal [215] conducted similar assessments on the 
M'Richet El Anze watershed in a Tunisian semi-arid area 
and concluded that the model was adequate for predicting 
runoff from ungauged watersheds and for evaluating future 
land use master-plans for Tunisian semi-arid high lands. 
Miller et al. [210] also used KINEROS2 within the AGWA 
framework to successfully assess increased event runoff vol-
umes and flashier flood response in watersheds that contrib-
ute runoff to the upper San Pedro River in Sonora, Mexico 
and southeast Arizona. 

Unlike most of the studies mentioned, Al-Qurashiet al. 

[212] were less successful when assessing the model using 

data from a large arid catchment in Oman. Despite relatively 

extensive and high resolution rainfall-runoff data, and their 

efforts to optimize performance using automatic calibration 

and by adding a rainfall parameter, the model validation per-

formance was poor, and in general, no better than achieved 

using a ‘default’ parameter set [212]. Borah and Bera [5] 

note that the model does a relatively good job of simulating 

runoff and sediment yield at watershed scales of up to ap-

proximately 1,000 hectares (1x10
7
 m

2
); however, such poor 

results may arise since applications of the model are limited 

to small watersheds and specific combinations of space and 

time increments for maintaining stability of the numerical 

solutions. Overall, a key weakness of the model is the ab-

sence of chemical/nutrient components [171] which limit its 
capabilities to simulate for BMPs [37]. 

MIKE SHE  

MIKE SHE is a fully integrated, distributed, and physi-
cally-based watershed model that simulates the major proc-
esses in the hydrologic cycle and includes process models for 
evapotranspiration, overland flow, unsaturated flow, ground 
flow, channel flow, and their interactions [34]. It is used 
mostly at the watershed scale and from a single soil profile to 
several sub-watersheds with different soil types [216, 217]. 
The model's distributed nature allows a spatial distribution of 
watershed parameters, climate variables, and hydrological 
response through an orthogonal grid network and column of 
horizontal layers at each grid square in the horizontal and 
vertical, respectively [218]. The model can be used for storm 
or long-term events with a variable time step. Being physi-
cally-based, the topography, along with watershed character-
istics such as vegetation and soil properties, is included in 

the model. With a modular structure, MIKE SHE is capable 
of exchanging data between components as well as adding 
new process model components. The flexible operating 
structure of MIKE SHE allows the use of as many or as few 
components of the model, based on availability of data [219].  

MIKE SHE is considered the most comprehensive water-
shed model with virtually all of the in-surface and surface 
phases of the hydrologic cycle [37]. It also has many of the 
options to simulate wetlands, and nutrient and pesticide 
management. The model is being used for a wide variety of 
applications in different countries, including England [220], 
Australia [221], Canada [6], and the United States [222]. 
Some of the notable application areas include river basin 
management and modeling [223], integrated ground/surface 
water modeling [221, 222], irrigation [224-226], land use 
changes, and anthropogenic effects [27].  

Thompson et al. [220] used the model simulated in a wet-
land in England and found that the simulation results consis-
tently matched the observed data and reproduced the sea-
sonal dynamics of groundwater and ditch water levels. Sahoo 
et al. [84] used the model in a mountainous region of Hawaii 
to study watershed response to storm events and found the 
results were comparable to the observed data. In addition, 
Demetriou and Punthakey [221] concluded that the model 
was accurate in predicting water movement from aquifers, 
drainage and supply systems, and land surfaces across an 
Australian watershed with a complex hydro-geological re-
gime. Overall, Singh et al. [227] showed that the model can 
be utilized for irrigation planning and management of water 
resources for agricultural purposes.  

Many of the MIKE SHE applications also involve cou-
pling with other models; the model can interface with Model 
of Urban Sewers (MOUSE) to simulate the effect of urban 
drainage and sewer systems on the surface/subsurface hy-
drology [34, 228, 229] and is also frequently coupled with 
(DAISY), a detailed soil-plant-atmosphere model for agricul-
ture related studies [34, 230, 231]. Like the GSSHA model, 
MIKE SHE faces the problem of being computationally in-
tensive and may be prohibitive for medium to large-sized 
watersheds [171]. Borah and Bera [5] further point out that 
the physically based flow-governing equations use approxi-
mate numerical solutions, which are subject to computational 
instability problems, and limited on space and time incre-
ments and watershed sizes. 

Precipitation-Runoff Modeling System (PRMS)/Modular 
Modeling System (MMS) 

PRMS [232] is a modular-design, deterministic, distrib-
uted model that simulates precipitation- and snowmelt-
driven movement of water through the watershed via over-
land flow, interflow, and baseflow. Watershed response can 
be simulated at a daily time step or more frequently over the 
course of a storm. The watershed is divided into sub-units 
based on basin characteristics such as slope, aspect, eleva-
tion, vegetation type, soil type, land use, and precipitation 
distribution. Two levels of partitioning are available for 
PRMS. The first divides the basin into HRUs based on the 
basin characteristics where water and energy balances are 
computed daily for each HRU; the sum of the responses of 
all HRU's, weighted on a unit-area basis, produces the daily 
system response and streamflow for a basin. A second level 
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of partitioning is available for storm hydrograph simulation 
where the watershed is conceptualized as a series of inter-
connected flow planes and channel segments. Surface runoff 
is routed over the flow planes into the channel segments and 
channel flow is routed through the watershed channel sys-
tem. A HRU can be considered the equivalent of a flow 
plane or it can be delineated into a number of flow planes 
[232, 233]. PRMS was redesigned and now forms the basis 
of the US Geological Society (USGS) Modular Modeling 
System (MMS) [232].  

PRMS [233] has been applied in different regions around 
the world. Applications range from the investigation of se-
lected process components to streamflow simulation and the 
integration of MMS with other models [234]. One of the 
major benefits of MMS is its support for the integration of 
models and tools at a variety of levels [232]. Design levels 
include individual process models, tightly coupled models, 
loosely coupled models, and fully integrated decision sup-
port systems [234]. Several studies [235-237] have focused 
on this aspect of the model with some success. Steuer and 
Hunt [236] and Hunt and Steuer [235] used the model to 
study the effects of urbanization and land use changes on 
ground water recharge, and explicitly fed the results into the 
U.S. Geologic Survey groundwater model, Modular Three-
Dimensional Finite-Difference Ground-Water Flow 
Model(MODFLOW), for other studies in Dane County, Wis-
consin. Hobson [237] coupled the model with a stochastic 
weather generator as a framework to simulate weather vari-
ables and streamflows in the Upper Truckee River Basin on 
the California and Nevada border. The model can also be 
effectively used to evaluate the effects of climate variability, 
change on water resources, water management [234], and 
simulate floods including the representing flood wave propa-
gation from single rainfall events [5]. Valeo and Xiang [238] 
demonstrated this capability by analyzing climate change 
impacts on flooding from the Elbow River watershed in the 
foothills of the Rocky Mountains. In addition, Yates et al. 
[239] utilized the model with historical radar rainfall and 
forecast data to simulate flash flooding on a watershed that 
was partially burned during a forest fire. Other examples of 
these studies were conducted in several regions of the world, 
including the Main Ethiopian Rift Valley [240], river basins 
in the Sierra Nevada of California [241], and the Arno River 
in Italy [242]. 

Borah and Bera [5] identified the following key weak-
nesses of PRMS/MMS: (i) like KINEROS2, the model was 
designed for single rainfall events using one-dimensional 
flow equations and has potential numerical problems inher-
ent to the numerical solutions; (ii) in the Storm Mode, the 
model has hydrology and overland sediment, but no chemi-
cal component, sediment simulation in stream channels, and 
subsurface flow simulations; and (iii) the physically based 
flow-governing equations use approximate numerical solu-
tions which are subject to computational instability prob-
lems, and limited on space and time increments and water-
shed sizes. 

Soil and Water Assessment Tool (SWAT) 

SWAT [35, 36] is a physically-based, continuous-time 
watershed model that operates on a daily time step and is 
designed to predict the impact of management on water, 
sediment, and agricultural chemical yields in ungauged wa-

tersheds. The watershed is divided into multiple subwater-
sheds, which are then further subdivided into HRUs that 
consist of homogeneous land use, management, and soil 
characteristics. The HRUs represent percentages of the sub-
watershed area and are not identified spatially within a 
SWAT simulation. Alternatively, a watershed can only be 
subdivided into subwatersheds that are characterized by 
dominant land use, soil type, and management. Output for 
the model includes evapotranspiration, soil water storage, 
and water yield (surface runoff plus subsurface flow) [35, 
36]. The model has been adopted as part of the USEPA’s 
Better Assessment Science Integrating Point and Nonpoint 
Sources (BASINS) system [243] and AGWA [210, 211] 
software systems because it is a widely accepted continuous 
model suitable for agricultural and forest land uses [5, 168]. 
Based on these core strengths, Gassman et al. [36] found that 
the primary applications of SWAT are calibration and/or 
sensitivity analysis, climate change impacts, GIS interface 
descriptions, hydrologic assessments, variation in configura-
tion or data input effects, comparisons with other models or 
techniques, interfaces with other models, and pollutant as-
sessments. The foundation strength of SWAT in many of 
these applications is the combination of simplified upland 
and channel processes that are incorporated into the model 
noted by Gassman et al. [36]. The incorporation of the CN 
method and non-spatial HRUs supports model adaptation to 
virtually any watershed with a wide variety of hydrologic 
conditions [36].  

SWAT has produced favorable model results when 

evaluated on watersheds with a range of conditions in the 

U.S. and many other countries such as Korea [244], Canada 

[245], China [246], Finland [247], India [248-250], Tunisia 

[251], and Greece [252]; across many of these watersheds, 

SWAT has shown flexibility in simulating surface runoff. 

For example, Du et al. [253] demonstrated that a modified 

version of the SWAT model was able to generate reasonable 

simulation results for surface and subsurface flows, water 

table dynamics, tile flow, potholes, surface tile inlets, and 

aeration stress on plants for large flat landscapes. Gebremes-

kel et al. [245] stated that the SWAT model performed very 

well for stream flow prediction in the Canagagigue Creek 

watershed of southwestern Ontario, Canada. Several studies 

have also demonstrated the utility of SWAT as a tool for 

evaluating how stream flow can be affected by climate 
change [254-256]. 

With a flexible framework, SWAT facilitates the calcula-
tion of TMDLs and simulation of a wide variety of conserva-

tion practices and other BMPs (e.g., fertilizer and manure 

application rate and timing, irrigation management, and 
flood prevention structures) [36]. Several studies illustrate 

the success of SWAT in conducting these types of simula-

tions as part of an overall BMP assessment. For example, 
Santhi et al. [257] were able to use SWAT to determine the 

impacts of manure and nutrient related BMPs, forage harvest 

management, and other BMPs on water quality in the West 
Fork watershed in Texas. Chaplot et al.’s [258] efforts with 

SWAT showed that the adoption of no tillage, changes in 

nitrogen application rates, and land use changes had the po-
tential to significantly affect nitrogen losses on the Walnut 

Creek watershed in Iowa, and Kang et al. [244] were suc-

cessful in predicting and evaluating TMDLs of total nitro-
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gen, total phosphorus, and suspended solid for a small water-

shed containing rice paddies.  

SWAT possesses components that make it a robust tool 
for simulating in-stream water quality dynamics, bacteria 
fate and transport, and sediment transport [36]. A study con-
ducted by Migliaccio et al. [259] compared SWAT’s in-
stream water quality component with QUAL2E, USEPA’s 
well-known and state-of-the-art in-stream water quality 
model. Both options were used to simulate the movement of 
total phosphorous (P) and nitrate/nitrite (N) movement on 
War Eagle Creek watershed in Arkansas. The study revealed 
that there was no statistical difference between both in-
stream water quality modeling options. Saleh and Du [209] 
and Stewart et al. [260] also show that SWAT predicted rea-
sonable results for P and N loss on the Bosque River water-
shed in Texas. Chu et al. [261] evaluated SWAT on the 
Warner Creek watershed in Maryland and generated simula-
tion results for sediment loads which agreed strongly with 
yearly measured values. Other studies [248, 250, 262-265] 
on SWAT simulation of sediment loading on different water-
sheds also generated comparable results. In Missouri, for 
example, Benham et al. [266] used SWAT to determine the 
bacteria sources and assess which BMPs can reduce the bac-
teria on a watershed in Missouri. Similar results [267, 268] 
from other studies also highlight the usefulness of SWAT in 
bacteria fate and transport.  

The examples presented here have highlighted the flexi-
bility and robustness of SWAT. Despite these strengths, 
SWAT possesses a number of weaknesses, notably the use of 
non-spatial aspects of HRUs [6, 36]. As a result, Gassman et 
al. [36] note that this does not allow SWAT to provide an 
explicit spatial representation of riparian buffer zones, wet-
lands, and other BMPs. In addition, there is limited ability to 
account for targeted placement of grassland or other land use 
and ignore flow and pollutant routing within a given subwa-
tershed. Like ANPS and AnnANPS, SWAT also utilizes the 
curve number (CN) method and faces the same limitations 
identified earlier by Beven [186-188]. Borah and Bera [171] 
also report that SWAT does not simulate single-event storms 
adequately.  

Water Erosion Prediction Project (WEPP) 

WEPP [269] is a process-based, distributed, continuous, 

erosion prediction model. It is applicable to hillslope erosion 

processes (sheet and rill erosion), as well as simulation of the 

hydrologic and erosion processes on small watersheds. The 

primary intention of the model is to evaluate the effects of 

farming and land use on soil erosion and sediment delivery 

for small, agricultural field-sized watersheds (up to 2.59x10
6
 

m
2
). WEPP has been used in a wide range of applications, 

including runoff mapping [270], sediment analysis [271], 

and modeling the transport of pathogenic microorganisms 

[272]. Another example of the WEPP application was fo-

cused on the connection between soil sediment and microbial 

transport [272]. It was determined that areas with clay soils 

contribute more to contamination of water supplies by mi-

croorganisms than those with sandy soils. It was also sug-

gested that the leading factors are hydraulic conductivity, 

rainfall intensity, and topographic slope. Similar efforts 

could be performed on organic chemicals that may adhere to 
differing soil types and be transported through the watershed. 

A computer interface (Erosion Database Interface, EDI) 
was created by van Lier et al. [273] to process the surface 
hydrology output from WEPP into a georeferenced estima-
tion of runoff. This tool allowed for improved management 
of agriculture and can be used to assess crop management 
techniques [270]. WEPP was used, along with the Universal 
Soil Loss Equation, sediment rating curves, and other model-
ing techniques to develop a sediment budget for the Murder-
CreekBasin in Georgia. From the study, researchers found 
that unstable streambanks, mobile streambeds, and turbidity 
currently observed in the area were the result of poor farm-
ing practices from the early 1900s [271].  

WATERSHED MODELING SYSTEMS 

There are numerous watershed-scale hydrologic model-
ing systems available that utilize some of the models men-
tioned previously within one packaged system for watershed 
management. This section briefly describes some of the sys-
tems more commonly used today. A summary of the water-
shed model systems considered and their properties is pro-
vided in Table 2. 

Automated Geospatial Watershed Assessment Tool 
(AGWA) 

AGWA is a GIS-based tool for watershed modeling cre-
ated through a joint project between the USDA-ARS South-
west Watershed Research Center and the U.S. EPA Office of 
Research and Development [274]. Embedded in AGWA are 
the KINEROS and SWAT models. Digital elevation models 
(DEMs) are used to delineate and discretize the watersheds. 
Then, soil, land cover, and precipitation data layers are used 
to derive model input parameters. Subsurface hydrologic 
data from Walnut Gulch Experimental Watershed were used 
to calibrate and validate AGWA.  

AGWA is used by scientists and natural resource manag-
ers to investigate the impacts of land cover change on runoff, 
erosion, and water quality. Most applications of AGWA in-
volve analysis of future sediment loading and runoff to assist 
in decision support. Hernandez et al. [214] demonstrated this 
application by using AGWA with ATtILA, a landscape as-
sessment tool, to analyze the spatial effects of human-
induced landscape changes on runoff volume and soil ero-
sion in the San Pedro River Basin, a semi-arid area. Within 
AGWA, SWAT was used for modeling of runoff and erosion 
simulations. The basin was divided into sub catchments for 
analysis, which were further divided into hydrological re-
sponse units (HRUs) to develop relationships between land 
cover and sediment yield. Agricultural areas were found to 
have the greatest contribution to sediment yield. Subcatch-
ments and HRUs were ranked in order of sediment loading 
with those contributing the most sediment considered “sensi-
tive areas.” This application provides resource managers 
with capability to identify problem areas by applying a spa-
tial approach to sediment and runoff modeling [214]. An-
other example of AGWA’s use for management decision 
support was performed by Kepner et al. [275]. Three scenar-
ios for future urbanization of the Upper San Pedro River 
Basin were evaluated for surface runoff, sediment yield, 
channel discharge, and percolation using SWAT within 
AGWA. While all three scenarios yielded negative impacts 
on the basin, the Open Scenario, which consists of a popula-
tion increase greater than currently forecasted and highly 
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unrestricted land development, resulted in a worst case out-
come [275]. Similar applications can be employed to assist 
stakeholders and management in decision support for land 
development planning. 

Better Assessment Science Integrating Point and Non-
point Sources (BASINS) 

First released in 1996 by the USEPA, the Better Assess-
ment Science Integrating Point and Nonpoint Sources (BA-
SINS) software system was intended to serve as a multipur-
pose environmental analysis system focused on evaluating 
both point and nonpoint sources of pollutant loading in wa-
tersheds [211]. A specific intended use of BASINS is fo-
cused on evaluation and development of Total Maximum 
Daily Loads (TMDLs). It is capable of performing watershed 
and water quality-based studies on regional, state, and local 
levels. The system includes utilities for data management 
and extraction, watershed delineation, watershed assessment 
tools, and a group of watershed models including WinHSPF, 
Pollutant Load Application (PLOAD), Aquatic Ecostystem 
and Toxicity Model (AQUATOX), and AGWA which in-
cludes KINEROS and SWAT. The current version, BASINS 
4.0, includes an open-source, free GIS software architecture, 
MapWindow [276].  

BASINS has been used for pollutant loading of the Sea-
mangeum watershed in Korea, specifically focused on BOD, 
total nitrogen, and total phosphorous. Jeon et al. [277], in 
testing the applicability of WinHSPF within BASINS, found 
that values obtained from BASINS were a bit higher than 
field observations, but were considered within an acceptable 
range to accept the model as a good choice for Korean appli-
cations. In another study for the New York Department of 
Environment and Conservation (NYDEC), BASINS was 
considered for use in development of the sediment portion of 
the state’s TMDL plan. They found that SWAT was easier to 
use than HSPF, but recommend that Monte Carlo simula-
tions be conducted to provide more accurate values [278]. 
Both studies indicated that results were less than perfect, but 
within acceptable boundaries.  

MODFLOW-Watershed Hydrology and Transport 
(MODFLOW-WHaT) 

MODFLOW-WHaT is a recent addition to the watershed 
modeling portfolio. The system is the result of a Master’s 
Thesis research of Brad Thoms [256], where the Center for 
Groundwater Research at Oregon Health and Science Uni-
versity currently sponsors/maintains MODLFLOW-WHAT. 
The package provides fully coupled, 3D simulation of sur-
face-subsurface interactions through use of Richard’s Equa-
tion, 2D kinematic flow approximations for overland flow, 
and an adaptive time-stepping algorithm. Open-channel flow 
calculations are performed using Diffusion Analogy Surface-
Water Flow Model (DAFLOW) with water quality modeled 
using RT3D and Branched Lagrangian Transport Model 
(BLTM) [279].  

Little is known about the benefits of using the system be-
yond the comparison made by Thoms [280] to work done by 
Johnson and colleagues [281]. Johnson’s work involved us-
ing MODFLOW-SURFACT to evaluate the impacts of daily 
precipitation and location within a watershed on the occur-
rence of volatile organic carbons (VOCs) in groundwaters of 

semi-arid regions [281]. In the between the two MODFLOW 
packages, it was found that MODFLOW-WHaT more accu-
rately represented the watershed’s responses to precipitation 
events by taking into consideration infiltration and subsur-
face flow that are not well represented in MODFLOW-
SURFACT [280]. The authors are unaware of a GIS compo-
nent to this modeling system or other applications. 

Watershed Information System (WISE) 

Developed by Watershed Concepts, WISE is a GIS-based 
system to manage and analyze large amounts of water re-
sources data. The system is primarily used for its open data 
storage management and formatting abilities instead of actu-
ally processing information [282]. It is compatible with 
HEC-1, HEC-2, HEC-RAS, FLO-2D, Coastal Hydroscience 
Analysis, Modeling & Predictive Simulation (CHAMPS), 
Wave Height Analysis for Flood Insurance Studies 
(WHAFIS), Storm Water Management Model (SWMM), 
and Windows Hydrological Simulation Program-Fortran 
(WinHSPF) through NonPoint Source Model (NPSM). The 
system includes several modules discussed below [283]. 

• Scoping module: This allows users to collect spatial 
data and assists in mapping for flood hazard studies.  

• Terrain module: Terrain datasets can be imported and 
prioritized based on user needs primarily for use in 
drainage studies. 

• Closed system inventory module: This calculates pipe 
capacities, lengths, slopes, and has capabilities for use 
with catch basins, manholes, and piping systems.  

• Open system inventory module: Used for large scale 
hydrologic and hydraulic studies, this module allows 
input of Total Station survey data and provides easy 
export to the HEC-RAS model.  

• Hydrology module: This module assists in catchment 
delineation and calculates Time of Concentration, 
stage/storage curves and SCS curve numbers. It also 
can function as a pre-processor for HEC-1 and TR-20 
models.  

• Hydraulics module: Spatial data can be integrated to 
build hydraulic model input data and is used for flood 
map generation. 

• Water quality module: Travel time of 
spills/contamination events is computed using dis-
tance or time interval measures and impacted stream 
segments are color coded. 

• Planning tools module: Aerial photos can be used to 
identify impervious surfaces which are then used to 
estimate impact based upon parcel ownership. 

• Wastewater planning module: Users can plan and pre-
dict costs associated with modifying or repairing ex-
isting wastewater systems or model new systems tak-
ing into consideration costs and population projections 
[283]. 

WISE has been used primarily as a flood hazard mapping 
tool. USGS New Hapmshire/Vermont Water Science Center 
performed such a study for Carroll County, New Hampshire 
[284], where WISE was primarily used for data collection 
and storage. The primary problems faced by those involved 
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in the project included lack of or low quality spatial data for 
mapping the floodplains [284].  

Watershed Modeling System (WMS) 

Watershed Modeling System (WMS), developed by En-
vironmental Modeling Systems, Inc. at Brigham Young Uni-
versity, is a comprehensive graphical modeling environment 
for all phases of watershed hydrology and hydraulics [197]. 
WMS includes powerful tools to automate modeling proc-
esses such as automated basin delineation, geometric pa-
rameter calculations, GIS overlay computations including 
curve numbers (CN), rainfall depth, roughness coefficients, 
etc., and cross-section extraction from terrain data. WMS 
provides an interface for a variety of hydrologic and hydrau-
lic models within a GIS-based processing framework. Mod-
els packaged within the system include HEC-1, TR-20, TR-
55, National Flood Frequency Model (NFF), Modified Ra-
tional Method Model (MODRAT), OC Rational, and HSPF 
as hydrologic modeling components. HEC-RAS, Simplified 
Dam-Break Model (SMPDBK), and CE QUAL W2 provide 
hydraulic modeling capabilities. Gridded Surface Subsurface 
Hydraulic Analysis (GSSHA), a runoff and infiltration 
model from the U.S. Army Corps of Engineers (USACE) 
Engineering and Research Development Center (ERDC), is 
also included for 2-D integrated hydrology modeling with 
groundwater interactions. Additional calculations include use 
of the rational method to compute peak flows primarily for 
small rural watersheds [197]. 

Typical applications involve use of the sub-models 
within WMS with the overarching system used for pre- and 
post-processing of information. An example of this is the 
work done by Omer et al. [214] on evaluating the impact of 
data resolution on hydraulic modeling and floodplain de-
lineation for Leith Creek in North Carolina. Light detection 
and ranging (LIDAR) data is a highly dense but a highly 
informational aerial surveying technique now being em-
ployed in GIS and hydrology applications for actions such as 
delineating catchments and floodplains. Redundancy in the 
data and the massive amounts of data obtained can be trou-
blesome. WMS possesses capabilities to not only utilize this 
data in applications, but also to filter the data to remove un-
necessary points. The researchers filtered the LIDAR data at 
different levels and then compared HEC-RAS results using 
each of the filtered data sets. WMS provided a platform for 
performing the analysis. It was found that filtering of the 
data improved processing time without compromising results 
with the optimal filter level of at degrees [285].  

FUTURE DEVELOPMENTS IN WATERSHED MOD-

ELING 

Watershed modeling involves a comprehensive examina-

tion of contaminant transport across different features found 

on the surface and in the subsurface, including the interfaces 

between. Specific research and advances are focused on sub-

components of watershed modeling. Other areas for future 

consideration include development of guidelines for discern-

ing minimum data resolution requirements, improved under-

standing of scale-up issues and relationships, and develop-

ment of threshold area guidelines for stream network devel-

opment. Horn et al. [286] also suggest that future advance-

ments should include additional capabilities to evaluate river 

water quality such as biological interactions (beyond that 

currently done for TMDLs]. Research is currently underway 

to address several of these needs in watershed modeling. A 

few notable examples are illustrated below.  

The U.S. Department of Defense and the U.S. Army 
Corps of Engineers (USACE) have conducted several re-
search projects on improving watershed and related model-
ing including improvements in the capabilities of existing 
models. For example, the USACE Great Lakes Tributary 
Modeling Program is developing sediment transport models 
for Great Lakes tributaries [287]. USACE has committed to 
developing more of these sediment transport models for 
other Great Lakes tributaries [287]. USACE also intends to 
develop web-based tools that can continue to support water-
shed planning at smaller tributaries and sub-basins. This di-
rection can potentially lead to the application of sub models 
in a more flexible format such as integration with Internet 
GIS tools. Research at the U.S. Army Corps of Engineers 
Coastal Hydraulics Laboratory (CHL) is also developing 
improved sub-models. For example, parameter estimation 
methodologies are being used to enhance existing HEC-
HMS automated parameter estimation capabilities [288]. 
Additional research is also being done to investigate the use 
of artificial neural networks for forecasting streamflows and 
rainfall-runoff on watersheds [12, 16, 289, 290]. 

CONCLUSIONS 

The ability to deliver reliable water resources to a grow-
ing population and effectively forecast flooding, drought, 
and surface/groundwater water contamination represent in-
creasingly difficult and interrelated challenges to water re-
source managers, engineers, and researchers. Such chal-
lenges necessitate the employment of a more holistic ap-
proach that is capable of examining individual processes and 
systems and the interface between them. This paper identi-
fied and reviewed current technologies and issues involved 
with performing hydrologic modeling at the watershed scale. 
The topics presented include an observed shift to a more 
holistic, watershed-based focus of the regulatory community, 
various types of watershed-scale models and watershed 
modeling systems available today, use of artificial intelli-
gence in modeling processes, and issues faced through scale-
up of hydrologic processes and data resolution. The benefits 
of using these techniques include the ability to assist water 
resource and watershed managers with a variety of applica-
tions such as evaluating and developing TMDLs. Tables 1 
and 2 provide a summary of watershed-scale models and 
modeling systems reviewed in this paper. Water resource 
managers and decision makers can employ this summary to 
compare models and also use as a screening tool for select-
ing a watershed model for a specific purpose.  
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LIST OF ABREVIATIONS 

AGNPS = Agricultural Non-Point Source 
Pollution Model 

AGWA = Automated Geospatial Water-
shed Assessment Tool 

AI = Artificial Intelligence 

ANN = Artificial Neural Networks 

ANSWERS = Areal Non-Point Source Water-
shed Environment Simulation 

AQUATOX = Aquatic Ecosystem and Toxicity 
Model 

ASCE = American Society of Civil Engi-
neers 

BASINS = Better Assessment Science Inte-
grating Point and Nonpoint-
Sources 

BLTM = Branched Lagrangian Transport 
Model 

BMP = Best Management Practice 

CASC2D = CASCade of Planes in 2-
Dimensions 

CHAMPS = Coastal Hydroscience Analysis, 
Modeling & Predictive Simula-
tion 

CHL = Coastal Hydraulics Laboratory  

CN = Curve Number 

DAFLOW = Diffusion Analogy Surface-
Water Flow Model 

DEM = Digital Elevation Model 

DHSVM = Distributed-Hydrology-Soil-
Vegetation Model  

DOD = Department of Defense 

EDI = Erosion Database Interface 

EPA = Environmental Protection 
Agency 

ERDC = Engineering and Research De-
velopment Center 

FL = Fuzzy Logic 

GA = Genetic Algorithms 

GEP = Gene Expression Programming 

GIS = Geographic Information Sys-
tems 

GP = Genetic Programming 

GSSHA = Gridded Surface Hydrologic 
Analysis 

GUI = Graphical User Interface 

HEC = Hydrologic Engineering Center 

HEC-HMS = Hydrologic Engineering Cen-
ter’s Hydrologic Modeling Sys-
tem 

HSPF = Hydrological Simulation Pro-
gram-FORTRAN 

HRU = Hydrologic Response Unit 

KINEROS = Kinematic Runoff and Erosion 
Model 

LIDAR = Light Detection and Ranging  

MMS = Modular Modeling System 

MODRAT = Modified Rational Method 

MOUSE = Model of Urban Sewers 

NFF = National Flood Frequency 
Model 

NPSM = Non Point Source Model 

NYDEC = New York Department of Envi-
ronment and Conservation 

PLOAD = Pollutant Load Application 

PRMS  = Precipitation-Runoff Modeling 
System 

RS = Remote Sensing 

SMPDBK = Simplified Dam-Break Model 

SWAT = Soil and Water Assessment Tool  

SWMM = Storm Water Management 
Model 

TKN = Total Kjeldahl Nitrogen 

TMDL = Total Maximum Daily Load 

USACE = United States Army Corps of 
Engineers 

USDA = United States Department of 
Agriculture 

USGS = United States Geological Soci-
ety 

VOC = Volatile Organic Compound 

WHAFIS = Wave Height Analysis for Flood 
Insurance Studies 

WEPP = Water Erosion Prediction Pro-
ject  
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WinHSPF = Windows Hydrological Simula-
tion Program-Fortran 

WMS = Watershed Modeling System 
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